Review Special Issues

Pin1 and neurodegeneration: a new player for prion disorders?

  • Received: 14 April 2015 Accepted: 03 July 2015 Published: 09 July 2015
  • Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders.

    Citation: Elisa Isopi, Giuseppe Legname. Pin1 and neurodegeneration: a new player for prion disorders?[J]. AIMS Molecular Science, 2015, 2(3): 311-323. doi: 10.3934/molsci.2015.3.311

    Related Papers:

  • Pin1 is a peptidyl-prolyl isomerase that catalyzes the cis/trans conversion of phosphorylated proteins at serine or threonine residues which precede a proline. The peptidyl-prolyl isomerization induces a conformational change of the proteins involved in cell signaling process. Pin1 dysregulation has been associated with some neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. Proline-directed phosphorylation is a common regulator of these pathologies and a recent work showed that it is also involved in prion disorders. In fact, prion protein phosphorylation at the Ser-43-Pro motif induces prion protein conversion into a disease-associated form. Furthermore, phosphorylation at Ser-43-Pro has been observed to increase in the cerebral spinal fluid of sporadic Creutzfeldt-Jakob Disease patients. These findings provide new insights into the pathogenesis of prion disorders, suggesting Pin1 as a potential new player in the disease. In this paper, we review the mechanisms underlying Pin1 involvement in the aforementioned neurodegenerative pathologies focusing on the potential role of Pin1 in prion disorders.


    加载中
    [1] Lu KP, Hanes SD, Hunter T (1996) A human peptidyl-prolyl isomerase essential for regulation of mitosis. Nature 380: 544-547. doi: 10.1038/380544a0
    [2] Lu KP, Zhou XZ (2007) The prolyl isomerase PIN1: a pivotal new twist in phosphorylation signalling and disease. Nat Rev Mol Cell Biol 8: 904-916. doi: 10.1038/nrm2261
    [3] Liou Y-C, Sun A, Ryo A, et al. (2003) Role of the prolyl isomerase Pin1 in protecting against age-dependent neurodegeneration. Nature 424: 556-561. doi: 10.1038/nature01832
    [4] Rudrabhatla P (2014) Regulation of neuronal cytoskeletal protein phosphorylation in neurodegenerative diseases. J Alzheimers Dis 41: 671-684.
    [5] Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. Science 297: 353-356. doi: 10.1126/science.1072994
    [6] Anderson JP, Walker DE, Goldstein JM, et al. (2006) Phosphorylation of Ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281: 29739-29752. doi: 10.1074/jbc.M600933200
    [7] Kardos J, Kiss B, Micsonai A, et al. (2015) Phosphorylation as conformational switch from the native to amyloid state: trp-cage as a protein aggregation model. J Phys Chem B 119: 2946-2955. doi: 10.1021/jp5124234
    [8] Grison A, Mantovani F, Comel A, et al. (2011) Ser46 phosphorylation and prolyl-isomerase Pin1-mediated isomerization of p53 are key events in p53-dependent apoptosis induced by mutant huntingtin. P Natl Acad Sci U S A 108: 17979-17984. doi: 10.1073/pnas.1106198108
    [9] Rudrabhatla P, Pant HC (2010) Phosphorylation-specific peptidyl-prolyl isomerization of neuronal cytoskeletal proteins by Pin1: implications for therapeutics in neurodegeneration. J Alzheimers Dis 19: 389-403.
    [10] Driver JA, Zhou XZ, Lu KP (2014) Regulation of protein conformation by Pin1 offers novel disease mechanisms and therapeutic approaches in Alzheimer's disease. Discov Med 17: 93-99.
    [11] Nakamura K, Greenwood A, Binder L, et al. (2012) Proline isomer-specific antibodies reveal the early pathogenic tau conformation in Alzheimer's disease. Cell 149: 232-244. doi: 10.1016/j.cell.2012.02.016
    [12] Giannopoulos PN, Robertson C, Jodoin J, et al. (2009) Phosphorylation of prion protein at serine 43 induces prion protein conformational change. J Neurosci 29: 8743-8751. doi: 10.1523/JNEUROSCI.2294-09.2009
    [13] Liou Y-C, Zhou XZ, Lu KP (2011) Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 36: 501-514. doi: 10.1016/j.tibs.2011.07.001
    [14] Bayer E, Goettsch S, Mueller JW, et al. (2003) Structural analysis of the mitotic regulator hPin1 in solution: insights into domain architecture and substrate binding. J Biol Chem 278: 26183-26193. doi: 10.1074/jbc.M300721200
    [15] Matena A, Sinnen C, van den Boom J, et al. (2013) Transient domain interactions enhance the affinity of the mitotic regulator Pin1 toward phosphorylated peptide ligands. Structure 21: 1769-1777. doi: 10.1016/j.str.2013.07.016
    [16] Vöhringer-Martinez E, Verstraelen T, Ayers PW (2014) The influence of Ser-154, Cys-113, and the phosphorylated threonine residue on the catalytic reaction mechanism of Pin1. J Phys Chem B 118: 9871-9880. doi: 10.1021/jp505638w
    [17] Pastorino L, Sun A, Lu P-J, et al. (2006) The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 440: 528-534. doi: 10.1038/nature04543
    [18] Zita MM, Marchionni I, Bottos E, et al. (2007) Post-phosphorylation prolyl isomerisation of gephyrin represents a mechanism to modulate glycine receptors function. EMBO J 26: 1761-1771. doi: 10.1038/sj.emboj.7601625
    [19] Taylor JP, Hardy J, Fischbeck KH (2002) Toxic proteins in neurodegenerative disease. Science 296: 1991-1995. doi: 10.1126/science.1067122
    [20] Kim S, Nollen EA, Kitagawa K, et al. (2002) Polyglutamine protein aggregates are dynamic. Nat Cell Biol 4: 826-831. doi: 10.1038/ncb863
    [21] Soto C, Estrada LD (2008) Protein misfolding and neurodegeneration. Arch Neurol 65: 184-189.
    [22] Tenreiro S, Eckermann K, Outeiro TF (2014) Protein phosphorylation in neurodegeneration: friend or foe? Front Mol Neurosci 7: 42.
    [23] Brundin P, Melki R, Kopito R (2010) Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 11: 301-307.
    [24] Brettschneider J, Del Tredici K, Lee VM, et al. (2015) Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat Rev Neurosci 16: 109-120. doi: 10.1038/nrn3887
    [25] LaFerla FM (2010) Pathways linking Abeta and tau pathologies. Biochem Soc Trans 38: 993-995. doi: 10.1042/BST0380993
    [26] Iqbal K, Grundke-Iqbal I (2010) Alzheimer's disease, a multifactorial disorder seeking multitherapies. Alzheimers Dement 6: 420-424. doi: 10.1016/j.jalz.2010.04.006
    [27] Rudrabhatla P, Jaffe H, Pant HC (2011) Direct evidence of phosphorylated neuronal intermediate filament proteins in neurofibrillary tangles (NFTs): phosphoproteomics of Alzheimer's NFTs. FASEB J 25: 3896-3905. doi: 10.1096/fj.11-181297
    [28] Huang Y, Mucke L (2012) Alzheimer mechanisms and therapeutic strategies. Cell 148: 1204-1222. doi: 10.1016/j.cell.2012.02.040
    [29] Cancino GI, Miller FD, Kaplan DR (2013) p73 haploinsufficiency causes tau hyperphosphorylation and tau kinase dysregulation in mouse models of aging and Alzheimer's disease. Neurobiol Aging 34: 387-399. doi: 10.1016/j.neurobiolaging.2012.04.010
    [30] Sultana R, Boyd-Kimball D, Poon HF, et al. (2006) Oxidative modification and down-regulation of Pin1 in Alzheimer's disease hippocampus: A redox proteomics analysis. Neurobiol Aging 27: 918-925. doi: 10.1016/j.neurobiolaging.2005.05.005
    [31] Chen C-H, Li W, Sultana R, et al. (2015) Pin1 cysteine-113 oxidation inhibits its catalytic activity and cellular function in Alzheimer's disease. Neurobiol Dis 76: 13-23. doi: 10.1016/j.nbd.2014.12.027
    [32] Innes BT, Sowole MA, Gyenis L, et al. (2015) Peroxide-mediated oxidation and inhibition of the peptidyl-prolyl isomerase Pin1. Biochim Biophys Acta 1852: 905-912. doi: 10.1016/j.bbadis.2014.12.025
    [33] Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, et al. (2005) Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta 1739: 216-223. doi: 10.1016/j.bbadis.2004.08.014
    [34] Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol Neurodegener 4: 13. doi: 10.1186/1750-1326-4-13
    [35] Kimura T, Tsutsumi K, Taoka M, et al. (2013) Isomerase Pin1 stimulates dephosphorylation of tau protein at cyclin-dependent kinase (Cdk5)-dependent Alzheimer phosphorylation sites. J Biol Chem 288: 7968-7977. doi: 10.1074/jbc.M112.433326
    [36] Yotsumoto K, Saito T, Asada A, et al. (2009) Effect of Pin1 or microtubule binding on dephosphorylation of FTDP-17 mutant Tau. J Biol Chem 284: 16840-16847. doi: 10.1074/jbc.M109.003277
    [37] Smet C, Sambo A-V, Wieruszeski J-M, et al. (2004) The peptidyl prolyl cis/trans-isomerase Pin1 recognizes the phospho-Thr212-Pro213 site on Tau. Biochemistry 43: 2032-2040. doi: 10.1021/bi035479x
    [38] Wang J-Z, Zhang Y (2015) Configuration-specific immunotherapy targeting cis pThr231-Pro232 tau for Alzheimer disease. J Neurol Sci 348: 253-255. doi: 10.1016/j.jns.2014.11.011
    [39] Yuan A, Sasaki T, Rao MV, et al. (2009) Neurofilaments form a highly stable stationary cytoskeleton after reaching a critical level in axons. J Neurosci 29: 11316-11329. doi: 10.1523/JNEUROSCI.1942-09.2009
    [40] Nixon RA, Shea TB (1992) Dynamics of neuronal intermediate filaments: a developmental perspective. Cell Motil Cytoskeleton 22: 81-91. doi: 10.1002/cm.970220202
    [41] Giasson BI, Mushynski WE (1997) Study of proline-directed protein kinases involved in phosphorylation of the heavy neurofilament subunit. J Neurosci 17: 9466-9472.
    [42] Haass C, Kaether C, Thinakaran G, et al. (2012) Trafficking and proteolytic processing of APP. Cold Spring Harb Perspect Med 2: a006270.
    [43] Pastorino L, Ma SL, Balastik M, et al. (2012) Alzheimer's disease-related loss of Pin1 function influences the intracellular localization and the processing of AβPP. J Alzheimers Dis 30: 277-297.
    [44] Lee M-S, Kao S-C, Lemere CA, et al. (2003) APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 163: 83-95. doi: 10.1083/jcb.200301115
    [45] Ma SL, Pastorino L, Zhou XZ, et al. (2012) Prolyl isomerase Pin1 promotes amyloid precursor protein (APP) turnover by inhibiting glycogen synthase kinase-3β (GSK3β) activity: novel mechanism for Pin1 to protect against Alzheimer disease. J Biol Chem 287: 6969-6973. doi: 10.1074/jbc.C111.298596
    [46] Cisbani G, Cicchetti F (2012) An in vitro perspective on the molecular mechanisms underlying mutant huntingtin protein toxicity. Cell Death Dis 3: e382. doi: 10.1038/cddis.2012.121
    [47] Ross CA, Aylward EH, Wild EJ, et al. (2014) Huntington disease: natural history, biomarkers and prospects for therapeutics. Nat Rev Neurol 10: 204-216. doi: 10.1038/nrneurol.2014.24
    [48] Bertoni A, Giuliano P, Galgani M, et al. (2011) Early and late events induced by polyQ-expanded proteins: identification of a common pathogenic property of polYQ-expanded proteins. J Biol Chem 286: 4727-4741. doi: 10.1074/jbc.M110.156521
    [49] Bae B-I, Xu H, Igarashi S, et al. (2005) p53 mediates cellular dysfunction and behavioral abnormalities in Huntington's disease. Neuron 47: 29-41. doi: 10.1016/j.neuron.2005.06.005
    [50] Sorrentino G, Comel A, Mantovani F, et al. (2014) Regulation of mitochondrial apoptosis by Pin1 in cancer and neurodegeneration. Mitochondrion 19 Pt A: 88-96.
    [51] Mantovani F, Zannini A, Rustighi A, et al. (2015) Interaction of p53 with prolyl isomerases: Healthy and unhealthy relationships. Biochim Biophys Acta [in press].
    [52] Sorrentino G, Mioni M, Giorgi C, et al. (2013) The prolyl-isomerase Pin1 activates the mitochondrial death program of p53. Cell Death Differ 20: 198-208. doi: 10.1038/cdd.2012.112
    [53] Beitz JM (2014) Parkinson's disease: a review. Front Biosci 6: 65-74.
    [54] Dauer W, Przedborski S (2003) Parkinson's disease: mechanisms and models. Neuron 39: 889-909. doi: 10.1016/S0896-6273(03)00568-3
    [55] Fujiwara H, Hasegawa M, Dohmae N, et al. (2002) alpha-Synuclein is phosphorylated in synucleinopathy lesions. Nat Cell Biol 4: 160-164.
    [56] Sato H, Kato T, Arawaka S (2013) The role of Ser129 phosphorylation of α-synuclein in neurodegeneration of Parkinson's disease: a review of in vivo models. Rev Neurosci 24: 115-123.
    [57] Ryo A, Togo T, Nakai T, et al. (2006) Prolyl-isomerase Pin1 accumulates in lewy bodies of parkinson disease and facilitates formation of alpha-synuclein inclusions. J Biol Chem 281: 4117-4125. doi: 10.1074/jbc.M507026200
    [58] Ghosh A, Saminathan H, Kanthasamy A, et al. (2013) The peptidyl-prolyl isomerase Pin1 up-regulation and proapoptotic function in dopaminergic neurons: relevance to the pathogenesis of Parkinson disease. J Biol Chem 288: 21955-21971. doi: 10.1074/jbc.M112.444224
    [59] Lee S-J, Kim D-C, Choi B-H, et al. (2006) Regulation of p53 by activated protein kinase C-delta during nitric oxide-induced dopaminergic cell death. J Biol Chem 281: 2215-2224. doi: 10.1074/jbc.M509509200
    [60] Martin LJ, Pan Y, Price AC, et al. (2006) Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26: 41-50. doi: 10.1523/JNEUROSCI.4308-05.2006
    [61] Mogi M, Kondo T, Mizuno Y, et al. (2007) p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414: 94-97. doi: 10.1016/j.neulet.2006.12.003
    [62] Prusiner SB (1988) Molecular structure, biology, and genetics of prions. Adv Virus Res 35: 83-136. doi: 10.1016/S0065-3527(08)60709-5
    [63] Prusiner SB (1991) Molecular biology of prion diseases. Science 252: 1515-1522. doi: 10.1126/science.1675487
    [64] Prusiner SB (1994) Molecular biology and genetics of prion diseases. Philos Trans R Soc Lond B Biol Sci 343: 447-463. doi: 10.1098/rstb.1994.0043
    [65] Prusiner SB (2001) Shattuck lecture--neurodegenerative diseases and prions. New Engl J Med 344: 1516-1526. doi: 10.1056/NEJM200105173442006
    [66] Zhou Z, Xiao G (2013) Conformational conversion of prion protein in prion diseases. Acta Biochim Biophys Sin 45: 465-476. doi: 10.1093/abbs/gmt027
    [67] Negro A, Meggio F, Bertoli A, et al. (2000) Susceptibility of the prion protein to enzymic phosphorylation. Biochem Biophys Res Commun 271: 337-341. doi: 10.1006/bbrc.2000.2628
    [68] Wang G-R, Shi S, Gao C, et al. (2010) Changes of tau profiles in brains of the hamsters infected with scrapie strains 263 K or 139 A possibly associated with the alteration of phosphate kinases. BMC Infect Dis 10: 86. doi: 10.1186/1471-2334-10-86
    [69] Schmitz M, Lüllmann K, Zafar S, et al. (2014) Association of prion protein genotype and scrapie prion protein type with cellular prion protein charge isoform profiles in cerebrospinal fluid of humans with sporadic or familial prion diseases. Neurobiol Aging 35: 1177-1188. doi: 10.1016/j.neurobiolaging.2013.11.010
    [70] Rouget R, Sharma G, LeBlanc AC (2015) Cyclin-dependent Kinase 5 Phosphorylation of Familial Prion Protein Mutants Exacerbates Conversion into Amyloid Structure. J Biol Chem 290: 5759-5771. doi: 10.1074/jbc.M114.630699
    [71] Trevitt CR, Hosszu LLP, Batchelor M, et al. (2014) N-terminal domain of prion protein directs its oligomeric association. J Biol Chem 289: 25497-25508. doi: 10.1074/jbc.M114.566588
    [72] Supattapone S, Muramoto T, Legname G, et al. (2001) Identification of two prion protein regions that modify scrapie incubation time. J Virol 75: 1408-1413. doi: 10.1128/JVI.75.3.1408-1413.2001
    [73] Frankenfield KN, Powers ET, Kelly JW (2005) Influence of the N-terminal domain on the aggregation properties of the prion protein. Protein Sci 14: 2154-2166. doi: 10.1110/ps.051434005
    [74] Uchida T, Takamiya M, Takahashi M, et al. (2003) Pin1 and Par14 peptidyl prolyl isomerase inhibitors block cell proliferation. Chem Biol 10: 15-24. doi: 10.1016/S1074-5521(02)00310-1
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4992) PDF downloads(975) Cited by(0)

Article outline

Figures and Tables

Figures(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog