Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Optical Properties of Lanthanides in Condensed Phase, Theory and Applications

Institute of Chemistry, Hebrew University of Jerusalem, Givat-Ram, Jerusalem 91904, Israel

Special Issues: Rare-earth-based materials

The basic theories of electronic levels and transition probabilities of lanthanides are summarized. Their interpretation allows practical preparation of new materials having application in lighting, solar energy utilization, optoelectronics, biological sensors, active waveguides and highly sensitive bioassays for in vitro detection in medical applications. The ways by which the weak fluorescence arising from electronic transition within the four f-configurations can be intensified will be discussed. This includes the intermixing of the four f-states with ligands of the host matrix, excitation to higher d-electronic states. Additional intensification of luminescence by plasmonic interaction with gold, silver and copper nanoparticles will be discussed. A short history of the time development of the research and the names of the scientists who made the major contribution of our understanding of lanthanides spectroscopy are presented.
  Article Metrics

Keywords luminescence increasing; lanthanide; complexes; spectroscopy; energy transfer

Citation: Renata Reisfeld. Optical Properties of Lanthanides in Condensed Phase, Theory and Applications. AIMS Materials Science, 2015, 2(2): 37-60. doi: 10.3934/matersci.2015.2.37


  • 1. Jorgensen CK (1971) Modern aspects of ligand field theory, North-Holland Pub. Co, 538 pages.
  • 2. Reisfeld R, Jorgensen CK (1977) Lasers and Excited States of Lanthanidess. Springer-Verlag, Berlin Heidelberg, New-York.
  • 3. Condon EU, Shortley GH (1963) The theory of atomic spectra, University Press Cambridge. See also Slater, J. C., (1929) Phys Rev 34: 1293-1322.
  • 4. Racah G (1949) Theory of complex spectra, Phys Rev 76: 1352.
  • 5. Bünzli JC, Chauvin AS (2014) Lanthanides in Solar Energy Conversion. Handbook on the Physics and Chemistry of Lanthanidess. Elsevier B.V., Amsterdam, chapter 261, 44: 169-281.
  • 6. Jorgensen CK, Reisfeld R (1982) Chemistry and spectroscopy of lanthanidess. Topics in Current Chemistry 100: 126-166.
  • 7. Reisfeld R, Jorgensen CK (1987) Chapter 58 Excited state phenomena in vitreous materials. Handbook on the Physics and Chemistry of Lanthanidess 9: 1-90.
  • 8. Lehn JM (1987) Supramolecular chemistry scope and perspectivesmolecules supermolecules molecular devices. Nobel lecture.
  • 9. Reisfeld R, Jorgensen CK (1992) Optical properties of colorants or luminescent species in sol-gel glasses. Struct Bond 77: 207-256.    
  • 10. Reisfeld R, Saraidarov T, Panzer G, et al. (2011) New Optical Material Europium EDTA complex in polyvinyl pyrrolidone films with fluorescence enhanced by silver plasmons. Opt Mater 34:351-355.    
  • 11. Levchenko V, Grouchko M, Magdassi S, et al. (2011) Enhancement of luminescence of Rhodamine B by gold nanoparticles in thin films on glass for active optical materials applications. Opt Mater 34: 360-365.    
  • 12. Reisfeld R, Grinberg M, Levchenko V, et al. (2014) Sol-gel glasses with Enhanced Luminescence of Laser Dye Rhodamine B due to Plasmonic Coupling by Copper Nanoparticles. Opt Mater 36:1611-1615.    
  • 13. Gaft M, Reisfeld R, Panczer G (2004) Luminescence Spectroscopy of Minerals and Materials. Springer Verlag, New-York.
  • 14. Gan F (1992) Optical and Spectroscopic Properties of Glass, Springer Verlag, New York.
  • 15. Reisfeld R (1975) Radiative and nonradiative transition of lanthanidess in glasses, Structure and Bonding 22: 123-175; Reisfeld, R. (1976) Excited states and energy transfer from donor cations to lanthanidess in the condensed phase. Struct Bond 30: 65-97.
  • 16. Reisfeld R (1980) Multiphonon relaxation in glasses, Internat. School of Atomic and Molecular Spectroscopy, In: DiBartolo B., Goldberg V., NATO Advanced Study Institute on Radiationless Processes, Erice, Italy, 1979. Radiationless Processes, Plenum, 489-498.
  • 17. Binnemans K (2009) Lanthanide-Based Luminescent Hybrid Materials. Chem Rev 109:4283-4374.    
  • 18. Judd BR (1962) Optical absorptionintensities of lanthanides ions. Phys Rev 127: 504.
  • 19. Ofelt GS (1962) Intensities of crystal spectra of lanthanides ions. J Chem Phys 3: 37-511.
  • 20. Wybourne BG (1965) Spectra of Lanthanidess Salts, 11 Spectroscopic Properties of Lanthanidess, In: Interscience Publishers, New York, London, Sydney, 210-219.
  • 21. Dieke GH (1968) Spectra and Energy Levels of Lanthanidess Ions in Crystals, In: Crosswhite, H. M., Crosswhite, H., Interscience Publishers, New York, London, Sydney, Toronto.
  • 22. Görller-Walrand C, Binnermans K (1998) Spectral Intensities of f-f Transitions. Handbook on Physics and Chemistry of Lanthanidess Elsevier Science B. V. 25: 101-261.
  • 23. Jorgensen CK, Judd BR (1964) Hypersensitive pseudoquadrupole transition in lanthanides. Mol Phys 8: 281-290.    
  • 24. Reisfeld R (2004) Lanthanides Ions: Their Spectroscopy of Cryptates and Related Complexes in Glasses, In: Schonherr, T.. Struct Bond 106: 209-235.
  • 25. Luminescence and energy transfer (1980) Struct Bond 42.
  • 26. Reisfeld R (1976) Excited states and energy transfer from donor cations to lanthanidess in the condensed phase. Struct Bond 30: 65-97.
  • 27. Longo R, Goncalves FR, Silva E, et al. (2000) Europium bipyridil cryptates. Chem Phys Lett 328:67-74.    
  • 28. De Sa GF, Malta OL, de Donega CM, et al. (2000) Spectroscopic properties and design of highly luminescent lanthanide coordination complexes. Coordin Chem Rev 196:165-195.    
  • 29. Demendoza J, Mesa E, Rodriguezubis JC, et al. (1991) A new macrobicyclic tris-bipyridine ligand and its CU-2(I) and AG-3(I) complexes. Angewandte Chemie-International (English edition) 30: 13331-13333.
  • 30. Sabbatini N, Guardigli M, Manet I, et al. (1995) Lanthanide complexes of encapsulating ligands: Luminescent devices at the molecular level. Pure App Chem 67: 135-140.
  • 31. Borzechowska M, Trush V, Turowska-Tyrk I, et al. (2002) Spectroscopic and magnetic studies of mixed lanthanide complexes: LnL3 α,α'Dipy in solution and in solid. J Alloys Compd 341:98-106.    
  • 32. Reisfeld R (2004) Sol gel processed lasers, In: Sakka, S., Sol-Gel Technology Handbook 3, NATO Science Series, Springer, Netherlands, 239-261.
  • 33. Bünzli JCG (1989) Chemical and Earth Sciences, Theory and Practice, In: Bünzli, J. C., Chopin, G. R., Elsevier Amsterdam, 219-293.
  • 34. Comby S, Gummy F, Bunzli JC, et al. (2006) Luminescence Properties of an Yb podate in Sol-Gel Silica Films Solution, and Solid State. Chem Phys Lett 432: 128-132.    
  • 35. Reisfeld R (1996) Lasers based in sol-gel technology, Optical and Modern Application, In: Reisfeld, R., Jorgensen, C. K.. Struct Bond 85: 215-217.
  • 36. Balzani V, Lehn JM, Vandeloosdrect J, et al. (1991) Luminescence properties of Eu 3+ and Tb 3+ complexes of branched macrocyclic ligands containing 4 2,2'-bipyridine units. Angewandte Chemie-International (English edition) 30: 190-191.    
  • 37. Reisfeld R (2015) Luminescent solar concentrators and the ways to increase their efficiencies, Handbook Sol-Gel Vol. 3 to be published by Wiley-VCH.
  • 38. Reisfeld R (2010) Invited paper, New Developments in Luminescence for Solar Energy Utilization. Opt Mater 32: 850-856.    
  • 39. Bunzli JC, Piguet C, (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34:1048-1077.    
  • 40. Reisfeld R, Gaft M, Saraidarov T, et al. (2000) Nanoparticles of cadmium sulfide with europium and terbium in zirconia films having intersified luminescence. Materials Letters 45: 154-156.    
  • 41. Zhang J, Fu Y, Ray K, et al. (2013) Luminescent Properties of Eu(III) Chelates on Metal Nanorods. J Phys Chem C 117: 9372-9380.    
  • 42. Zhou S, Zheng W, Chen Z, et al. (2014) Dissolution-Enhanced Luminescent Bioassay Based on Inorganic Lanthanide Nanoparticles. Angew Chem Int Ed 53: 12498-12502.
  • 43. Reisfeld R (2014) Fluorescence-active Waveguides by the Sol-Gel Method. Theory and Application, Zeitschrift fur Naturforsch B, Band 69, Heft 2: 131-140.
  • 44. Auzel F (2004) Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem Rev104: 139-173.
  • 45. Kenyon AJ (2002) Review Recent developments in rare-earthdoped materials for optoelectronics. Prog Quant Electron 26: 225-284.    
  • 46. Bünzli J-CG, Chauvin A-S (2014) Lanthanides in Solar Energy Conversion. Handbook on the Physics and Chemistry of Lanthanidess Elsevier B.V. North-Holland.
  • 47. Leif RC, Vallarino LM, Becker MC, et al. (2006) Increasing the luminescence of lanthanide complexes. Cytometry Part A 69A: 767-778.    
  • 48. Armelao L, Quici S, Barigelletti F, et al. (2010) Design of luminescent lanthanide complexe: From molecules to highly efficient photo-emitting materials. Coordin Chem Rev 254: 487-505.    


This article has been cited by

  • 1. Dimitar N. Petrov., Spin–orbit interactions in free lanthanide (3+) ions, Physica B: Condensed Matter, 2016, 10.1016/j.physb.2016.04.032
  • 2. Renata Reisfeld, Viktoria Levchenko, The influence of surface plasmons on fluorescence of the dye Lumogen F red 300 in condensed phase, Optical Materials, 2016, 10.1016/j.optmat.2016.08.044
  • 3. Krzysztof Staninski, Zbigniew Piskuła, Małgorzata Kaczmarek, Photo- and electroluminescence properties of lanthanide tungstate-doped porous anodic aluminum oxide, Optical Materials, 2017, 64, 142, 10.1016/j.optmat.2016.12.003
  • 4. D.N. Petrov, S. Kaya, T. Eftimov, Fluorescence of UV-excited LiPrP4O12 and LiTmP4O12 single crystals, Optik - International Journal for Light and Electron Optics, 2017, 10.1016/j.ijleo.2017.02.010
  • 5. Dimitar N. Petrov, Crystal field strength and spin-orbit interaction of Er 3+ - ground level in crystals, Journal of Physics and Chemistry of Solids, 2017, 107, 18, 10.1016/j.jpcs.2017.03.017
  • 6. Viktoria Levchenko, Renata Reisfeld, Enhancement of fluorescence of EuEDTA chelate complex in sol-gel glasses by surface plasmons of copper nanoparticles, Optical Materials, 2017, 10.1016/j.optmat.2017.04.040
  • 7. Michael Gaft, Renata Reisfeld, Gerard Panczer, , Modern Luminescence Spectroscopy of Minerals and Materials, 2015, Chapter 5, 221, 10.1007/978-3-319-24765-6_5
  • 8. Renata Reisfeld, , Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, 2017, 10.1016/B978-0-12-409547-2.11688-9
  • 9. Viktoria Levchenko, Luminescence of Europium complex enhanced by surface plasmons of gold nanoparticles for possible application in luminescent solar concentrators, Journal of Luminescence, 2017, 10.1016/j.jlumin.2017.09.030
  • 10. D.N. Petrov, B.M. Angelov, Fluorescence of UV-excited single crystals of LiSmP 4 O 12 and LiDyP 4 O 12, Optik, 2018, 169, 291, 10.1016/j.ijleo.2018.05.080
  • 11. Liviu Ungur, , Lanthanide-Based Multifunctional Materials, 2018, 1, 10.1016/B978-0-12-813840-3.00001-6
  • 12. P. D. Dragic, M. Cavillon, J. Ballato, Materials for optical fiber lasers: A review, Applied Physics Reviews, 2018, 5, 4, 041301, 10.1063/1.5048410
  • 13. D.N. Petrov, B.M. Angelov, Spin-orbit interaction of Tm3+ - ground level and crystal field strength, Physica B: Condensed Matter, 2019, 10.1016/j.physb.2018.12.043
  • 14. Jyoti Dalal, Mandeep Dalal, Sushma Devi, Rekha Devi, Anju Hooda, Avni Khatkar, V.B. Taxak, S.P. Khatkar, Structural analysis and Judd-Ofelt parameterization of Ca9Gd(PO4)7:Eu3+ nanophosphor for solid-state illumination, Journal of Luminescence, 2019, 210, 293, 10.1016/j.jlumin.2019.02.050
  • 15. Krishna Chary Thatipamula, Govindugari Bhargavi, Melath V. Rajasekharan,  Structural Trends in a 3  d ‐4  f System: Ln (NO 3 ) 3 −Cu(2,2‐bipyridine) 2 (NO 3 ) 2 ( Ln =La−Nd, Sm−Yb) , ChemistrySelect, 2019, 4, 12, 3450, 10.1002/slct.201804072
  • 16. Dimitar N. Petrov, B.M. Angelov, Fluorescence of LiEuP4O12 and LiTbP4O12 single crystals under UV excitations, Optik, 2019, 10.1016/j.ijleo.2019.04.078
  • 17. Sajjad Hussain, Xuenian Chen, William T. A. Harrison, Saeed Ahmad, Mark R. J. Elsegood, Islam Ullah Khan, Shabbir Muhammad, Synthesis, Thermal, Structural Analyses, and Photoluminescent Properties of a New Family of Malonate-Containing Lanthanide(III) Coordination Polymers, Frontiers in Chemistry, 2019, 7, 10.3389/fchem.2019.00260
  • 18. Renata Reisfeld, , Handbook of Sol-Gel Science and Technology, 2016, Chapter 63-1, 1, 10.1007/978-3-319-19454-7_63-1
  • 19. Aleksandar Ćirić, Stevan Stojadinović, Miroslav D. Dramićanin, Approximate prediction of the CIE coordinates of lanthanide-doped materials from the Judd-Ofelt intensity parameters, Journal of Luminescence, 2019, 10.1016/j.jlumin.2019.05.052
  • 20. Yuri N. Palyanov, Yuri M. Borzdov, Alexander F. Khokhryakov, Igor N. Kupriyanov, Effect of Rare-Earth Element Oxides on Diamond Crystallization in Mg-Based Systems, Crystals, 2019, 9, 6, 300, 10.3390/cryst9060300
  • 21. Dimitar N. Petrov, B.M. Angelov, Spin – Orbit interaction in Yb3+ – Ground level and nephelauxetic effect in crystals, Chemical Physics, 2019, 525, 110416, 10.1016/j.chemphys.2019.110416
  • 22. Douniazed Hannachi, Mohamed Fahim Haroun, Ahlem Khireddine, Henry Chermette, Optical and nonlinear optical properties of Ln(Tp)2, where Ln = La,…,Lu and Tp = tris(pyrazolyl)borate: a DFT+TD-DFT study, New Journal of Chemistry, 2019, 10.1039/C9NJ03232K
  • 23. Aleksandar Ćirić, Stevan Stojadinović, Mikhail G. Brik, Miroslav D. Dramićanin, Judd-Ofelt parametrization from emission spectra: the case study of the Eu3+ 5D1 emitting level, Chemical Physics, 2019, 110513, 10.1016/j.chemphys.2019.110513
  • 24. Aleksandar Ćirić, Stevan Stojadinović, Miroslav D. Dramićanin, An extension of the Judd-Ofelt theory to the field of lanthanide thermometry, Journal of Luminescence, 2019, 216, 116749, 10.1016/j.jlumin.2019.116749
  • 25. Renata Reisfeld, , Handbook of Sol-Gel Science and Technology, 2018, Chapter 63, 2093, 10.1007/978-3-319-32101-1_63
  • 26. Alexander F. Khokhryakov, Yuri M. Borzdov, Igor N. Kupriyanov, High-Pressure Diamond Synthesis in the Presence of Rare-Earth Metals, Journal of Crystal Growth, 2019, 125358, 10.1016/j.jcrysgro.2019.125358
  • 27. Albano N. Carneiro Neto, Ercules E.S. Teotonio, Gilberto F. de Sá, Hermi F. Brito, Janina Legendziewicz, Luís D. Carlos, Maria Claudia F.C. Felinto, Paula Gawryszewska, Renaldo T. Moura, Ricardo L. Longo, Wagner M. Faustino, Oscar L. Malta, , Including Actinides, 2019, 55, 10.1016/bs.hpcre.2019.08.001
  • 28. Dimitar N. Petrov, B.M. Angelov, Spin – orbit coupling and quasi – nephelauxetic effect in Ce3+, Physica B: Condensed Matter, 2019, 411912, 10.1016/j.physb.2019.411912
  • 29. Aleksandar Ćirić, Ivana Zeković, Mina Medić, Ž. Antić, Miroslav D. Dramićanin, Judd-Ofelt modelling of the ground state absorption luminescence intensity ratio thermometry, Journal of Luminescence, 2020, 117369, 10.1016/j.jlumin.2020.117369
  • 30. Dimitar N. Petrov, B.M. Angelov, Nephelauxetic effect and spin – Orbit interaction with Pm3+ and Ho3+ ions in crystals, Chemical Physics Letters, 2020, 754, 137704, 10.1016/j.cplett.2020.137704
  • 31. Alessandra dos Santos Silva, Wesley Soares Silva, Tasso Oliveira Sales, Carlos Jacinto, Noelio Oliveira Dantas, Energy transfer from Mn2+ to Nd3+ ions embedded in a nanostructured glass system with Zn1−xMnxTe nanocrystals, Journal of Luminescence, 2020, 226, 117511, 10.1016/j.jlumin.2020.117511

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Renata Reisfeld, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved