
Citation: Shuhan Jing, Adnan Younis, Dewei Chu, Sean Li. Resistive Switching Characteristics in Electrochemically Synthesized ZnO Films[J]. AIMS Materials Science, 2015, 2(2): 28-36. doi: 10.3934/matersci.2015.2.28
[1] | Ahmed Abul Hasanaath, Abdul Sami Mohammed, Ghazanfar Latif, Sherif E. Abdelhamid, Jaafar Alghazo, Ahmed Abul Hussain . Acute lymphoblastic leukemia detection using ensemble features from multiple deep CNN models. Electronic Research Archive, 2024, 32(4): 2407-2423. doi: 10.3934/era.2024110 |
[2] | Abul Bashar . Employing combined spatial and frequency domain image features for machine learning-based malware detection. Electronic Research Archive, 2024, 32(7): 4255-4290. doi: 10.3934/era.2024192 |
[3] | Yazhuo Fan, Jianhua Song, Yizhe Lu, Xinrong Fu, Xinying Huang, Lei Yuan . DPUSegDiff: A Dual-Path U-Net Segmentation Diffusion model for medical image segmentation. Electronic Research Archive, 2025, 33(5): 2947-2971. doi: 10.3934/era.2025129 |
[4] | Kuntha Pin, Jung Woo Han, Yunyoung Nam . Retinal diseases classification based on hybrid ensemble deep learning and optical coherence tomography images. Electronic Research Archive, 2023, 31(8): 4843-4861. doi: 10.3934/era.2023248 |
[5] | Mashael S. Maashi, Yasser Ali Reyad Ali, Abdelwahed Motwakel, Amira Sayed A. Aziz, Manar Ahmed Hamza, Amgad Atta Abdelmageed . Anas platyrhynchos optimizer with deep transfer learning-based gastric cancer classification on endoscopic images. Electronic Research Archive, 2023, 31(6): 3200-3217. doi: 10.3934/era.2023162 |
[6] | Jinjiang Liu, Yuqin Li, Wentao Li, Zhenshuang Li, Yihua Lan . Multiscale lung nodule segmentation based on 3D coordinate attention and edge enhancement. Electronic Research Archive, 2024, 32(5): 3016-3037. doi: 10.3934/era.2024138 |
[7] | Zengyu Cai, Liusen Xu, Jianwei Zhang, Yuan Feng, Liang Zhu, Fangmei Liu . ViT-DualAtt: An efficient pornographic image classification method based on Vision Transformer with dual attention. Electronic Research Archive, 2024, 32(12): 6698-6716. doi: 10.3934/era.2024313 |
[8] | Yanxia Sun, Tianze Xu, Jing Wang, Jinke Wang . DST-Net: Dual self-integrated transformer network for semi-supervised segmentation of optic disc and optic cup in fundus image. Electronic Research Archive, 2025, 33(4): 2216-2245. doi: 10.3934/era.2025097 |
[9] | Yixin Sun, Lei Wu, Peng Chen, Feng Zhang, Lifeng Xu . Using deep learning in pathology image analysis: A novel active learning strategy based on latent representation. Electronic Research Archive, 2023, 31(9): 5340-5361. doi: 10.3934/era.2023271 |
[10] | Tej Bahadur Shahi, Cheng-Yuan Xu, Arjun Neupane, Dayle B. Fleischfresser, Daniel J. O'Connor, Graeme C. Wright, William Guo . Peanut yield prediction with UAV multispectral imagery using a cooperative machine learning approach. Electronic Research Archive, 2023, 31(6): 3343-3361. doi: 10.3934/era.2023169 |
The data generated by the daily work environment are more complex in nature at present, and therefore many lifetime models have been listed in the literature to analyze and evaluate these data. Determining which probability distribution should be adopted to make inferences from the data under study is a very important problem in statistics. For these reasons, great efforts have been spent over the years in developing large categories of distributions along with relevant statistical methodologies. See, for instance, El-Gohary et al. [1], Saboor et al. [2], Jia et al. [3], Fernandez [4], Alizadeh et al. [5], Kumar et al. [6], and references cited therein. Nedjar and Zeghdoudi [7] proposed a mixture of gamma($ 2, \tau $) and Lindley($ \varepsilon $) (MGL) distributions. The probability density function (PDF) of the MGL distribution can be expressed as
$ g(x;ε,τ)=τ2ε(1+τ)([τε+ε−τ]x+1)e−τx; x>0,ε>0,τ>0. $ | (1.1) |
Unfortunately, Eq (1.1) is not a proper PDF. Messaadia and Zeghdoudi [8] corrected the parameter space to be $ \varepsilon\geq\frac{\tau }{1+\tau} $ and $ \tau > 0 $, and consequently the modified PDF of the MGL model can be written as
$ f(x;ε,τ)=τ2ε(1+τ)([τε+ε−τ]x+1)e−τx; x>0,ε≥τ1+τ,τ>0. $ | (1.2) |
The survival function (SF) corresponding to Eq (1.2) can be formulated as
$ S(x;ε,τ)=(τx+1)(τε+ε−τ)+τε(1+τ)e−τx; x>0,ε≥τ1+τ,τ>0. $ | (1.3) |
The quantile function (QF) is
$ QX(u)={−ε(1+τ)τ[ε(1+τ)−τ]−1τW−1(ε(1+τ)(u−1)ε(1+τ)−τe−ε(1+τ)ε(1+τ)−τ); ε>τ1+τ−ln(1−u)τ ; ε=τ1+τ, $ | (1.4) |
where $ W_{-1}\ $denotes the negative branch of the Lambert $ W $ function, and $ \frac{-\ln(1-u)}{\tau} $ is the QF of the exponential model. Sometimes, survival trials produce data that are discrete in nature either because of the limitations of the measuring instruments or their inherent characteristics. The study and analysis of counting data plays an important role in many fields of applied sciences, such as economics, engineering, marketing, medicine, and insurance. Counting datasets are often modeled utilizing the Poisson model. However, the Poisson model cannot handle hyper-scattered datasets. Therefore, it is reasonable to model such cases via an appropriate discrete distribution. Discretization of a continuous distribution can be created by using several methods. The most widely utilized technique is the survival discretization approach. For a given continuous random variable $ X $ with SF $ S(x; \xi ) = \Pr(X > x) $, we can obtain the discretized version as
$ Pr(X=x)=S(x;ξ)−S(x+1;ξ); x=0,1,2,3,.... $ | (1.5) |
For more details, Roy [9]. This technique has received a lot of attention in recent years. See, for instance, Gómez-Déniz and Calderín-Ojeda [10], Bebbington et al. [11], Nekoukhou et al. [12], Alamatsaz et al. [13], El-Morshedy et al. [14], Gillariose et al. [15], Singh et al. [16,17], Eliwa and El-Morshedy [18], Altun et al. [19] and references cited therein. In this paper, a discrete distribution MGL (DsMGL) will be discussed from the point of view of reliability and ordered statistics theoretically and practically to analyze extreme and outliers' notes. This is because in El-Morshedy et al. [20], simple statistical characteristics and a regression model were presented only in a small whole sample (outliers were not included). Further, the previous paper ignored the reliability, order statistics, and L-moments measures which can be applied in the fields of biomedicine and engineering. Given the importance of reliability and structured statistical measures, the authors sought to discuss neglected characteristics as well as model extreme and outliers' observations. Thus, the motives for this study can be summarized as follows: to formulate statistical characteristics as closed forms; to model dispersed-positively-skewed real data under extreme and outliers' observations; to provide a consistently better fit than other discrete models known in the current statistical literature, especially over-dispersed models; and to prove that the proposed model can be applied to discuss zero-inflated observations.
The article is organized as follows. In Section 2, the DsMGL distribution is proposed. Various properties are derived in Sections 3 and 4. In Section 5, the DsMGL parameters are estimated by utilizing the maximum likelihood approach. Simulation study is discussed in Section 6. In Section 7, three real data sets are analyzed. Finally, some conclusions and future work are listed in Section 8.
Recall Eq (1.3), and the SF of the DsMGL distribution can be expressed as
$ S(x;ε,δ)=(1−lnδx+1)(ε−εlnδ+lnδ)−lnδε(1−lnδ)δx+1; x∈N0, $ | (2.1) |
where $ \varepsilon\geq\frac{-\ln\delta}{1-\ln\delta} $, $ 0 < e^{-\tau} = \delta < 1, $ and $ \mathbb{N} _{0} = \left\{ 0, 1, 2, 3, ...\right\} $. The corresponding PMF to Eq (2.1) can be introduced as
$ Px(x;ε,δ)=δx1−lnδ{1−δ−lnδ[1+x−δ(x+2)]+(1−1ε)(lnδ)2[x−δ(x+1)]}; x∈N0. $ | (2.2) |
The CDF can be reported as
$ F(x;ε,δ)=1−(1−lnδx+1)(ε−εlnδ+lnδ)−lnδε(1−lnδ)δx+1; x∈N0. $ | (2.3) |
Figure 1 shows the PMF of the DsMGL model based on various values of the parameters $ \varepsilon $ and $ \delta $.
As can be noted, the PMF can take unimodal or decreasing form. Moreover, it can be used as a statistical approach to model zero-inflated observations under positive skew.
In reliability theory, the forward iteration "remaining" time and the past time are two very important measurements in the theory of renewal processes. Consider, for example, the lifetime of a wireless link when a new packet arrives in wireless networks. Reliability studies model the remaining life of a component. If something has survived that far, how long can it be expected to survive? This is the question answered by mean residual life (MRL). In the discrete setting, the MRL, say $ \Theta_{i} $, is defined as
$ Θi=E(T−i|T≥i)=11−F(i−1;ε,δ)q∑j=i+1[1−F(j−1;ε,δ)]; i∈N0, $ | (3.1) |
where $ \mathbb{N} _{0} = \left\{ 0, 1, 2, 3, ..., q\right\} $ for $ 0 < q < \infty $. Thus, for the DsMGL model, the MRL is given as
$ Θi=−δ2(ε−1)(δi−i−1)lnδ−ε(δ(i+1)−i−2)lnδ+ε(δ−1)(δ−1)2{(1−ilnδ)(ε−εlnδ+lnδ)−lnδ}; i∈N0. $ | (3.2) |
Furthermore, in the discrete setting, the mean past life (MPL), say $ \Theta_{i}^{\ast} $, is defined as
$ Θ∗i=E(i−T|T<i)=1F(i−1;ε,δ)i∑m=1F(m−1;ε,δ); i∈N0−{0}. $ | (3.3) |
So, the MPL for the DsMGL model can be represented as
$ Θ∗i=iεδi+2lnδ−iεδi+1lnδ+iεδ2(lnδ−1)−2iδi+2lnδ+2(i+1)δi+1lnδ−εδi+2(lnδ−1)(2iεδilnδ−2iδilnδ−εδilnδ+εδi+εlnδ−ε)(δ−1)2+εδ2(lnδ−1)−2δlnδ+(1−2δ)iεlnδ+2iεδ−εδi+1+εδ−iε(2iεδilnδ−2iδilnδ−εδilnδ+εδi+εlnδ−ε)(δ−1)2. $ | (3.4) |
For $ i\in \mathbb{N} _{0}, $ we get $ \Theta_{i}^{\ast}\leq i $. The CDF of the DsMGL model can be recovered by the MPL as
$ F(k;ε,δ)=F(0;ε,δ)k∏i=1[Θ∗iΘ∗i+1−1]; k∈N0−{0}, $ | (3.5) |
where $ F(0;\varepsilon, \delta) = \left({ \prod\limits_{i = 1}^{q}} \left[\frac{\Theta_{i}^{\ast}}{\Theta_{i+1}^{\ast}-1}\right] \right) ^{-1} $and $ 0 < q < \infty $. Thus, the mean of the DsMGL model can be expressed as
$ Mean=i−Θ∗iF(i−1;ε,δ)+Θi[1−F(i−1;ε,δ)]; i∈N0−{0}. $ | (3.6) |
The reversed hazard rate function (RHRF) can be expressed as a function in MPL as
$ r(i;ε,δ)=1−Θ∗i+1+Θ∗iΘ∗i; i∈N0−{0}. $ | (3.7) |
Further, the RHRF can be proposed as
$ r(x;ε,δ)=1−δ−lnδ[1+x−δ(x+2)]+(1−1ε)(lnδ)2[x−δ(x+1)]ε(1−lnδ)−[(1−lnδx+1)(ε−εlnδ+lnδ)−lnδ]δx+1εδx; x∈N0. $ | (3.8) |
Figure 2 shows the RHRF plots for different values of the DsMGL parameters.
Suppose $ W $ and $ H $ are two independent DsMGL random variables (RVs) with parameters $ (\varepsilon_{1}, \delta_{1}) $ and $ (\varepsilon_{2}, \delta_{2}) $, respectively. Then, the RHRF of $ T = \min(W, H) $ and $ L = \max(W, H) $ can be formulated as
$ rT(x;Λ)=1−1−{(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx1}{(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx2}1−{(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx+11}{(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx+12}, $ | (3.9) |
and
$ rL(x;Λ)=1−δ1−lnδ1[1+x−δ1(x+2)]+(1−1ε1)(lnδ1)2[x−δ1(x+1)]ε1(1−lnδ1)−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δx+11ε1δx1+1−δ2−lnδ2[1+x−δ2(x+2)]+(1−1ε2)(lnδ2)2[x−δ2(x+1)]ε2(1−lnδ2)−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δx+12ε2δx2−1−δ1−lnδ1[1+x−δ1(x+2)]+(1−1ε1)(lnδ1)2[x−δ1(x+1)]ε1(1−lnδ1)−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δx+11ε1δx1×1−δ2−lnδ2[1+x−δ2(x+2)]+(1−1ε2)(lnδ2)2[x−δ2(x+1)]ε2(1−lnδ2)−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δx+12ε2δx2. $ | (3.10) |
Since the RHRFs of the two RVs $ W $ and $ H $ are decreasing, then the RHRFs of $ T = \min(W, H) $ and $ L = \max(W, H) $ are also decreasing. Another important measure in survival analysis theory is called the hazard rate function (HRF). If $ X $ is a DsMGL random variable, then the HRF can be expressed as
$ h(x;ε,δ)=1−[(1−lnδx+1)(ε−εlnδ+lnδ)−lnδ]δ(1−lnδx)(ε−εlnδ+lnδ)−lnδ; x∈N0, $ | (3.11) |
where $ h(x; \varepsilon, \delta) = \frac{P_{x}(x; \varepsilon, \delta)} {S(x-1;\varepsilon, \delta)} $. Figure 3 shows the HRF plots for different values of the DsMGL parameters. It should be noted that the new paradigm can be used to discuss any phenomena of an increasing unilateral form.
Suppose $ W $ and $ H $ are two independent RVs with parameters DsMGL$ (\varepsilon _{1}, \delta_{2}) $ and DsMGL$ (\varepsilon_{2}, \delta_{2}) $, respectively. Then, the HRF of $ T = \min(W, H) $ can be formulated as
$ hT(x;Λ)=Pr(min(W,H)=x)Pr(min(W,H)≥x)=Pr(min(W,H)≥x)−Pr(min(W,H)≥x+1)Pr(min(W,H)≥x)=Pr(W≥x)Pr(H≥x)−Pr(W≥x+1)Pr(H≥x+1)Pr(W≥x)Pr(V≥x)=Pr(W≥x)Pr(H=x)+Pr(W=x)Pr(H≥x)−Pr(W=x)Pr(H=x)Pr(W≥x)Pr(H≥x), $ |
where $ \mathbf{\Lambda} = (\varepsilon_{1}, \varepsilon_{2}, \delta_{1}, \delta _{2}). $ Then,
$ hT(x;Λ)={1−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δ1(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1}+{1−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δ2(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2}−{1−[(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1]δ1(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1}×{1−[(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2]δ2(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2}. $ | (3.12) |
Since the HRFs of the two RVs $ W $ and $ H $ are increasing, the HRF of $ T = \min(W, H) $ is also increasing. Similarly, the HRF of $ L = \max(W, H) $ can be expressed as
$ hL(x;Λ)=1−1−{1−(1−lnδx+11)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx+11}{1−(1−lnδx+12)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx+12}1−{1−(1−lnδx1)(ε1−ε1lnδ1+lnδ1)−lnδ1ε1(1−lnδ1)δx1}{1−(1−lnδx2)(ε2−ε2lnδ2+lnδ2)−lnδ2ε2(1−lnδ2)δx2}. $ | (3.13) |
Assume $ X_{1:l}, X_{2:l}, ..., X_{l:l} $ are the corresponding order statistics (OS) of the random sample (RS) $ X_{1}, X_{2}, ..., \ X_{l} $ from the DsMGL model. Then, the CDF of the $ i $th OS is given as
$ Fi:l(x;ε,δ)=l∑b=i(lb)[Fi(x;ε,δ]b[1−Fi(x;ε,δ)]l−b=l∑b=il−b∑j=0ϑ(l,b)(m)Fi(x;ε,δ,b+j), $ | (4.1) |
where $ \vartheta_{(m)}^{(l, b)} = (-1)^{j}\left(lb \right) \left(l−bj \right) $. The corresponding PMF to Eq (4.1) can be listed as
$ fi:l(x;ε,δ)=Fi:l(x;ε,δ)−Fi:l(x−1;ε,δ)=l∑b=il−b∑j=0ϑ(l,b)(m)fi(x;ε,δ,b+j), $ | (4.2) |
where $ f_{i}(x; \varepsilon, \delta, b+j) $ represents the PMF of the exponentiated DsMGL distribution with power parameter $ b+j. $ So, the $ vth $ moments of $ X_{i:l} $ can be written as
$ E(Xvi:l)=∞∑x=0l∑b=il−b∑j=0ϑ(l,b)(m)xvfi(x;ε,δ,b+j). $ | (4.3) |
Hosking [21] has defined the L-moment (L-MT) to show the descriptive statistics for the probability model. The L-MT of the DsMGL can be formulated as
$ Υo=1oo−1∑c=0(−1)c(o−1c)E(Xo−c:o). $ | (4.4) |
Using Eq (4.4), L-MT of mean $ = \Upsilon_{1} $, L-MT coefficient of variation $ = \frac{\Upsilon_{2}}{\Upsilon_{1}} $, L-MT coefficient of skewness $ = \frac{\Upsilon_{3}}{\Upsilon_{2}}, $ and L-MT coefficient of kurtosis $ = \frac{\Upsilon_{4}}{\Upsilon_{2}} $.
The shape of any probability model can be described by its different moments. Based on the first four moments, the mean "$ E(X) $", variance "$ Var(X) $", index of dispersion "$ D(X) $", skewness "$ Sk(X) $", and kurtosis "$ Ku(X) $" can be derived. Let $ X $ be a DsMGL random variable. Then, the probability generating function (PGF), say $ \Upsilon(z) $, can be formulated as
$ Υ(z)=∞∑x=0zxPx(x;ε,δ)=11−lnδ∞∑x=0{1−δ−lnδ[1+x−δ(x+2)]+(1−1ε)(lnδ)2[x−δ(x+1)]}(zδ)x=−2δ(ε−1)(z−1)lnδ+ε(δ2z−2δ+1)lnδ−ε(δ−1)(δz−1)ε(lnδ−1)(δz−1)2, $ | (4.5) |
where the power series converges absolutely at least for all complex numbers $ z $ with $ |z|\leq1 $. Equation (4.5) can be derived utilizing the Maple software program. Thus, the first four moments of the DsMGL model can be listed as
$ E(X)=−δ(ε−1)lnδ2+ε(δ−2)lnδ−ε(δ−1)ε(lnδ−1)(δ−1)2, $ | (4.6) |
$ E(X2)=δ(3εδ+ε−3δ−1)lnδ2+ε(δ2−3δ−2)lnδ−εδ2+εε(lnδ−1)(δ−1)3, $ | (4.7) |
$ E(X3)=−δ14(δ2+107δ+17)(ε−1)lnδ+ε(δ+2)(δ2−6δ−1)lnδ−ε(δ−1)(δ2+4δ+1)ε(lnδ−1)(δ−1)4, $ | (4.8) |
and
$ E(X4)=δ30(δ3+113δ2+53δ+115)(ε−1)lnδ+ε(δ4−5δ3−55δ2−35δ−2)lnδε(lnδ−1)(δ−1)5−δ4+10δ3−10δ−1(lnδ−1)(δ−1)5. $ | (4.9) |
According to the previous moments "$ E(X^{r}); \ r = 1, 2, 3, 4 $", the $ E(X) $, $ Var(X) $, $ Sk(X) $, and $ Ku(X) $ can be derived in closed forms. Table 1 reports some numerical results for the DsMGL model under different values of the distribution parameters.
$ \varepsilon $ | ||||||
Measure | $ 1.1 $ | $ 1.4 $ | $ 1.7 $ | $ 2.1 $ | $ 4.2 $ | $ 8.4 $ |
$ E(X) $ | $ 0.10548 $ | $ 0.12972 $ | $ 0.14540 $ | $ 0.15934 $ | $ 0.18897 $ | $ 0.20378 $ |
$ Var(X) $ | $ 0.11102 $ | $ 0.13466 $ | $ 0.14933 $ | $ 0.16196 $ | $ 0.18750 $ | $ 0.19962 $ |
$ D(X) $ | $ 1.05252 $ | $ 1.03809 $ | $ 1.02701 $ | $ 1.01641 $ | $ 0.99223 $ | $ 0.97955 $ |
$ Sk(X) $ | $ 3.31652 $ | $ 2.93747 $ | $ 2.73625 $ | $ 2.57885 $ | $ 2.29485 $ | $ 2.17274 $ |
$ Ku(X) $ | $ 14.9956 $ | $ 12.2687 $ | $ 10.94861 $ | $ 9.97976 $ | $ 8.37673 $ | $ 7.74605 $ |
The DsMGL is capable of modeling positively skewed and leptokurtic datasets. Further, it is appropriate for modeling under- (over-) dispersed phenomena where $ \frac{Var(X)}{|E(X)|} < (>)1 $ for some parameter values.
In this segment, the maximum likelihood estimates (MLEs) of the model parameters are determined. Let $ X_{1}, X_{2}, ..., X_{n} $ be a RS of size $ n $ from the DsMGL distribution. The log-likelihood function ($ LL $) can be written as
$ LL(x;ε,δ)=lnδn∑i=1xi−nln(1−lnδ)+n∑i=1ln(1−δ−lnδ[1+xi−δ(xi+2)]+(1−1ε)(lnδ)2[xi−δ(xi+1)]). $ | (5.1) |
The MLEs of the parameters $ \varepsilon $ and $ \delta $, say $ \widehat{\varepsilon} $ and $ \widehat{\delta} $, are derived by $ (\widehat{\varepsilon}, \widehat{\delta}) $ $ = \ $argmax$ _{(\varepsilon, \delta)}\ (L) $ or, in an equivalent approach in our case, $ (\widehat{\varepsilon }, \widehat{\delta}) $ $ = \ $argmax$ _{(\varepsilon, \delta)}\ (LL) $. To provide more practicalities, the normal equations can be formulated as
$ ∂LL(x;ε,δ)∂ε=n∑i=1(lnδε)2[xi−δ(xi+1)]1−δ−lnδ[1+xi−δ(xi+2)]+(1−1ε)(lnδ)2[xi−δ(xi+1)] $ | (5.2) |
and
$ ∂LL(x;ε,δ)∂δ=1δn∑i=1xi+nδ(1−lnδ)+n∑i=1(xi+2)(lnδ+1)−1+xiδ−1+lnδ(1−1ε)(2xi−2δ(xi+1)δ−(xi+1)lnδ)1−δ−lnδ[1+xi−δ(xi+2)]+(1−1ε)(lnδ)2[xi−δ(xi+1)]. $ | (5.3) |
The two previous equations cannot be solved analytically; therefore, a mathematical package such as the R program based on an iterative procedure such as the Newton-Raphson (numerical optimization approach) can be used to obtain the estimators.
In this segment, Monte Carlo simulation was performed to prove the efficiency of the DsMGL model utilizing the maximum likelihood approach. The performance of the MLE with respect to sample size $ n $ is tested. The evaluation is based on a simulation study:
$ 1) $ Generate $ 10000 $ samples of size $ n = $ $ 10, 11, 12, ..., 60 $ from the DsMGL model based on four cases as follows: case I: $ (\delta = 0.1 $ and $ \varepsilon = 0.9) $, case II: $ (\delta = 0.3\ $and $ \varepsilon = 0.9) $, case III: $ (\delta = 0.5\ $and $ \varepsilon = 0.9) $, and case IV: $ (\delta = 0.7\ $and $ \varepsilon = 0.9) $.
$ 2) $ Generate $ 10000 $ samples of size $ n = $ $ 30, 70, 140, 200, 300, 400, 600 $ from the DsMGL model based on four cases as follows: case V: $ (\delta = 0.5 $ and $ \varepsilon = 0.4) $, case VI: $ (\delta = 0.5\ $and $ \varepsilon = 0.5) $, case VII: $ (\delta = 0.5\ $and $ \varepsilon = 1.5) $, and case VIII: $ (\delta = 0.5\ $and $ \varepsilon = 2.0) $.
$ 3) $ Compute the MLEs for the $ 10000 $ samples, say $ \widehat{\varepsilon} _{j} $ and $ \widehat{\delta}_{j} $ for $ j = 1, 2, 3, ..., 1000 $.
$ 4) $ Compute the biases, mean-squared errors (MSE), and mean relative errors (MRE).
$ 5) $ The empirical results are shown in Figures 4–7 and Tables 2 and 3.
Scheme V | Scheme VI | ||||||
Parameter | $ n $ | Bias | MSE | MRE | Bias | MSE | MRE |
$ \delta $ | $ 30 $ | $ 0.10056591 $ | $ 0.09006876 $ | $ 0.06336994 $ | $ 0.11632194 $ | $ 0.08963175 $ | $ 0.08223158 $ |
$ 70 $ | $ 0.09865782 $ | $ 0.08830367 $ | $ 0.04163261 $ | $ 0.10223666 $ | $ 0.06202190 $ | $ 0.08063179 $ | |
$ 140 $ | $ 0.04369310 $ | $ 0.08200239 $ | $ 0.04001453 $ | $ 0.09220169 $ | $ 0.06101429 $ | $ 0.07312016 $ | |
$ 200 $ | $ 0.02299658 $ | $ 0.07703927 $ | $ 0.03192237 $ | $ 0.08139327 $ | $ 0.04002236 $ | $ 0.06350036 $ | |
$ 300 $ | $ 0.02126971 $ | $ 0.06005479 $ | $ 0.02101206 $ | $ 0.08023636 $ | $ 0.03237014 $ | $ 0.05519738 $ | |
$ 400 $ | $ 0.01733369 $ | $ 0.04079031 $ | $ 0.00700269 $ | $ 0.05193079 $ | $ 0.01112539 $ | $ 0.04980373 $ | |
$ 600 $ | $ 0.00234104 $ | $ 0.00201034 $ | $ 0.00023694 $ | $ 0.00292733 $ | $ 0.00026456 $ | $ 0.00015654 $ | |
$ \varepsilon $ | $ 30 $ | $ 0.09369110 $ | $ 0.07793171 $ | $ 0.06131304 $ | $ 0.05969637 $ | $ 0.04320158 $ | $ 0.05336947 $ |
$ 70 $ | $ 0.08567341 $ | $ 0.07122367 $ | $ 0.05510375 $ | $ 0.05223691 $ | $ 0.03201392 $ | $ 0.05102125 $ | |
$ 140 $ | $ 0.07011036 $ | $ 0.06379035 $ | $ 0.05022693 $ | $ 0.04112566 $ | $ 0.03036549 $ | $ 0.04020024 $ | |
$ 200 $ | $ 0.04105604 $ | $ 0.05380086 $ | $ 0.04500102 $ | $ 0.03233697 $ | $ 0.02002137 $ | $ 0.03102236 $ | |
$ 300 $ | $ 0.03367101 $ | $ 0.04522564 $ | $ 0.04103979 $ | $ 0.03102973 $ | $ 0.01122024 $ | $ 0.01909439 $ | |
$ 400 $ | $ 0.02098200 $ | $ 0.03474369 $ | $ 0.03139064 $ | $ 0.01018674 $ | $ 0.00889001 $ | $ 0.00306970 $ | |
$ 600 $ | $ 0.00523689 $ | $ 0.00236844 $ | $ 0.00053671 $ | $ 0.00235659 $ | $ 0.00059458 $ | $ 0.00002518 $ |
Scheme VII | Scheme VIII | ||||||
Parameter | $ n $ | Bias | MSE | MRE | Bias | MSE | MRE |
$ \delta $ | $ 30 $ | $ 0.025687193 $ | $ 0.01466875 $ | $ 0.01399737 $ | $ 0.06696575 $ | $ 0.08763274 $ | $ 0.06353187 $ |
$ 70 $ | $ 0.022658763 $ | $ 0.01136219 $ | $ 0.10145190 $ | $ 0.06132640 $ | $ 0.06923671 $ | $ 0.06123671 $ | |
$ 140 $ | $ 0.019365811 $ | $ 0.00855157 $ | $ 0.00500215 $ | $ 0.05426598 $ | $ 0.05110123 $ | $ 0.05922014 $ | |
$ 200 $ | $ 0.015330240 $ | $ 0.00431502 $ | $ 0.00362307 $ | $ 0.05120134 $ | $ 0.04320139 $ | $ 0.04623665 $ | |
$ 300 $ | $ 0.013695875 $ | $ 0.00400236 $ | $ 0.00306981 $ | $ 0.05026971 $ | $ 0.03915618 $ | $ 0.04010656 $ | |
$ 400 $ | $ 0.008532179 $ | $ 0.00100153 $ | $ 0.00168892 $ | $ 0.04902790 $ | $ 0.03101569 $ | $ 0.03410973 $ | |
$ 600 $ | $ 0.001036942 $ | $ 0.00010265 $ | $ 0.00023296 $ | $ 0.00265235 $ | $ 0.00021691 $ | $ 0.00139237 $ | |
$ \varepsilon $ | $ 30 $ | $ 0.108067988 $ | $ 0.01123177 $ | $ 0.08307104 $ | $ 0.07437669 $ | $ 0.07782736 $ | $ 0.09069587 $ |
$ 70 $ | $ 0.103365789 $ | $ 0.00998796 $ | $ 0.08223676 $ | $ 0.06722364 $ | $ 0.05220104 $ | $ 0.08133658 $ | |
$ 140 $ | $ 0.089445810 $ | $ 0.00912348 $ | $ 0.07911671 $ | $ 0.04749836 $ | $ 0.03002336 $ | $ 0.06310263 $ | |
$ 200 $ | $ 0.071002158 $ | $ 0.00722369 $ | $ 0.06600163 $ | $ 0.03229659 $ | $ 0.01024787 $ | $ 0.05154031 $ | |
$ 300 $ | $ 0.053210199 $ | $ 0.00426971 $ | $ 0.03697274 $ | $ 0.03193261 $ | $ 0.01010915 $ | $ 0.03974904 $ | |
$ 400 $ | $ 0.009571377 $ | $ 0.00379104 $ | $ 0.00409265 $ | $ 0.02410124 $ | $ 0.00580048 $ | $ 0.02122360 $ | |
$ 600 $ | $ 0.000531041 $ | $ 0.00022165 $ | $ 0.00023291 $ | $ 0.00124304 $ | $ 0.00083190 $ | $ 0.00212642 $ |
According to Figures 4–7 and Tables 2 and 3, the magnitude of bias, MSE, and MRE always decrease to zero as $ n $ grows (consistency property). Thus, the MLE approach can be utilized effectively for the parameter's estimation.
In this section, we demonstrate the resilience of the DsMGL distribution in modeling COVID-19 data. Fitted models are compared using some criteria, namely, the $ -LL $, Akaike-information-criterion (AIC), modified-AIC (MAIC), Hannan-Quinn-information-criterion (HQIC), Bayesian-information-criterion (BIC), and Kolmogorov-Smirnov (K-S) test with its corresponding P-value. We will compare the flexibility of the DsMGL model with some of the competitive models such as discrete Lindley (DsL), discrete Burr-Hatke (DsBH), new discrete distribution with one parameter (NDsIP) (see, Eliwa and El-Morshedy, 2022), discrete Rayleigh (DsR), discrete Pareto (DsPa), discrete Burr type XII (DsB-XII), and modified negative binomial (NeBi) models.
The data is listed in (https://www.worldometers.info/coronavirus/country/china-hong-kong-sar/) and represents the daily new cases in Hong Kong for COVID-19 from Feb. 15, 2020, to Oct. 25, 2020. The initial shape/form of this data is reported in Figure 8 using non-parametric (N-P) methods like strip, box, violin and QQ plots. It is noted that there are extreme and outliers' observations.
The MLEs with their corresponding standard error (SE), confidence interval (C. I) for the parameter(s) and goodness-of-fit test (G-O-F-T) for COVID-19 data in Hong Kong, are listed in Tables 4 and 5.
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.8887 $ | $ 0.0242 $ | $ [0.8390, 0.9361] $ | $ 0.1062 $ | $ 0.0373 $ | $ [0.0355, 0.1786] $ |
DsL | $ 0.8052 $ | $ 0.0200 $ | $ [0.7660, 0.8451] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.9110 $ | $ 0.0151 $ | $ [0.8820, 0.9390] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.9951 $ | $ 0.1361 $ | $ [0.7280, 1.000] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.8173 $ | $ 0.0740 $ | $ [0.6722, 0.9622] $ | $ 3.2981 $ | $ 1.4272 $ | $ [0.5013, 6.0962] $ |
DsPa | $ 0.5592 $ | $ 0.0531 $ | $ [0.4515, 0.6603] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.9954 $ | $ 0.0132 $ | $ [0.9695, 1.000] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.9203 $ | $ 0.0221 $ | $ [0.8772, 0.9634] $ | $ 0.6859 $ | $ 0.1023 $ | $ [0.4854, 0.8864] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 118.951 $ | $ 127.120 $ | $ 121.353 $ | $ 161.193 $ | $ 118.992 $ | $ 124.333 $ | $ 130.953 $ | $ 119.237 $ |
AIC | $ 241.892 $ | $ 256.234 $ | $ 244.717 $ | $ 324.384 $ | $ 241.980 $ | $ 250.662 $ | $ 263.902 $ | $ 242.473 $ |
MAIC | $ 242.233 $ | $ 256.343 $ | $ 244.824 $ | $ 324.493 $ | $ 242.325 $ | $ 250.777 $ | $ 264.014 $ | $ 242.816 $ |
BIC | $ 245.178 $ | $ 257.877 $ | $ 246.352 $ | $ 326.024 $ | $ 245.263 $ | $ 252.302 $ | $ 265.543 $ | $ 245.748 $ |
HQIC | $ 243.065 $ | $ 256.825 $ | $ 245.295 $ | $ 324.963 $ | $ 243.157 $ | $ 251.254 $ | $ 264.484 $ | $ 243.638 $ |
K-S | $ 0.157 $ | $ 0.246 $ | $ 0.186 $ | $ 0.761 $ | $ 0.277 $ | $ 0.367 $ | $ 0.565 $ | $ 0.167 $ |
P-value | $ 0.305 $ | $ 0.020 $ | $ 0.146 $ | $ \leq0.001 $ | $ 0.006 $ | $ \leq0.001 $ | $ \leq0.001 $ | $ 0.285 $ |
The DsMGL model is the best among all the discussed models, because it has the lowest value among $ -LL $, AIC, MAIC, BIC, HQIC and K-S. Moreover, the DsMGL model has the highest P-value among all tested distributions. Figures 9 and 10 show the estimated CDF and P-P plots for all reported models from which the distribution adequacy of the DsMGL model can be noted clearly. Thus, the COVID-19 data in Hong Kong plausibly came from the DsMGL model.
Table 6 lists some descriptive statistics (DEST) for COVID-19 data in Hong Kong utilizing the DsMGL model.
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 0.1843 $ | $ 0.2096 $ | $ 1.1374 $ | $ 2.7779 $ | $ 12.1489 $ |
The data reported here suffer from excessive dispersion "$ D(X) $ $ > $ $ 1 $". Moreover, it is moderately right skewed "$ Sk(X) > 0 $" and leptokurtic "$ Ku(X) > 3 $".
The data is reported in (https://www.worldometers.info/coronavirus/country/iraq/) and represents the daily new cases in Iraq for COVID-19 from Feb. 15, 2020, to 25 Oct. 25, 2020. In Figure 11, the N-P plots are sketched. It is noted that there is an extreme observation.
The MLEs with their corresponding SE, C. I for the parameter(s) and G-O-F-T for COVID-19 data in Iraq, are listed in Tables 7 and 8.
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.863 $ | $ 0.078 $ | $ [0.709, 1.015] $ | $ 0.129 $ | $ 0.144 $ | $ [0, 0.411] $ |
DsL | $ 0.768 $ | $ 0.024 $ | $ [0.721, 0.815] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.895 $ | $ 0.015 $ | $ [0.865, 0.926] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.989 $ | $ 0.0142 $ | $ [0.710, 1] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.531 $ | $ 0.087 $ | $ [0.361, 0.701] $ | $ 1.009 $ | $ 0.253 $ | $ [0.513, 1.506] $ |
DsPa | $ 0.528 $ | $ 0.056 $ | $ [0.419, 0.637] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.989 $ | $ 0.019 $ | $ [0.953, 1] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.928 $ | $ 0.053 $ | $ [0.824, 1.032] $ | $ 0.486 $ | $ 0.141 $ | $ [0.209, 0.762] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 107.731 $ | $ 114.313 $ | $ 109.230 $ | $ 138.243 $ | $ 112.394 $ | $ 112.393 $ | $ 116.527 $ | $ 109.426 $ |
AIC | $ 219.464 $ | $ 230.635 $ | $ 220.452 $ | $ 278.495 $ | $ 228.771 $ | $ 226.775 $ | $ 235.054 $ | $ 222.852 $ |
MAIC | $ 219.812 $ | $ 230.747 $ | $ 220.573 $ | $ 278.603 $ | $ 229.123 $ | $ 226.893 $ | $ 235.163 $ | $ 223.205 $ |
BIC | $ 222.683 $ | $ 232.244 $ | $ 222.707 $ | $ 280.092 $ | $ 231.993 $ | $ 228.387 $ | $ 236.664 $ | $ 226.074 $ |
HQIC | $ 220.595 $ | $ 231.195 $ | $ 221.025 $ | $ 279.051 $ | $ 229.914 $ | $ 227.343 $ | $ 235.623 $ | $ 223.988 $ |
K-S | $ 0.214 $ | $ 0.279 $ | $ 0.2423 $ | $ 0.736 $ | $ 0.355 $ | $ 0.357 $ | $ 0.505 $ | $ 0.251 $ |
P-value | $ 0.068 $ | $ 0.006 $ | $ 0.026 $ | $ \leq0.0001 $ | $ 0.0002 $ | $ 0.0002 $ | $ \leq0.0001 $ | $ 0.029 $ |
The DsMGL model is the best among all the studied models. Figures 12 and 13 show the estimated CDFs and P-P plots for COVID-19 data in Iraq.
From Figures 13 and 14, the data set plausibly came from the DsMGL model. Table 9 lists some information for COVID-19 data in Iraq based on the DsMGL model.
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 0.2252 $ | $ 0.2640 $ | $ 1.1724 $ | $ 2.6089 $ | $ 11.2663 $ |
The data listed here suffer from excessive dispersion. Furthermore, it is moderately right skewed and leptokurtic.
The data is reported in (https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Saudi_Arabia) and represents the daily new cases in Saudi Arabia for COVID-19 from March 1, 2020, to Sep. 13, 2021. In Figure 14, the N-P plots are reported. It is found that there are extreme observations.
The MLEs with their corresponding SE, C. I for the parameter(s) and G-O-F-T for COVID-19 data in Saudi Arabia are reported in Tables 10 and 11.
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.891 $ | $ 0.0003 $ | $ 0.884, 0.897] $ | $ 0.302 $ | $ 0.023 $ | $ [0.300, 0.305] $ |
DsL | $ 0.896 $ | $ 0.003 $ | $ [0.889, 0.902] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.956 $ | $ 0.002 $ | $ [0.953, 0.959] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.998 $ | $ 0.001 $ | $ [0.995, 1] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.909 $ | $ 0.028 $ | $ [0.854, 0.964] $ | $ 4.067 $ | $ 1.300 $ | $ [1.519, 6.616] $ |
DsPa | $ 0.688 $ | $ 0.012 $ | $ [0.665, 0.711] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.998 $ | $ 0.002 $ | $ [0.994, 1.002] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.521 $ | $ 0.125 $ | $ [0.276, 0.766] $ | $ 0.745 $ | $ 0.045 $ | $ [0.657, 0.833] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 1844.941 $ | $ 1849.332 $ | $ 1879.599 $ | $ 1894.439 $ | $ 2244.195 $ | $ 2301.366 $ | $ 2641.779 $ | $ 1847.236 $ |
AIC | $ 3693.882 $ | $ 3693.881 $ | $ 3761.199 $ | $ 3792.878 $ | $ 4492.393 $ | $ 4604.732 $ | $ 5285.559 $ | $ 3698.472 $ |
MAIC | $ 3693.904 $ | $ 3693.904 $ | $ 3761.207 $ | $ 3792.902 $ | $ 4492.415 $ | $ 4604.741 $ | $ 5285.567 $ | $ 3698.496 $ |
BIC | $ 3702.285 $ | $ 3702.285 $ | $ 3765.401 $ | $ 3801.283 $ | $ 4500.796 $ | $ 4608.934 $ | $ 5289.761 $ | $ 3706.877 $ |
HQIC | $ 3697.183 $ | $ 3697.180 $ | $ 3762.849 $ | $ 3796.178 $ | $ 4495.691 $ | $ 4606.382 $ | $ 5287.209 $ | $ 3701.772 $ |
K-S | $ 0.071 $ | $ 0.079 $ | $ 0.169 $ | $ 0.241 $ | $ 0.415 $ | $ 0.439 $ | $ 0.787 $ | $ 0.075 $ |
P-value | $ 0.139 $ | $ 0.129 $ | $ 0.023 $ | $ 0.004 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0.134 $ |
According to Table 10, the DsMGL model is the best among all the tested models. Figures 15 and 16 show the estimated CDFs and P-P plots for COVID-19 data in Saudi Arabia. It is found that the data set plausibly came from DsMGL model.
Table 12 lists some DEST around COVID-19 data in Saudi Arabia by utilizing the DsMGL model.
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 16.777 $ | $ 150.421 $ | $ 8.966 $ | $ 1.006 $ | $ 3.212 $ |
The data presented here suffer from excessive dispersion. Moreover, it is moderately right skewed and leptokurtic.
In this article, we have developed a new two parameter discrete model, named as discrete mixture gamma-Lindley (DsMGL) distribution. Various important distributional characteristics of the DsMGL distribution have been discussed. One of the important virtues of this newly developed model is that it can not only discuss over-dispersed, under-dispersed, positively skewed, and leptokurtic data sets, but it can also be applied for modeling increasing failure time data (due to its increasing HRF). The unknown parameters of the DsMGL model have been discussed under a method of maximum likelihood (ML) estimation. A detailed MCMC evaluation has been conducted to measure the behavior of the estimators. This numerical study shows that the ML estimation measures work satisfactorily. Finally, the modeling flexibility of the DsMGL distribution has been explored via three real data sets on COVID-19. For future work, the authors will utilize the DsMGL model to generate a bivariate extension distribution based on a shock models approach for modeling bivariate data. Moreover, the first-order integer-valued regression model and autoregressive process will be studied in detail.
The authors gratefully acknowledge Qassim University, represented by the Deanship of Scientific Research, on the financial support for this research under the number (COS-2022-1-1-J-25173) during the academic year 1444 AH / 2022 AD.
[1] |
Liu SQ, Wu NJ, Ignatiev A (2000) Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett 76: 2749-2751. doi: 10.1063/1.126464
![]() |
[2] |
Yang JJ, Pickett MD, Li X, et al. (2008) Memristive switching mechanism for metal//oxide//metal nanodevices. Nat Nano 3: 429-433. doi: 10.1038/nnano.2008.160
![]() |
[3] | Wu SX, Li XY, Xing XJ, et al. (2009) Resistive dependence of magnetic properties in nonvolatile Ti/Mn:TiO2/SrTi0.993Nb0.007O3/Ti memory device. Appl Phys Lett 94: 253504-253503. |
[4] |
Beck A, Bednorz JG, Gerber C, et al. (2000) Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett 77: 139-141. doi: 10.1063/1.126902
![]() |
[5] |
Chua L (1971) Memristor-The missing circuit element. IEEE Transactions on Circuits Theory 18:507-519. doi: 10.1109/TCT.1971.1083337
![]() |
[6] |
Seo JW, Park J-W, Lim KS, et al. (2008) Transparent resistive random access memory and its characteristics for nonvolatile resistive switching. Appl Phys Lett 93: 223505-223503. doi: 10.1063/1.3041643
![]() |
[7] |
Strukov DB, Snider GS, Stewart DR, et al. (2008) The missing memristor found. Nature 453:80-83. doi: 10.1038/nature06932
![]() |
[8] |
Seo S, Lee MJ, Seo DH, et al. (2004) Reproducible resistance switching in polycrystalline NiO films. Appl Phys Lett 85: 5655-5657. doi: 10.1063/1.1831560
![]() |
[9] |
Choi BJ, Jeong DS, Kim SK, et al. (2005) Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys 98: 033715-033710. doi: 10.1063/1.2001146
![]() |
[10] |
Chen A, Haddad S, Wu YC, et al. (2008) Erasing characteristics of Cu2O metal-insulator-metal resistive switching memory. Appl Phys Lett 92: 013503-013503. doi: 10.1063/1.2828864
![]() |
[11] |
Villafuerte M, Heluani SP, Juarez G, et al. (2007) Electric-pulse-induced reversible resistance in doped zinc oxide thin films. Appl Phys Lett 90: 052105-052103. doi: 10.1063/1.2437688
![]() |
[12] |
Younis A, Chu D, Li S (2013) Bi-stable resistive switching characteristics in Ti-doped ZnO thin films. Nanoscale Res Lett 8: 1-6. doi: 10.1186/1556-276X-8-1
![]() |
[13] |
Sun W, Zhang K, Wang F, et al. (2013) Resistive Switching Characteristics of Zinc Oxide Resistive RAM Doped with Nickel. ECS Transactions 52: 1009-1014. doi: 10.1149/05201.1009ecst
![]() |
[14] |
Peng C-N, Wang C-W, Chan T-C, et al. (2012) Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation. Nanoscale Res Lett 7: 559. doi: 10.1186/1556-276X-7-559
![]() |
[15] |
Chang W (2010) Resistive switching behaviors of ZnO nanorod layers. Appl Phys Lett 96:242109. doi: 10.1063/1.3453450
![]() |
1. | Gunjan Jha, Anshul Jha, Eugene John, 2024, A High Accuracy CNN for Breast Cancer Detection Using Mammography Images, 979-8-3503-8717-9, 1196, 10.1109/MWSCAS60917.2024.10658807 | |
2. | Detection of Brain Tumor using Medical Images: A Comparative Study of Machine Learning Algorithms – A Systematic Literature Review, 2024, 13, 2278-2540, 77, 10.51583/IJLTEMAS.2024.130907 | |
3. | Xiangquan Liu, Xiaoming Huang, Weakly supervised salient object detection via bounding-box annotation and SAM model, 2024, 32, 2688-1594, 1624, 10.3934/era.2024074 | |
4. | Dekai Qiu, Tianhao Guo, Shengqi Yu, Wei Liu, Lin Li, Zhizhong Sun, Hehuan Peng, Dong Hu, Classification of Apple Color and Deformity Using Machine Vision Combined with CNN, 2024, 14, 2077-0472, 978, 10.3390/agriculture14070978 | |
5. | Yu Xue, Zhenman Zhang, Ferrante Neri, Similarity surrogate-assisted evolutionary neural architecture search with dual encoding strategy, 2024, 32, 2688-1594, 1017, 10.3934/era.2024050 | |
6. | Xiaoping Zhao, Liwen Jiang, Adam Slowik, Zhenman Zhang, Yu Xue, Evolving blocks by segmentation for neural architecture search, 2024, 32, 2688-1594, 2016, 10.3934/era.2024092 | |
7. | Katuri Rama Krishna, Mohammad Arbaaz, Surya Naga Chandra Dhanekula, Yagna Mithra Vallabhaneni, MODIFIED VGG16 FOR ACCURATE BRAIN TUMOR DETECTION IN MRI IMAGERY, 2024, 14, 2391-6761, 71, 10.35784/iapgos.6035 | |
8. | Maad M. Mijwil, Smart architectures: computerized classification of brain tumors from MRI images utilizing deep learning approaches, 2024, 1573-7721, 10.1007/s11042-024-20349-x | |
9. | B Gunasundari, H Kezia, T Dharanika, Pydala Anusha, Dasineni Yogitha, Vemula Lakshmi Prashanthi, 2024, Enhanced deep learning model using transfer learning to segment and detect brain tumors, 979-8-3503-7024-9, 1, 10.1109/ICCCNT61001.2024.10723895 | |
10. | Mary Jane C. Samonte, Andrei Bench Mallari, Prince Rayly K. Reyes, John Caleb T. Tan, 2024, Applying Data Science in Computer Vision: Detection of Malignant and Benign Cancer Tumors, 979-8-3503-8826-8, 13, 10.1109/BDEE63226.2024.00010 | |
11. | Bianca Antonia Fabian, Cristian-Cosmin Vancea, 2024, Efficient Methods for Improving Brain Tumors Diagnosis in MRI Scans Using Deep Learning, 979-8-3315-3997-9, 1, 10.1109/ICCP63557.2024.10793036 | |
12. | Tanjim Mahmud, Mohammad Tarek Aziz, Taohidur Rahman, Koushick Barua, Anik Barua, Nanziba Basnin, Israt Ara, Nahed Sharmen, Mohammad Shahadat Hossain, Karl Andersson, 2024, Chapter 5, 978-3-031-73323-9, 39, 10.1007/978-3-031-73324-6_5 | |
13. | Kingshuk Das Bakshi, S. Rani, S. Thanga Ramya, A. Bhagyalakshmi, Earli Manemma, Sumit Kushwaha, Identifying Neurological Disorders using Deep Learning with Biomedical Imaging Techniques, 2025, 1556-5068, 10.2139/ssrn.5109614 | |
14. | R Rekha Sharmily, B Karthik, T Vijayan, 2024, MRI Brain Tumor Medical Images Multi Classification Using Deep Neural Networks, 979-8-3315-1859-2, 1, 10.1109/DELCON64804.2024.10866052 | |
15. | Venkata Kiranmai Kollipara, Surendra Reddy Vinta, 2025, Chapter 43, 978-981-97-7177-6, 507, 10.1007/978-981-97-7178-3_43 | |
16. | Huimin Qu, Haiyan Xie, Qianying Wang, Multi-convolutional neural network brain image denoising study based on feature distillation learning and dense residual attention, 2025, 33, 2688-1594, 1231, 10.3934/era.2025055 | |
17. | Mehak Sharma, Krish Monga, Ripandeep Kaur, Sahil Bhardwaj, 2024, DEEPTUMORNET: BRAIN TUMOR CLASSIFICATION IN MEDICAL IMAGING, 979-8-3315-1905-6, 500, 10.1109/ICACCTech65084.2024.00087 | |
18. | Madona B Sahaai, K Karthika, Aaron Kevin Cameron Theoderaj, EC-HDLNet: Extended coati-based hybrid deep dilated convolutional learning network for brain tumor classification, 2025, 107, 17468094, 107865, 10.1016/j.bspc.2025.107865 | |
19. | Mohammed Nazneen Fathima, Prabhjot Singh, Simrandeep Singh, 2025, VTAF-Ensemble: A Hybrid Vision Transformer and Attention-based Learning Approach for Enhanced Brain Tumor Detection and Classification, 979-8-3315-2924-6, 1, 10.1109/ICISCN64258.2025.10934306 | |
20. | Ankush Goyal, Yajnaseni Dash, Sudhir C. Sarangi, Ajith Abraham, 2025, Chapter 56, 978-3-031-81079-4, 589, 10.1007/978-3-031-81080-0_56 | |
21. | S. Veluchamy, R. Bhuvaneswari, K. Ashwini, Samah Alshathri, Walid El-Shafai, HY-Deepnet : A new Optimal Deep transfer learning empowered framework for an autonomous Alzheimer’s disease detection and diagnosis system, 2025, 68, 22150986, 102058, 10.1016/j.jestch.2025.102058 |
$ \varepsilon $ | ||||||
Measure | $ 1.1 $ | $ 1.4 $ | $ 1.7 $ | $ 2.1 $ | $ 4.2 $ | $ 8.4 $ |
$ E(X) $ | $ 0.10548 $ | $ 0.12972 $ | $ 0.14540 $ | $ 0.15934 $ | $ 0.18897 $ | $ 0.20378 $ |
$ Var(X) $ | $ 0.11102 $ | $ 0.13466 $ | $ 0.14933 $ | $ 0.16196 $ | $ 0.18750 $ | $ 0.19962 $ |
$ D(X) $ | $ 1.05252 $ | $ 1.03809 $ | $ 1.02701 $ | $ 1.01641 $ | $ 0.99223 $ | $ 0.97955 $ |
$ Sk(X) $ | $ 3.31652 $ | $ 2.93747 $ | $ 2.73625 $ | $ 2.57885 $ | $ 2.29485 $ | $ 2.17274 $ |
$ Ku(X) $ | $ 14.9956 $ | $ 12.2687 $ | $ 10.94861 $ | $ 9.97976 $ | $ 8.37673 $ | $ 7.74605 $ |
Scheme V | Scheme VI | ||||||
Parameter | $ n $ | Bias | MSE | MRE | Bias | MSE | MRE |
$ \delta $ | $ 30 $ | $ 0.10056591 $ | $ 0.09006876 $ | $ 0.06336994 $ | $ 0.11632194 $ | $ 0.08963175 $ | $ 0.08223158 $ |
$ 70 $ | $ 0.09865782 $ | $ 0.08830367 $ | $ 0.04163261 $ | $ 0.10223666 $ | $ 0.06202190 $ | $ 0.08063179 $ | |
$ 140 $ | $ 0.04369310 $ | $ 0.08200239 $ | $ 0.04001453 $ | $ 0.09220169 $ | $ 0.06101429 $ | $ 0.07312016 $ | |
$ 200 $ | $ 0.02299658 $ | $ 0.07703927 $ | $ 0.03192237 $ | $ 0.08139327 $ | $ 0.04002236 $ | $ 0.06350036 $ | |
$ 300 $ | $ 0.02126971 $ | $ 0.06005479 $ | $ 0.02101206 $ | $ 0.08023636 $ | $ 0.03237014 $ | $ 0.05519738 $ | |
$ 400 $ | $ 0.01733369 $ | $ 0.04079031 $ | $ 0.00700269 $ | $ 0.05193079 $ | $ 0.01112539 $ | $ 0.04980373 $ | |
$ 600 $ | $ 0.00234104 $ | $ 0.00201034 $ | $ 0.00023694 $ | $ 0.00292733 $ | $ 0.00026456 $ | $ 0.00015654 $ | |
$ \varepsilon $ | $ 30 $ | $ 0.09369110 $ | $ 0.07793171 $ | $ 0.06131304 $ | $ 0.05969637 $ | $ 0.04320158 $ | $ 0.05336947 $ |
$ 70 $ | $ 0.08567341 $ | $ 0.07122367 $ | $ 0.05510375 $ | $ 0.05223691 $ | $ 0.03201392 $ | $ 0.05102125 $ | |
$ 140 $ | $ 0.07011036 $ | $ 0.06379035 $ | $ 0.05022693 $ | $ 0.04112566 $ | $ 0.03036549 $ | $ 0.04020024 $ | |
$ 200 $ | $ 0.04105604 $ | $ 0.05380086 $ | $ 0.04500102 $ | $ 0.03233697 $ | $ 0.02002137 $ | $ 0.03102236 $ | |
$ 300 $ | $ 0.03367101 $ | $ 0.04522564 $ | $ 0.04103979 $ | $ 0.03102973 $ | $ 0.01122024 $ | $ 0.01909439 $ | |
$ 400 $ | $ 0.02098200 $ | $ 0.03474369 $ | $ 0.03139064 $ | $ 0.01018674 $ | $ 0.00889001 $ | $ 0.00306970 $ | |
$ 600 $ | $ 0.00523689 $ | $ 0.00236844 $ | $ 0.00053671 $ | $ 0.00235659 $ | $ 0.00059458 $ | $ 0.00002518 $ |
Scheme VII | Scheme VIII | ||||||
Parameter | $ n $ | Bias | MSE | MRE | Bias | MSE | MRE |
$ \delta $ | $ 30 $ | $ 0.025687193 $ | $ 0.01466875 $ | $ 0.01399737 $ | $ 0.06696575 $ | $ 0.08763274 $ | $ 0.06353187 $ |
$ 70 $ | $ 0.022658763 $ | $ 0.01136219 $ | $ 0.10145190 $ | $ 0.06132640 $ | $ 0.06923671 $ | $ 0.06123671 $ | |
$ 140 $ | $ 0.019365811 $ | $ 0.00855157 $ | $ 0.00500215 $ | $ 0.05426598 $ | $ 0.05110123 $ | $ 0.05922014 $ | |
$ 200 $ | $ 0.015330240 $ | $ 0.00431502 $ | $ 0.00362307 $ | $ 0.05120134 $ | $ 0.04320139 $ | $ 0.04623665 $ | |
$ 300 $ | $ 0.013695875 $ | $ 0.00400236 $ | $ 0.00306981 $ | $ 0.05026971 $ | $ 0.03915618 $ | $ 0.04010656 $ | |
$ 400 $ | $ 0.008532179 $ | $ 0.00100153 $ | $ 0.00168892 $ | $ 0.04902790 $ | $ 0.03101569 $ | $ 0.03410973 $ | |
$ 600 $ | $ 0.001036942 $ | $ 0.00010265 $ | $ 0.00023296 $ | $ 0.00265235 $ | $ 0.00021691 $ | $ 0.00139237 $ | |
$ \varepsilon $ | $ 30 $ | $ 0.108067988 $ | $ 0.01123177 $ | $ 0.08307104 $ | $ 0.07437669 $ | $ 0.07782736 $ | $ 0.09069587 $ |
$ 70 $ | $ 0.103365789 $ | $ 0.00998796 $ | $ 0.08223676 $ | $ 0.06722364 $ | $ 0.05220104 $ | $ 0.08133658 $ | |
$ 140 $ | $ 0.089445810 $ | $ 0.00912348 $ | $ 0.07911671 $ | $ 0.04749836 $ | $ 0.03002336 $ | $ 0.06310263 $ | |
$ 200 $ | $ 0.071002158 $ | $ 0.00722369 $ | $ 0.06600163 $ | $ 0.03229659 $ | $ 0.01024787 $ | $ 0.05154031 $ | |
$ 300 $ | $ 0.053210199 $ | $ 0.00426971 $ | $ 0.03697274 $ | $ 0.03193261 $ | $ 0.01010915 $ | $ 0.03974904 $ | |
$ 400 $ | $ 0.009571377 $ | $ 0.00379104 $ | $ 0.00409265 $ | $ 0.02410124 $ | $ 0.00580048 $ | $ 0.02122360 $ | |
$ 600 $ | $ 0.000531041 $ | $ 0.00022165 $ | $ 0.00023291 $ | $ 0.00124304 $ | $ 0.00083190 $ | $ 0.00212642 $ |
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.8887 $ | $ 0.0242 $ | $ [0.8390, 0.9361] $ | $ 0.1062 $ | $ 0.0373 $ | $ [0.0355, 0.1786] $ |
DsL | $ 0.8052 $ | $ 0.0200 $ | $ [0.7660, 0.8451] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.9110 $ | $ 0.0151 $ | $ [0.8820, 0.9390] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.9951 $ | $ 0.1361 $ | $ [0.7280, 1.000] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.8173 $ | $ 0.0740 $ | $ [0.6722, 0.9622] $ | $ 3.2981 $ | $ 1.4272 $ | $ [0.5013, 6.0962] $ |
DsPa | $ 0.5592 $ | $ 0.0531 $ | $ [0.4515, 0.6603] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.9954 $ | $ 0.0132 $ | $ [0.9695, 1.000] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.9203 $ | $ 0.0221 $ | $ [0.8772, 0.9634] $ | $ 0.6859 $ | $ 0.1023 $ | $ [0.4854, 0.8864] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 118.951 $ | $ 127.120 $ | $ 121.353 $ | $ 161.193 $ | $ 118.992 $ | $ 124.333 $ | $ 130.953 $ | $ 119.237 $ |
AIC | $ 241.892 $ | $ 256.234 $ | $ 244.717 $ | $ 324.384 $ | $ 241.980 $ | $ 250.662 $ | $ 263.902 $ | $ 242.473 $ |
MAIC | $ 242.233 $ | $ 256.343 $ | $ 244.824 $ | $ 324.493 $ | $ 242.325 $ | $ 250.777 $ | $ 264.014 $ | $ 242.816 $ |
BIC | $ 245.178 $ | $ 257.877 $ | $ 246.352 $ | $ 326.024 $ | $ 245.263 $ | $ 252.302 $ | $ 265.543 $ | $ 245.748 $ |
HQIC | $ 243.065 $ | $ 256.825 $ | $ 245.295 $ | $ 324.963 $ | $ 243.157 $ | $ 251.254 $ | $ 264.484 $ | $ 243.638 $ |
K-S | $ 0.157 $ | $ 0.246 $ | $ 0.186 $ | $ 0.761 $ | $ 0.277 $ | $ 0.367 $ | $ 0.565 $ | $ 0.167 $ |
P-value | $ 0.305 $ | $ 0.020 $ | $ 0.146 $ | $ \leq0.001 $ | $ 0.006 $ | $ \leq0.001 $ | $ \leq0.001 $ | $ 0.285 $ |
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 0.1843 $ | $ 0.2096 $ | $ 1.1374 $ | $ 2.7779 $ | $ 12.1489 $ |
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.863 $ | $ 0.078 $ | $ [0.709, 1.015] $ | $ 0.129 $ | $ 0.144 $ | $ [0, 0.411] $ |
DsL | $ 0.768 $ | $ 0.024 $ | $ [0.721, 0.815] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.895 $ | $ 0.015 $ | $ [0.865, 0.926] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.989 $ | $ 0.0142 $ | $ [0.710, 1] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.531 $ | $ 0.087 $ | $ [0.361, 0.701] $ | $ 1.009 $ | $ 0.253 $ | $ [0.513, 1.506] $ |
DsPa | $ 0.528 $ | $ 0.056 $ | $ [0.419, 0.637] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.989 $ | $ 0.019 $ | $ [0.953, 1] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.928 $ | $ 0.053 $ | $ [0.824, 1.032] $ | $ 0.486 $ | $ 0.141 $ | $ [0.209, 0.762] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 107.731 $ | $ 114.313 $ | $ 109.230 $ | $ 138.243 $ | $ 112.394 $ | $ 112.393 $ | $ 116.527 $ | $ 109.426 $ |
AIC | $ 219.464 $ | $ 230.635 $ | $ 220.452 $ | $ 278.495 $ | $ 228.771 $ | $ 226.775 $ | $ 235.054 $ | $ 222.852 $ |
MAIC | $ 219.812 $ | $ 230.747 $ | $ 220.573 $ | $ 278.603 $ | $ 229.123 $ | $ 226.893 $ | $ 235.163 $ | $ 223.205 $ |
BIC | $ 222.683 $ | $ 232.244 $ | $ 222.707 $ | $ 280.092 $ | $ 231.993 $ | $ 228.387 $ | $ 236.664 $ | $ 226.074 $ |
HQIC | $ 220.595 $ | $ 231.195 $ | $ 221.025 $ | $ 279.051 $ | $ 229.914 $ | $ 227.343 $ | $ 235.623 $ | $ 223.988 $ |
K-S | $ 0.214 $ | $ 0.279 $ | $ 0.2423 $ | $ 0.736 $ | $ 0.355 $ | $ 0.357 $ | $ 0.505 $ | $ 0.251 $ |
P-value | $ 0.068 $ | $ 0.006 $ | $ 0.026 $ | $ \leq0.0001 $ | $ 0.0002 $ | $ 0.0002 $ | $ \leq0.0001 $ | $ 0.029 $ |
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 0.2252 $ | $ 0.2640 $ | $ 1.1724 $ | $ 2.6089 $ | $ 11.2663 $ |
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.891 $ | $ 0.0003 $ | $ 0.884, 0.897] $ | $ 0.302 $ | $ 0.023 $ | $ [0.300, 0.305] $ |
DsL | $ 0.896 $ | $ 0.003 $ | $ [0.889, 0.902] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.956 $ | $ 0.002 $ | $ [0.953, 0.959] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.998 $ | $ 0.001 $ | $ [0.995, 1] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.909 $ | $ 0.028 $ | $ [0.854, 0.964] $ | $ 4.067 $ | $ 1.300 $ | $ [1.519, 6.616] $ |
DsPa | $ 0.688 $ | $ 0.012 $ | $ [0.665, 0.711] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.998 $ | $ 0.002 $ | $ [0.994, 1.002] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.521 $ | $ 0.125 $ | $ [0.276, 0.766] $ | $ 0.745 $ | $ 0.045 $ | $ [0.657, 0.833] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 1844.941 $ | $ 1849.332 $ | $ 1879.599 $ | $ 1894.439 $ | $ 2244.195 $ | $ 2301.366 $ | $ 2641.779 $ | $ 1847.236 $ |
AIC | $ 3693.882 $ | $ 3693.881 $ | $ 3761.199 $ | $ 3792.878 $ | $ 4492.393 $ | $ 4604.732 $ | $ 5285.559 $ | $ 3698.472 $ |
MAIC | $ 3693.904 $ | $ 3693.904 $ | $ 3761.207 $ | $ 3792.902 $ | $ 4492.415 $ | $ 4604.741 $ | $ 5285.567 $ | $ 3698.496 $ |
BIC | $ 3702.285 $ | $ 3702.285 $ | $ 3765.401 $ | $ 3801.283 $ | $ 4500.796 $ | $ 4608.934 $ | $ 5289.761 $ | $ 3706.877 $ |
HQIC | $ 3697.183 $ | $ 3697.180 $ | $ 3762.849 $ | $ 3796.178 $ | $ 4495.691 $ | $ 4606.382 $ | $ 5287.209 $ | $ 3701.772 $ |
K-S | $ 0.071 $ | $ 0.079 $ | $ 0.169 $ | $ 0.241 $ | $ 0.415 $ | $ 0.439 $ | $ 0.787 $ | $ 0.075 $ |
P-value | $ 0.139 $ | $ 0.129 $ | $ 0.023 $ | $ 0.004 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0.134 $ |
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 16.777 $ | $ 150.421 $ | $ 8.966 $ | $ 1.006 $ | $ 3.212 $ |
$ \varepsilon $ | ||||||
Measure | $ 1.1 $ | $ 1.4 $ | $ 1.7 $ | $ 2.1 $ | $ 4.2 $ | $ 8.4 $ |
$ E(X) $ | $ 0.10548 $ | $ 0.12972 $ | $ 0.14540 $ | $ 0.15934 $ | $ 0.18897 $ | $ 0.20378 $ |
$ Var(X) $ | $ 0.11102 $ | $ 0.13466 $ | $ 0.14933 $ | $ 0.16196 $ | $ 0.18750 $ | $ 0.19962 $ |
$ D(X) $ | $ 1.05252 $ | $ 1.03809 $ | $ 1.02701 $ | $ 1.01641 $ | $ 0.99223 $ | $ 0.97955 $ |
$ Sk(X) $ | $ 3.31652 $ | $ 2.93747 $ | $ 2.73625 $ | $ 2.57885 $ | $ 2.29485 $ | $ 2.17274 $ |
$ Ku(X) $ | $ 14.9956 $ | $ 12.2687 $ | $ 10.94861 $ | $ 9.97976 $ | $ 8.37673 $ | $ 7.74605 $ |
Scheme V | Scheme VI | ||||||
Parameter | $ n $ | Bias | MSE | MRE | Bias | MSE | MRE |
$ \delta $ | $ 30 $ | $ 0.10056591 $ | $ 0.09006876 $ | $ 0.06336994 $ | $ 0.11632194 $ | $ 0.08963175 $ | $ 0.08223158 $ |
$ 70 $ | $ 0.09865782 $ | $ 0.08830367 $ | $ 0.04163261 $ | $ 0.10223666 $ | $ 0.06202190 $ | $ 0.08063179 $ | |
$ 140 $ | $ 0.04369310 $ | $ 0.08200239 $ | $ 0.04001453 $ | $ 0.09220169 $ | $ 0.06101429 $ | $ 0.07312016 $ | |
$ 200 $ | $ 0.02299658 $ | $ 0.07703927 $ | $ 0.03192237 $ | $ 0.08139327 $ | $ 0.04002236 $ | $ 0.06350036 $ | |
$ 300 $ | $ 0.02126971 $ | $ 0.06005479 $ | $ 0.02101206 $ | $ 0.08023636 $ | $ 0.03237014 $ | $ 0.05519738 $ | |
$ 400 $ | $ 0.01733369 $ | $ 0.04079031 $ | $ 0.00700269 $ | $ 0.05193079 $ | $ 0.01112539 $ | $ 0.04980373 $ | |
$ 600 $ | $ 0.00234104 $ | $ 0.00201034 $ | $ 0.00023694 $ | $ 0.00292733 $ | $ 0.00026456 $ | $ 0.00015654 $ | |
$ \varepsilon $ | $ 30 $ | $ 0.09369110 $ | $ 0.07793171 $ | $ 0.06131304 $ | $ 0.05969637 $ | $ 0.04320158 $ | $ 0.05336947 $ |
$ 70 $ | $ 0.08567341 $ | $ 0.07122367 $ | $ 0.05510375 $ | $ 0.05223691 $ | $ 0.03201392 $ | $ 0.05102125 $ | |
$ 140 $ | $ 0.07011036 $ | $ 0.06379035 $ | $ 0.05022693 $ | $ 0.04112566 $ | $ 0.03036549 $ | $ 0.04020024 $ | |
$ 200 $ | $ 0.04105604 $ | $ 0.05380086 $ | $ 0.04500102 $ | $ 0.03233697 $ | $ 0.02002137 $ | $ 0.03102236 $ | |
$ 300 $ | $ 0.03367101 $ | $ 0.04522564 $ | $ 0.04103979 $ | $ 0.03102973 $ | $ 0.01122024 $ | $ 0.01909439 $ | |
$ 400 $ | $ 0.02098200 $ | $ 0.03474369 $ | $ 0.03139064 $ | $ 0.01018674 $ | $ 0.00889001 $ | $ 0.00306970 $ | |
$ 600 $ | $ 0.00523689 $ | $ 0.00236844 $ | $ 0.00053671 $ | $ 0.00235659 $ | $ 0.00059458 $ | $ 0.00002518 $ |
Scheme VII | Scheme VIII | ||||||
Parameter | $ n $ | Bias | MSE | MRE | Bias | MSE | MRE |
$ \delta $ | $ 30 $ | $ 0.025687193 $ | $ 0.01466875 $ | $ 0.01399737 $ | $ 0.06696575 $ | $ 0.08763274 $ | $ 0.06353187 $ |
$ 70 $ | $ 0.022658763 $ | $ 0.01136219 $ | $ 0.10145190 $ | $ 0.06132640 $ | $ 0.06923671 $ | $ 0.06123671 $ | |
$ 140 $ | $ 0.019365811 $ | $ 0.00855157 $ | $ 0.00500215 $ | $ 0.05426598 $ | $ 0.05110123 $ | $ 0.05922014 $ | |
$ 200 $ | $ 0.015330240 $ | $ 0.00431502 $ | $ 0.00362307 $ | $ 0.05120134 $ | $ 0.04320139 $ | $ 0.04623665 $ | |
$ 300 $ | $ 0.013695875 $ | $ 0.00400236 $ | $ 0.00306981 $ | $ 0.05026971 $ | $ 0.03915618 $ | $ 0.04010656 $ | |
$ 400 $ | $ 0.008532179 $ | $ 0.00100153 $ | $ 0.00168892 $ | $ 0.04902790 $ | $ 0.03101569 $ | $ 0.03410973 $ | |
$ 600 $ | $ 0.001036942 $ | $ 0.00010265 $ | $ 0.00023296 $ | $ 0.00265235 $ | $ 0.00021691 $ | $ 0.00139237 $ | |
$ \varepsilon $ | $ 30 $ | $ 0.108067988 $ | $ 0.01123177 $ | $ 0.08307104 $ | $ 0.07437669 $ | $ 0.07782736 $ | $ 0.09069587 $ |
$ 70 $ | $ 0.103365789 $ | $ 0.00998796 $ | $ 0.08223676 $ | $ 0.06722364 $ | $ 0.05220104 $ | $ 0.08133658 $ | |
$ 140 $ | $ 0.089445810 $ | $ 0.00912348 $ | $ 0.07911671 $ | $ 0.04749836 $ | $ 0.03002336 $ | $ 0.06310263 $ | |
$ 200 $ | $ 0.071002158 $ | $ 0.00722369 $ | $ 0.06600163 $ | $ 0.03229659 $ | $ 0.01024787 $ | $ 0.05154031 $ | |
$ 300 $ | $ 0.053210199 $ | $ 0.00426971 $ | $ 0.03697274 $ | $ 0.03193261 $ | $ 0.01010915 $ | $ 0.03974904 $ | |
$ 400 $ | $ 0.009571377 $ | $ 0.00379104 $ | $ 0.00409265 $ | $ 0.02410124 $ | $ 0.00580048 $ | $ 0.02122360 $ | |
$ 600 $ | $ 0.000531041 $ | $ 0.00022165 $ | $ 0.00023291 $ | $ 0.00124304 $ | $ 0.00083190 $ | $ 0.00212642 $ |
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.8887 $ | $ 0.0242 $ | $ [0.8390, 0.9361] $ | $ 0.1062 $ | $ 0.0373 $ | $ [0.0355, 0.1786] $ |
DsL | $ 0.8052 $ | $ 0.0200 $ | $ [0.7660, 0.8451] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.9110 $ | $ 0.0151 $ | $ [0.8820, 0.9390] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.9951 $ | $ 0.1361 $ | $ [0.7280, 1.000] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.8173 $ | $ 0.0740 $ | $ [0.6722, 0.9622] $ | $ 3.2981 $ | $ 1.4272 $ | $ [0.5013, 6.0962] $ |
DsPa | $ 0.5592 $ | $ 0.0531 $ | $ [0.4515, 0.6603] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.9954 $ | $ 0.0132 $ | $ [0.9695, 1.000] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.9203 $ | $ 0.0221 $ | $ [0.8772, 0.9634] $ | $ 0.6859 $ | $ 0.1023 $ | $ [0.4854, 0.8864] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 118.951 $ | $ 127.120 $ | $ 121.353 $ | $ 161.193 $ | $ 118.992 $ | $ 124.333 $ | $ 130.953 $ | $ 119.237 $ |
AIC | $ 241.892 $ | $ 256.234 $ | $ 244.717 $ | $ 324.384 $ | $ 241.980 $ | $ 250.662 $ | $ 263.902 $ | $ 242.473 $ |
MAIC | $ 242.233 $ | $ 256.343 $ | $ 244.824 $ | $ 324.493 $ | $ 242.325 $ | $ 250.777 $ | $ 264.014 $ | $ 242.816 $ |
BIC | $ 245.178 $ | $ 257.877 $ | $ 246.352 $ | $ 326.024 $ | $ 245.263 $ | $ 252.302 $ | $ 265.543 $ | $ 245.748 $ |
HQIC | $ 243.065 $ | $ 256.825 $ | $ 245.295 $ | $ 324.963 $ | $ 243.157 $ | $ 251.254 $ | $ 264.484 $ | $ 243.638 $ |
K-S | $ 0.157 $ | $ 0.246 $ | $ 0.186 $ | $ 0.761 $ | $ 0.277 $ | $ 0.367 $ | $ 0.565 $ | $ 0.167 $ |
P-value | $ 0.305 $ | $ 0.020 $ | $ 0.146 $ | $ \leq0.001 $ | $ 0.006 $ | $ \leq0.001 $ | $ \leq0.001 $ | $ 0.285 $ |
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 0.1843 $ | $ 0.2096 $ | $ 1.1374 $ | $ 2.7779 $ | $ 12.1489 $ |
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.863 $ | $ 0.078 $ | $ [0.709, 1.015] $ | $ 0.129 $ | $ 0.144 $ | $ [0, 0.411] $ |
DsL | $ 0.768 $ | $ 0.024 $ | $ [0.721, 0.815] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.895 $ | $ 0.015 $ | $ [0.865, 0.926] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.989 $ | $ 0.0142 $ | $ [0.710, 1] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.531 $ | $ 0.087 $ | $ [0.361, 0.701] $ | $ 1.009 $ | $ 0.253 $ | $ [0.513, 1.506] $ |
DsPa | $ 0.528 $ | $ 0.056 $ | $ [0.419, 0.637] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.989 $ | $ 0.019 $ | $ [0.953, 1] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.928 $ | $ 0.053 $ | $ [0.824, 1.032] $ | $ 0.486 $ | $ 0.141 $ | $ [0.209, 0.762] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 107.731 $ | $ 114.313 $ | $ 109.230 $ | $ 138.243 $ | $ 112.394 $ | $ 112.393 $ | $ 116.527 $ | $ 109.426 $ |
AIC | $ 219.464 $ | $ 230.635 $ | $ 220.452 $ | $ 278.495 $ | $ 228.771 $ | $ 226.775 $ | $ 235.054 $ | $ 222.852 $ |
MAIC | $ 219.812 $ | $ 230.747 $ | $ 220.573 $ | $ 278.603 $ | $ 229.123 $ | $ 226.893 $ | $ 235.163 $ | $ 223.205 $ |
BIC | $ 222.683 $ | $ 232.244 $ | $ 222.707 $ | $ 280.092 $ | $ 231.993 $ | $ 228.387 $ | $ 236.664 $ | $ 226.074 $ |
HQIC | $ 220.595 $ | $ 231.195 $ | $ 221.025 $ | $ 279.051 $ | $ 229.914 $ | $ 227.343 $ | $ 235.623 $ | $ 223.988 $ |
K-S | $ 0.214 $ | $ 0.279 $ | $ 0.2423 $ | $ 0.736 $ | $ 0.355 $ | $ 0.357 $ | $ 0.505 $ | $ 0.251 $ |
P-value | $ 0.068 $ | $ 0.006 $ | $ 0.026 $ | $ \leq0.0001 $ | $ 0.0002 $ | $ 0.0002 $ | $ \leq0.0001 $ | $ 0.029 $ |
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 0.2252 $ | $ 0.2640 $ | $ 1.1724 $ | $ 2.6089 $ | $ 11.2663 $ |
$ \varepsilon $ | $ \delta $ | |||||
Model | MLE | SE | C. I | MLE | SE | C. I |
DsMGL | $ 0.891 $ | $ 0.0003 $ | $ 0.884, 0.897] $ | $ 0.302 $ | $ 0.023 $ | $ [0.300, 0.305] $ |
DsL | $ 0.896 $ | $ 0.003 $ | $ [0.889, 0.902] $ | $ - $ | $ - $ | $ - $ |
NDsIP | $ 0.956 $ | $ 0.002 $ | $ [0.953, 0.959] $ | $ - $ | $ - $ | $ - $ |
DsR | $ 0.998 $ | $ 0.001 $ | $ [0.995, 1] $ | $ - $ | $ - $ | $ - $ |
DsB-XII | $ 0.909 $ | $ 0.028 $ | $ [0.854, 0.964] $ | $ 4.067 $ | $ 1.300 $ | $ [1.519, 6.616] $ |
DsPa | $ 0.688 $ | $ 0.012 $ | $ [0.665, 0.711] $ | $ - $ | $ - $ | $ - $ |
DsBH | $ 0.998 $ | $ 0.002 $ | $ [0.994, 1.002] $ | $ - $ | $ - $ | $ - $ |
NeBi | $ 0.521 $ | $ 0.125 $ | $ [0.276, 0.766] $ | $ 0.745 $ | $ 0.045 $ | $ [0.657, 0.833] $ |
Model | ||||||||
Statistic | DsMGL | DsL | NDsIP | DsR | DsB-XII | DsPa | DsBH | NeBi |
$ \mathbf{-}LL $ | $ 1844.941 $ | $ 1849.332 $ | $ 1879.599 $ | $ 1894.439 $ | $ 2244.195 $ | $ 2301.366 $ | $ 2641.779 $ | $ 1847.236 $ |
AIC | $ 3693.882 $ | $ 3693.881 $ | $ 3761.199 $ | $ 3792.878 $ | $ 4492.393 $ | $ 4604.732 $ | $ 5285.559 $ | $ 3698.472 $ |
MAIC | $ 3693.904 $ | $ 3693.904 $ | $ 3761.207 $ | $ 3792.902 $ | $ 4492.415 $ | $ 4604.741 $ | $ 5285.567 $ | $ 3698.496 $ |
BIC | $ 3702.285 $ | $ 3702.285 $ | $ 3765.401 $ | $ 3801.283 $ | $ 4500.796 $ | $ 4608.934 $ | $ 5289.761 $ | $ 3706.877 $ |
HQIC | $ 3697.183 $ | $ 3697.180 $ | $ 3762.849 $ | $ 3796.178 $ | $ 4495.691 $ | $ 4606.382 $ | $ 5287.209 $ | $ 3701.772 $ |
K-S | $ 0.071 $ | $ 0.079 $ | $ 0.169 $ | $ 0.241 $ | $ 0.415 $ | $ 0.439 $ | $ 0.787 $ | $ 0.075 $ |
P-value | $ 0.139 $ | $ 0.129 $ | $ 0.023 $ | $ 0.004 $ | $ 0 $ | $ 0 $ | $ 0 $ | $ 0.134 $ |
$ E(X) $ | $ Var(X) $ | $ D(X) $ | $ Sk(X) $ | $ Ku(X) $ |
$ 16.777 $ | $ 150.421 $ | $ 8.966 $ | $ 1.006 $ | $ 3.212 $ |