Loading [MathJax]/jax/output/SVG/jax.js
Research article

Air quality at La Plata Conglomerate, Argentina: Review and prospective study to improve the present situation

  • Many Latin American cities today face the misbalance between economic productivity and environmental sustainability while they have to tackle both global and local threats to ecosystems and people’s health. La Plata Conglomerate (800,000 inhabitants)—placed in an area where the atmosphere has low self-cleansing capacity—has intense industrial, power plant and traffic activities; nevertheless and considering the importance it deserves, air pollution monitoring has been largely denied to the public. Taking into account historical, social, geographical and environmental aspects, the present prospective work compiles for the first time significant information and reports that allow gaining insight in the sources’ role linked to the air quality status as well as getting a panoramic view of the present needs. The involved discussion, together with a robust statistical analysis of winds carried out at four weather stations, permitted providing guidelines for the installation of a primary continuous air quality network. The establishment of such network (which has many advantages) is considered a key tool to improve the present situation in which people deserve knowing the air quality they breathe as an aspect of their life quality. Our analysis suggest the installation of seven monitoring sites to follow up ten species such as SO2, NOx, VOCs (Volatile Organic Compounds) and PM2.5 (Particulate Matter ≤ 2.5 µm) among others together with basic meteorological parameters (surface winds, mixing height, etc.). Time frames and equipment to be employed are also suggested. Considering the broad context of the study, it was possible to infer that there is a great need for the creation of a law to make mandatory the installation and operation of networks for cities with similar problems. Finally, the study recalls that several environmental closely related issues (such as urban heat island, traffic air pollution, landfill control, etc.) should be addressed in the future.

    Citation: Gustavo E. Ratto, Fabián Videla, Jorge Reyna Almandos, Ricardo Maronna. Air quality at La Plata Conglomerate, Argentina: Review and prospective study to improve the present situation[J]. AIMS Geosciences, 2018, 4(1): 88-125. doi: 10.3934/geosci.2018.1.88

    Related Papers:

    [1] Shubham Chaudhry, Gauri Agrawal, Maia Martcheva, A. K. Misra . Modeling the impact of temperature on the dynamics of carrier-dependent infectious diseases with control strategies. Mathematical Biosciences and Engineering, 2025, 22(7): 1722-1750. doi: 10.3934/mbe.2025063
    [2] Abdallah Alsammani, Calistus N. Ngonghala, Maia Martcheva . Impact of vaccination behavior on COVID-19 dynamics and economic outcomes. Mathematical Biosciences and Engineering, 2025, 22(9): 2300-2338. doi: 10.3934/mbe.2025084
    [3] Manoj Kumar, Syed Abbas, Abdessamad Tridane . Optimal control and stability analysis of an age-structured SEIRV model with imperfect vaccination. Mathematical Biosciences and Engineering, 2023, 20(8): 14438-14463. doi: 10.3934/mbe.2023646
    [4] Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045
    [5] Khadiza Akter Eme, Md Kamrujjaman, Muntasir Alam, Md Afsar Ali . Vaccination and combined optimal control measures for malaria prevention and spread mitigation. Mathematical Biosciences and Engineering, 2025, 22(8): 2039-2071. doi: 10.3934/mbe.2025075
    [6] Martin Luther Mann Manyombe, Joseph Mbang, Jean Lubuma, Berge Tsanou . Global dynamics of a vaccination model for infectious diseases with asymptomatic carriers. Mathematical Biosciences and Engineering, 2016, 13(4): 813-840. doi: 10.3934/mbe.2016019
    [7] Lan Zou, Jing Chen, Shigui Ruan . Modeling and analyzing the transmission dynamics of visceral leishmaniasis. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1585-1604. doi: 10.3934/mbe.2017082
    [8] Jiazhe Lin, Rui Xu, Xiaohong Tian . Transmission dynamics of cholera with hyperinfectious and hypoinfectious vibrios: mathematical modelling and control strategies. Mathematical Biosciences and Engineering, 2019, 16(5): 4339-4358. doi: 10.3934/mbe.2019216
    [9] Shanjing Ren, Lingling Li . Global stability mathematical analysis for virus transmission model with latent age structure. Mathematical Biosciences and Engineering, 2022, 19(4): 3337-3349. doi: 10.3934/mbe.2022154
    [10] Lusha Shi, Jianghong Hu, Zhen Jin . Dynamics analysis of strangles with asymptomatic infected horses and long-term subclinical carriers. Mathematical Biosciences and Engineering, 2023, 20(10): 18386-18412. doi: 10.3934/mbe.2023817
  • Many Latin American cities today face the misbalance between economic productivity and environmental sustainability while they have to tackle both global and local threats to ecosystems and people’s health. La Plata Conglomerate (800,000 inhabitants)—placed in an area where the atmosphere has low self-cleansing capacity—has intense industrial, power plant and traffic activities; nevertheless and considering the importance it deserves, air pollution monitoring has been largely denied to the public. Taking into account historical, social, geographical and environmental aspects, the present prospective work compiles for the first time significant information and reports that allow gaining insight in the sources’ role linked to the air quality status as well as getting a panoramic view of the present needs. The involved discussion, together with a robust statistical analysis of winds carried out at four weather stations, permitted providing guidelines for the installation of a primary continuous air quality network. The establishment of such network (which has many advantages) is considered a key tool to improve the present situation in which people deserve knowing the air quality they breathe as an aspect of their life quality. Our analysis suggest the installation of seven monitoring sites to follow up ten species such as SO2, NOx, VOCs (Volatile Organic Compounds) and PM2.5 (Particulate Matter ≤ 2.5 µm) among others together with basic meteorological parameters (surface winds, mixing height, etc.). Time frames and equipment to be employed are also suggested. Considering the broad context of the study, it was possible to infer that there is a great need for the creation of a law to make mandatory the installation and operation of networks for cities with similar problems. Finally, the study recalls that several environmental closely related issues (such as urban heat island, traffic air pollution, landfill control, etc.) should be addressed in the future.


    Uterine cervical cancer is a worldwide health problem but it is especially concerning in developing countries. It is the first or second most common cancer in women [1]. It is estimated that the probability of a person being infected with human papillomavirus (HPV) in their lifetime reaches 70 to 80% [2], and the total infection rate in the global population is as high as 11.7% [3]. An estimated 233,000 deaths were attributed to HPV infection in the year 2000 [4]. There were approximately 500,000 cases and 275,000 deaths due to cervical cancer worldwide in 2002, equivalent to about a tenth of all deaths in women due to cancer [5]. The burden of cervical cancer is disproportionately high (>80%) in the developing world [6].

    HPV was discovered to be the causative agent of cervical cancer in the 1970s by the Zur Hausen group [7]. Usually, the infecting papillomavirus is eliminated from individuals; however, some individuals retain the virus. Persistent infection with oncogenic HPV is recognized as the major cause of uterine cervical cancer [8]. Cervical carcinogenesis is a complex stepwise process over a continuum of increasingly severe precancerous changes known collectively as cervical intraepithelial neoplasia (CIN) [9]. The spectrum of CIN is traditionally divided into three histopathological categories: CIN1, CIN2 and CIN3. In CIN1, cells with malignant changes are limited to the superficial layer of the cervical epithelium. Most CIN1 lesions are likely to disappear without treatment. However, a small percentage may progress to high-grade CINs (i.e., CIN2 and CIN3). The risk of progression to invasive cervical cancer increases significantly with worsening CIN grades [10,11].

    Pap cytology screening for the early detection of cervical neoplasia has been successful in reducing cervical cancer incidence and mortality [12]. In unscreened populations, the risk of invasive cervical cancer occurs earlier than of most adult cancers, peaking or reaching a plateau between about 35 and 55 years of age [13]. This distribution is because cervical cancers originate mainly from HPV infections transmitted sexually in late adolescence and early adulthood [14]. HPV transmission can be reduced through the use of condoms [15]. Some studies have reported that smoking [16], multiparity [17], and long-term use of oral contraceptives [18] can double or triple the risk of precancer and cancer among women infected with carcinogenic types of HPV. There are two major kinds of anti-HPV vaccines approved for use to protect newly sexually active individuals against some of the most common HPV types and boost immunity, namely, therapeutic vaccines and prophylactic vaccines [7]. A few years after receiving a prophylactic vaccine, the individual must be revaccinated because the vaccine loses its preventive effect. Progress in the development of therapeutic vaccines for HPV has been slow [7]. In summary, there is currently no specific treatment for HPV infection [19]. There are three major treatments for cervical cancer: surgery (such as total hysterectomy and subtotal hysterectomy), radiotherapy, and chemotherapy. Among these, surgery and radiotherapy are the main treatment methods [19].

    Mathematical modeling is a useful tool for assessing the potential impact of intervention strategies against HPV spread among humans [20,21,22,23,24]. A number of authors have reported the use of mathematical modeling to evaluate the impact of HPV vaccination. Al-arydah [20] developed a two-sex, age-structured model to describe a vaccination program for the administration of an HPV vaccine. Malik et al. [11] presented an age-structured mathematical model that incorporated sex structure and Pap screening cytology. Sharomi and Malik [21] developed a two-sex HPV vaccination model to study the effect of vaccine compliance on HPV infection and cervical cancer. Omame [22] developed a two-sex deterministic model for HPV that assessed the impact of treatment and vaccination. Elbasha [23] presented a two-sex, deterministic model for assessing the potential impact of a prophylactic HPV vaccine with several properties.

    Based on the above research and understanding of HPV pathology, we develop an ordinary differential equation model with precautionary measures such as screening, which are rarely considered in previous studies, and analyze the potential effects of multiple factors on HPV transmission. The model is formulated in section 2. In section 3, the equilibria, basic reproduction number, and global stability are analyzed. We report the sensitivity analysis of the model through the partial rank correlation coefficient (PRCC) method and identify the key factors in the model in section 4. In section 5, we set the vaccination rate and screening rate as control variables and analyze an optimal control problem that minimizes vaccination and screening cost. Section 6 concludes the article. Through extensive numerical simulations with MATLAB, we obtained results to verify our conclusions.

    The total individual population at time t is divided into 10 mutually exclusive subpopulations of susceptible individuals S(t), vaccinated individuals V(t), infectious individuals without disease symptoms E(t), infectious individuals with disease symptoms H(t), individuals with persistent HPV infection P(t), CIN1 symptomatic individuals I1(t), CIN2 symptomatic individuals I2(t), CIN3 symptomatic individuals I3(t), cancer-infected individuals A(t) and recovered individuals R(t). As such, the total population is

    N(t)=V(t)+S(t)+E(t)+H(t)+P(t)+I1(t)+I2(t)+I3(t)+A(t)+R(t).

    Susceptible individuals acquire HPV infection, following effective contact with infected individuals (i.e., those in the E, H, P, I1, I2 and I3 classes) at the rate α1 as follows

    α1(t)=βαcnck(1ccca)(E+θ1H+θ2P+θ3I1+θ4I2+θ5I3)N. (1)

    It follows that the model for the transmission of HPV is given by the following system of differential equations.

    (2a)dVdt=δ2S(t)+δ4S(t)(d+δ1)V(t),(2b)dSdt=Λ+δ1V(t)(δ2+δ4+α1(t)+d)S(t),(2c)dEdt=α1(t)S(t)+δ3α1(t)R(t)+σ2H(t)(α2+cpcqγ1σ1+d)E(t),(2d)dHdt=α2E(t)+σ3P(t)(σ2+γ2σ2+α3+d)H(t),(2e)dPdt=α3H(t)+σ4I1(t)(α4+γ3σ3+σ3+d)P(t),(2f)dI1dt=α4P(t)+σ5I2(t)(α5+γ4σ4+σ4+d)I1(t),(2g)dI2dt=α5I1(t)+σ6I3(t)(σ5+γ5σ5+α6+d)I2(t),(2h)dI3dt=α6I2(t)(σ6+γ6σ6+α7+d)I3(t),(2i)dAdt=α7I3(t)(γ7+d+d1)A(t),(2j)dRdt=cpcqγ1σ1E(t)+γ2σ2H(t)+γ3σ3P(t)+γ4σ4I1(t)+γ5σ5I2(t)+γ6σ6I3(t)+γ7A(t)(δ3α1(t)+d)R(t). (2)

    Tables 1 and 2 list the associated state variables and parameters of model (2). Figure 1 shows the flow diagram of the model. We emphasize that the vaccine mentioned in model (2) is a prophylactic vaccine. In the following section, model (2) is qualitatively analyzed to derive insights into its dynamical features.

    Table 1.  Description of variables in model (2).
    Variable Description
    V(t) Vaccinated individuals
    S(t) Susceptible individuals
    E(t) Infectious individuals with no symptoms
    H(t) Infectious individuals with symptoms
    P(t) Infectious individuals with persistent infection
    I1(t) Cervical intraepithelial neoplasia grade 1 (CIN1)
    I2(t) Cervical intraepithelial neoplasia grade 2 (CIN2)
    I3(t) Cervical intraepithelial neoplasia grade 3 (CIN3)
    A(t) Cancer-infected individuals
    R(t) Recovered individuals

     | Show Table
    DownLoad: CSV
    Table 2.  Description of the parameters in model (2).
    Parameter Description
    Λ Recruitment rate into the susceptible population (per year)
    d Natural death rate (per year)
    d1 Disease-induced mortality for individuals (per year)
    α1 Effective contact rate
    δ1 Vaccine failure rate (per year)
    δ2,δ4 Vaccination rate and revaccination rate (per year)
    δ3 The modification parameter for the probability of R being infected relative to S
    cp The effect of screening by HPV testing
    cq Screening frequency (per year)
    cn Rate at which females (males) acquire new sexual partners (per year)
    ck The probability of transmitting HPV from female (male) to male (female)
    cc Condom efficacy
    ca Condom compliance (per year)
    α The negative effects of contraceptive drugs
    β The negative effects of smoking
    α2,α3,α4,α5,α6,α7 Progression rate of infectious individuals from E to H, H to P, P to I1, I1 to I2, I2 to I3, I3 to A (per year)
    σ1,σ2,σ3,σ4,σ5,σ6 Recovery rates of infectious individuals from E to R, H to E, P to H, I1 to P, I2 to I1, I3 to I2 (per year)
    γ1,γ2,γ3,γ4,γ5,γ6,γ7 Effect of drugs on infectious individuals' recovery
    θ1,θ2,θ3,θ4,θ5 Modification parameter that accounts for the infectiousness of individuals in the H, P, I1, I2, I3 classes relative to those in the E class for females (males)

     | Show Table
    DownLoad: CSV
    Figure 1.  Flow diagram of model (2).

    Model (2) is epidemiologically and mathematically well-posed in the epidemiologically valid domain

    D={(V,S,E,H,P,I1,I2,I3,A,R)R10V0,S0,E0,H0,P0,I10,I20,I30,A0,R0}.

    Theorem 3.1 Assuming that the initial condition lies in domain D, then the solutions (V,S,E,H,P,I1,I2,I3,A,R) of model (2) remain in D for all time t0. Furthermore

    lim suptN(t)Λd, with N=V+S+E+H+P+I1+I2+I3+A+R.

    Proof. We note that along the edges of D, the time derivatives all lead the solution into the invariant domain [25]

    V=0V0(2a),S=0S0(2b),E=0E0(2c),H=0H0(2d),P=0P0(2e),I1=0I10(2f),I2=0I20(2g),I3=0I30(2h),A=0A0(2i),R=0R0(2j).

    Furthermore, adding all the equations in the differential equation system of model (2) gives

    dNdt=ΛdVdSdEdHdPdI1dI2dI3dAdRd1A. (3)

    It follows from Eq (3) that

    Λ(d+d1)NdNdtΛdN.

    Therefore

    Λd+d1lim inftN(t)lim suptN(t)Λd,

    and

    lim suptN(t)Λd,

    as required.

    Model (2) is analyzed in a biologically-feasible region as follows [26]. We first show that model (2) is dissipative (i.e., all feasible solutions are uniformly bounded in a proper subset ΩR10+). Consider the region

    Ω={(V,S,E,H,P,I1,I2,I3,A,R)R10:V+S+E+H+P+I1+I2+I3+A+RΛd}.

    The following steps establish the positive invariance of Ω (i.e., solutions in Ω remain in Ωt0). It follows from Eq (3) that

    dNdtΛdN.

    A standard comparison theorem can then be used to show that

    N(t)N(0)edt+Λd(1edt).

    In particular

    N(t)Λd if N(0)Λd.

    Thus, the region Ω is positively invariant. Hence, it is sufficient to consider the dynamics of the flow generated by model (2) in Ω. In this region, the model can be considered as being epidemiologically and mathematically well-posed [27]. Thus, every solution of model (2) with initial conditions in Ω remains in Ω for all t>0. Therefore, the ω-limit sets of model (2) are contained in Ω. This result is summarized below.

    Lemma 3.1 The region Ω is positively invariant for model (2) with initial conditions in R10+.

    Model (2) has a DFE, which is obtained by setting the right-hand sides of the equations in the model to zero, given by

    ε0=(V0,S0,E0,H0,P0,I01,I02,I03,A0,R0)=(Λ(δ2+δ4)a1a2δ1(δ2+δ4),Λa1a1a2δ1(δ2+δ4),0,0,0,0,0,0,0,0). (4)

    Let X=(V,S,E,H,P,I1,I2,I3,A,R)T. Using the notation from [28], the model consists of nonnegative initial conditions together with the following system of equations:

    dXdt=Φ(X)Γ(X),

    where

    Φ(X)=(α1S000000000),Γ(X)={δ3α1Rσ2H+(α2+cpcqγ1σ1+d)Eα2Eσ3P+(σ2+γ2σ2+α3+d)Hα3Hσ4I1+(α4+γ3σ3+σ3+d)Pα4Pσ5I2+(α5+γ4σ4+σ4+d)I1α5I1σ6I3+(σ5+γ5σ5+α6+d)I2α6I2+(σ6+γ6σ6+α7+d)I3α7I3+(γ7+d+d1)AΛδ1V+(δ2+δ4+α1+d)Scpcqγ1σ1Eγ2σ2Hγ3σ3Pγ4σ4I1γ5σ5I2γ6σ6I3γ7A+(δ3α1+d)Rδ2Sδ4S+(d+δ1)V},

    and it follows that

    DΦ(X)=(F000),DΓ(X)=(VΔ0J3J4).

    The matrices F and VΔ for the new infection terms and the remaining transfer terms are respectively given by

    F=a10[1θ1θ2θ5θ4θ3000000000000000000000000000000],VΔ=[a3σ20000α2a4σ30000α3a500σ4000a8α60000σ6a7α500α40σ5a6],
    J3=[000α700cpcqγ1σ1γ2σ2γ3σ3γ6σ6γ5σ5γ4σ4a10a10θ1a10θ2a10θ5a10θ4a10θ3000000],J4=[a9000γ7d0000a2δ100δ2δ4a1],

    where

    a1=d+δ1,a2=δ2+δ4+d,a3=α2+cpcqγ1σ1+d,a4=σ2+γ2σ2+α3+d,a5=α4+γ3σ3+σ3+d,a6=α5+γ4σ4+σ4+d,a7=σ5+γ5σ5+α6+d,a8=σ6+γ6σ6+α7+d,a9=γ7+d+d1,a10=Ma1a1+δ2+δ3,M=βαcnck(1ccca).

    We obtain

    R0=ρ(FV1Δ)=a1MM1(a3D6σ2D5)(a1+δ2+δ4), (5)

    where

    M1=D6+θ1D5+θ2D4+θ3D3+θ4D2+θ5,D1=α7a9,D2=a8α6,D3=a7D2σ6α5>0,D4=a6D3σ5D2α4>0,D5=a5D4σ4D3α3>0,D6=a4D5σ3D4α2>0.

    Consequently, it follows from Theorem 2 of [28].

    Lemma 3.2 The DFE of model (2), given by (4), is locally asymptotically stable (LAS) when R0 < 1 and unstable if R0 > 1.

    The epidemiological significance of forward bifurcation is that the disease will eventually disappear if the basic reproduction number is less than one. The public health significance of backward bifurcation is that the classical requirement of R0 < 1 although necessary is no longer sufficient for effective disease control. Therefore, the presence of backward bifurcation in HPV transmission dynamics makes its effective control more difficult.

    First, the possible equilibrium solutions that model (2) can have are determined as follows. Let

    ε1=(V,S,E,H,P,I1,I2,I3,A,R),

    be any arbitrary equilibrium of model (2). Further, let

    α1=βαcnck(1ccca)(E+θ1H+θ2P+θ3I1+θ4I2+θ5I3)N, (6)

    be the associated force of infection at a steady state.

    Setting the right-hand sides of model (2) to zero (steady state) gives

    A=D1I3,I2=D2I3,I1=D3I3,P=D4I3,H=D5I3,E=D6I3,R=D7d+δ3α1I3,S=(a3D6α1σ3D7d+δ3α1σ2D5α1)I3,V=δ2+δ4a1(a3D6α1σ3D7d+δ3α1σ2D5α1)I3, (7)

    where

    D7=cpcqγ1σ1D6+γ2σ2D5+γ3σ3D4+γ4σ4D3+γ5σ5D2+γ6σ6+γ7D1.

    Substituting (7) into the expressions for α1 in (6) gives

    α1=M(D6+θ1D5+θ2D4+θ3D3+θ4D2+θ5)I3(a3D6α1σ3D7d+δ3α1σ2D5α1)(1+δ2+δ4a1)I3+D8I3+D7d+δ3α1I3, (8)

    so

    aα21+bα1+c=0, (9)

    where

    a=D8δ3a1,b=δ3(1R0)(a3D6σ2D5)(a1+δ2+δ4)+D7a1+D8a1dD7δ3(a1+δ2+δ4),c=d(1R0)(a3D6σ2D5)(a1+δ2+δ4),

    and

    D8=D6+D5+D4+D3+D2+D1+1.

    Quadratic Eq (9) can be analyzed for the possibility of multiple endemic equilibria. It is worth noting that the coefficient a is always positive, and c is positive (negative) if R0 is less than (greater than) one. Hence, the following result is established.

    Theorem 3.2 Model (2) (details in Appendix A (Table A1)) has the following.

    ⅰ. A unique endemic equilibrium if c<0R0>1;

    ⅱ. A unique endemic equilibrium if b<0, and c=0 or b24ac=0;

    ⅲ. Two endemic equilibria if c>0,b<0 and b24ac>0;

    ⅳ. No endemic equilibrium otherwise.

    Case (ⅲ) of Theorem 3.2 indicates the possibility of backward bifurcation in model (2) when R0<1. To check for this, by setting

    R1=1b2d(a3D6σ2D5)(a1+δ2+δ4),

    it can be shown that backward bifurcation occurs for values of R1<R0<1. This phenomenon is illustrated by simulating model (2). The parameter values are presented in Table 3. Let M[0.35,0.5]. It should be mentioned that the aforementioned parameter values may not all be epidemiologically realistic.

    Table 3.  Parameter values used in Figure 2 (A: Assumed).
    Parameter Value Source Parameter Value Source Parameter Value Source
    Λ 288802 [22] α3 0.005 [11] γ1 1.5 A
    d 0.0162 [22] α4 0.1 [11] γ2 1.5 A
    d1 0.01 [11] α5 0.02 [11] γ3 1.2 A
    δ1 0.1 [11] α6 0.04 [11] γ4 1.1 A
    δ2 0.87 [22] α7 0.08 [11] γ5 1.05 A
    δ3 0.3 [22] σ1 0.99 [11] γ6 1.03 A
    δ4 0.27 A σ2 9e-4 [22] γ7 1.01 A
    cp 0.9 A σ3 0.5 [22] θ4 0.6 A
    cq 0.4 A σ4 1.9e-7 A θ5 0.5 A
    σ5 1.9e-7 A θ1 1 A θ2 0.8 [22]
    α2 0.5 [22] σ6 1.9e-7 A θ3 0.7 A

     | Show Table
    DownLoad: CSV
    Figure 2.  Backward bifurcation diagram of model (2).

    The associated backward bifurcation diagram, depicted in Figure 2, shows that the model has a DFE (corresponding to Figure 3) and two endemic equilibria: One of the endemic equilibria is LAS (corresponding to Figure 4a); the other is unstable (a saddle); and the disease-free equilibrium is LAS. This clearly shows the coexistence of two stable equilibria when R0<1, confirming that the model exhibits backward bifurcation for R1<R0<1. This result is summarized below for model (2) (a more rigorous proof of the backward bifurcation phenomenon of the model, using the center manifold theory is given in Appendix B).

    Figure 3.  Variation in population with R0=0.6659 and R1=0.9976.
    Figure 4.  Variation in population with (a) R0=0.9988, R1=0.8144; (b) R0=2.2196.

    Theorem 3.3 Model (2) exhibits backward bifurcation when Case (ⅲ) of Theorem 3.2 holds and R1<R0<1.

    Consider model (2) with perfect protection after recovery (that is, δ3=0). In such a case, the basic reproduction number is R0=R0|δ3=0. It follows from Eq (9) that if δ3=0, the coefficients a=0 and b>0, so quadratic Eq (9) reduces to a linear equation in α1 (with α1=c/b). In this case, model (2) has a unique endemic equilibrium if c<0 (i.e., R0>1), ruling out backward bifurcation in the model for this case (the presence of two endemic equilibria when R0<1 is necessary for the existence of backward bifurcation). Furthermore, it follows that c=0 when R0=1. Thus, in such a case (with a=c=0), quadratic Eq (9) has only the trivial solution α1=0 (which corresponds to the DFE ε0). This result is summarized below.

    Lemma 3.3 Consider the case where the protection after recovery is perfect (δ3=0). Model (2) has a unique endemic equilibrium whenever R0>1 and no endemic equilibrium otherwise.

    Theorem 3.4 In the first quadrant, there is no limit cycle in model (2).

    Proof We consider the Dulac function as B(S,E)=1SE. Let

    Q=E+θ1H+θ2P+θ3I1+θ4I2+θ5I3.

    Hence QE and NR. Therefore,

    MQNMQRN20,EME2NMQE2N0.

    Then,

    Θ=(BV)V+(BS)S+(BE)E+(BH)H+(BP)P+(BI1)I1+(BI2)I2+(BI3)I3+(BA)A+(BR)R=a1SEΛ+δ1VS2E+MQEN2+[EME2NMQEN2MQE2N]+δ3RS[EME2NMQEN2MQE2N]σ2HSE2a4SEa5SEa5SEa6SEa7SEa8SEa9SEdSEδ3SE(MQNMQRN2)<0.

    Therefore, by the Dulac−Bendixson theorem [29], there is no periodic orbit for model (2). Moreover, ε0 is the unique positive equilibrium point in R10+ if δ3=0, and it is also locally asymptotically stable for R0<1. Hence, every positive solution actually approaches ε0. Thus, ε0 is globally asymptotically stable if δ3=0 and R0<1.

    In this section, we performed a numerical simulation to enhance the understanding of model (2).

    To examine the possible impact of interventions on disease infections we plot the number of infected individuals (E) with various vaccination rates and revaccination rates.

    This analysis shows that an increasing vaccination rate persistently decreases the peak value, as shown in Figure 5. Increasing the vaccination rate δ2 by 1.75 times (increase from 0.4 to 0.7) or 1.43 times (increased from 0.7 to 1) will lead to a reduction in the peak value in the number of E by 20.21% or by 15.67%, respectively. In addition, the peak value of the number of people infected with δ2=1 decreased by 43.82% compared with the number of people infected with δ2=0.

    Figure 5.  Variation in population E with different parameters (a) δ2; (b) δ2+δ4.

    On the premise that the vaccine's protective effect will end after a few years, we consider the situation of vaccination and revaccination. Figure 5b indicates that increasing δ2 and δ4 from 0 to 0.4 will lead to a reduction in the peak value in the number of E by 34.16%. In addition, the peak value of the number of people infected with δ2=δ4=0.7 decreased by 100% compared with the number of people infected with δ2=δ4=0.

    To identify the factors associated with a certain intervention that markedly affect the rate of new infections, we performed sensitivity analysis of the basic reproduction number.

    LHS belongs to the MC class of sampling methods; it was introduced by Mckay et al. [30]. LHS allows an unbiased estimate of the average model output and has the advantage that it requires fewer samples than simple random sampling to achieve the same accuracy. For nonlinear but monotonic relationships between outputs and inputs, measures that work well are based on rank transforms such as the partial rank correlation coefficient, and standardized rank regression coefficient.

    Model (2) has 39 parameters. To identify the key factors, following [30], we performed a Latin hypercube sampling on the parameters that appear in R0 and calculated the PRCC. The parameters of the model were set as input variables, and R0 was the output variable. Generally, in PRCC analysis, the parameters with large PRCC values and corresponding small p values are deemed to be the most influential parameters in the model.

    Detailed inspection of Table C1 (Appendix C) and Figure 6 indicates that in terms of reducing the value of R0, except σ3 (control the disease and reduce the number of persistent infections) and d, the vaccination rate δ2 is the most sensitive parameter with a leading PRCC value, followed by γ2,γ3,σ2,δ4. This implies that enhancing the vaccination rate is the most effective intervention for lowering HPV new infections. Moreover, in the treatment of patients in stages H, P, I1, I2 and I3, the effect of treatments γ2,γ3,γ4,γ5 and γ6 on R0 decreases successively. That is, the same treatment intervention is more effective in the earlier stages. This means that more attention should be paid to patients in the early stages of infection. As asymptomatic patients are unable to diagnose themselves, regular screening for HPV should be strengthened. Smoking, overuse of contraceptive drugs, and unsafe sexual life will increase the value of R0, thus promoting the spread of HPV.

    Figure 6.  Significance test of model parameters and PRCC results for R0.

    In this section, an optimal control model for the transmission dynamics of HPV is formulated by extending model (2) to include control functions. Our goal here is to study the optimal control strategies to curtail the epidemic and minimize cost.

    The optimal vaccination and screening strategy can be formulated as the following optimal control problem (P) with inequality constraints and free terminal states defined over the prescribed interval [0,tf] [31]:

    minJ=tf0(C1E2+C2H2+C3P2+C4I21+C5I22+C6I23+B1u21+B2u22)dt,s.t.V=u1(t)S+δ4S(d+δ1)V,S=Λ+δ1V(u1(t)+δ4+α1+d)S,E=α1S+δ3α1R+σ2H(α2+cpu2(t)γ1σ1+d)E,H=α2E+σ3P(σ2+γ2σ2+α3+d)H,P=α3H+σ4I1(α4+γ3σ3+σ3+d)P,I1=α4P+σ5I2(α5+γ4σ4+σ4+d)I1,I2=α5I1+σ6I3(σ5+γ5σ5+α6+d)I2,I3=α6I2(σ6+γ6σ6+α7+d)I3,A=α7I3(γ7+d+d1)A,R=cpu2(t)γ1σ1E+γ2σ2H+γ3σ3P+γ4σ4I1+γ5σ5I2+γ6σ6I3+γ7A(δ3α1+d)R,V(0)=Vs,S(0)=Ss,E(0)=Es,H(0)=Hs,P(0)=Ps,I1(0)=I1s,I2(0)=I2s,I3(0)=I3s,A(0)=As,R(0)=Rs,0u1(t)u1max,0u2(t)u2max, (10)

    where tfR+ is the fixed terminal time, the coefficients C1,C2,C3,C4,C5,C6,B1 and B2 represent the corresponding weight constants, and these weights are balancing cost factors related to the size and importance of the parts of the objective function. The control function u1(t) is the fraction of the population of susceptible individuals who enters the vaccination compartment. The control function u2(t) is the fraction of the population of infectious individuals with no symptoms who undergo HPV screening, and they are Lebesgue integrable.

    The inequality constraints in problem (P) can be transformed into equality ones with the help of some non-negative parametric parameters, that is, ηi(i=1,2,3,4), as

    {u1+η1=0,u1u1max+η2=0,u2+η3=0,u2u2max+η4=0. (11)

    Hence, the Hamiltonian function for problem (P) is obtained as follows:

    HΔ=C1E2+C2H2+C3P2+C4I21+C5I22+C6I23+B1u21+B2u22+λV[u1S+δ4S(d+δ1)V]+λS[Λ+δ1V(u1+δ4+α1+d)S]+λE[α1S+δ3α1R+σ2H(α2+cpu2γ1σ1+d)E]+λH[α2E+σ3P(σ2+γ2σ2+α3+d)H]+λI1[α4P+σ5I2(α5+γ4σ4+σ4+d)I1]+λI2[α5I1+σ6I3(σ5+γ5σ5+α6+d)I2]+λI3[α6I2(σ6+γ6σ6+α7+d)I3]+λA[α7I3(γ7+d+d1)A]+λR[cpu2γ1σ1E+γ2σ2H+γ3σ3P+γ4σ4I1+γ5σ5I2+γ6σ6I3+γ7A(δ3α1+d)R]+μ1(u1+η1)+μ2(u1u1max+η2)+μ3(u2+η3)+μ4(u2u2max+η4), (12)

    where λ=[λV,λS,λE,λH,λP,λI1,λI2,λI3,λA,λR]T are adjoint variables, and μ=[μ1,μ2,μ3,μ4]T are non-negative penalty multipliers [32].

    Theorem 5.1 There exists an optimal control (u1(t),u2(t)) and corresponding solution V, S, E, H, P, I1,I2,I3,A, and R that minimize J(u1(t),u2(t)) over Ω. Furthermore, there exist adjoint functions λV,λS,λE,λH,λP,λI1,λI2,λI3,λA and λR, such that

    λV=λS(δ1+α1SN)+λEα1S+α1δ3RN+λVa1λRα1δ3RN,
    λS=λS(d+α1+δ4+u1α1SN)+λE(α1S+α1δ3RNα1)λRα1δ3RNλV(u1+δ4),
    λE=2C1EλHα2+λE(a3+α1S+δ3RMSMRδ3N)+λSS(Mα1)N
    λR(cpu2γ1σ1+α1δ3Rα1δ3N),
    λH=2C2HλPα3λE(σ2+MSθ1+MRδ3θ1α1δ3Rα1SN)+λHa4+λSS(Mθ1α1)N
    λR(γ2σ2+α1δ3RMRδ3θ1N),
    λP=2C3PλI1α4λHσ3+λPa5λE(σ2+MSθ2+MRδ3θ2α1δ3Rα1SN)
    +λSS(Mθ2α1)NλR(γ3σ3+α1δ3RMRδ3θ2N),
    λI1=2C4I1λI2α5λPσ4+λSS(Mθ3α1)NλEMSθ3+MRδ3θ3α1δ3Rα1SN
    +λI1a6λR(γ4σ4+α1δ3RMRδ3θ3N),
    λI2=2C5I2λI3α6λI1σ5+λI2a7λEMSθ4+MRδ3θ4α1δ3Rα1SN
    λR(γ5σ5+α1δ3RMRδ3θ4N)+λSS(Mθ4α1)N,
    λI3=2C6I3λAα7λI2σ6+λI3a8λEMSθ5+MRδ3θ5α1δ3Rα1SN
    λR(γ6σ6+α1δ3RMRδ3θ5N)+λSS(Mθ5α1)N,
    λA=λR(γ7+α1δ3RN)+λEα1δ3R+α1SN+λAa9λSSα1N,
    λR=λR(d+δ3α1α1δ3RN)λSSα1N+λE(α1δ3R+α1SNδ3α1), (13)

    with transversality conditions

    λV(tf)=λS(tf)=L=λA(tf)=λR(tf)=0. (14)

    The following characterization holds

    {u1(t)=max{0,min{S(λSλV)2B1,u1max}},u2(t)=max{0,min{Ecpγ1σ1(λEλR)2B2,u2max}}. (15)

    Proof. The existence of an optimal control can be obtained owing to the convexity of the integrand of J(u1(t),u2(t)) with respect to (u1(t),u2(t)) [33], a priori boundedness of the state solutions, and the Lipschitz property of the state system with respect to the state variables.

    By Pontryagin's maximum principle [34], the optimal conditions with respect to the state, costate, and parametric variables result in a two-point boundary value problem coupled with a nonlinear complementarity problem as follows:

    λV=HΔV,λS=HΔS,L,λA=HΔA,λR=HΔR, (16)

    and

    λV(tf)=λS(tf)=L=λA(tf)=λR(tf)=0,

    evaluated at the optimal control and corresponding states results in the stated adjoint system (13) with transversality (14).

    The optimality conditions with respect to the control variables are

    HΔu1=0,HΔu2=0. (17)

    By solving Eq (17), the optimal control can be expressed as

    u1(t)=S(λSλV)+μ1μ22B1.

    To determine an explicit expression of the optimal control without μ1, we consider the following three cases:

    ⅰ. On the set {t0<u1<u1max}, we have μ1=μ2=0. Hence, u1(t)=S(λSλV)2B1.

    ⅱ. On the set {tu1=u1max}, we have μ2=0. Hence, u1(t)=u1max=S(λSλV)+μ12B1. As μ10, it is determined that u1maxS(λSλV)2B1.

    ⅲ. On the set {tu1=0}, we have μ1=0. Hence, u1(t)=0=S(λSλV)μ22B1. As μ20, it is determined that S(λSλV)2B10.

    Combining the above three cases, the optimal control u1 is characterized as

    u1(t)=max{0,min{S(λSλV)2B1,u1max}}. (18)

    Using similar arguments, we can characterize the optimal control u2 as

    u2(t)=max{0,min{Ecpγ1σ1(λEλR)2B2,u2max}}. (19)

    An analytical expression of the optimal vaccination rate and screening rate was derived in Eq (15). However, an effective algorithm is still required to solve the nonlinear constrained optimal control problem numerically. Based on the generating function method, Peng et al. developed a series of symplectic methods for nonlinear optimal control problems [35,36,37,38]. Such symplectic methods have good precision and efficiency because of the structure-preserved property. Recently, Wang et al. improved the symplectic methods by incorporating the local pseudospectral discretization scheme [39,40,41,42]. Such symplectic pseudospectral methods (SPMs) have been successfully applied to solve optimal control problems in various mechanical systems [43,44]. In this paper, the SPM developed in [45] was adopted.

    In the following simulation, the weights in the objective function (meaning the minimization of the number of patients at each stage has different importance) are C1=4.5e2,C2=1e7,C3=1e4,C4=1e5,C5=2e4, and C6=1e4. Let M=1. The initial values for the states and other parameters are listed in Table 4. Unless otherwise stated, the parameters used in each case were as listed in Table 3.

    Table 4.  Parameter values used in Figure 7.
    Parameter Value Parameter Value
    Vs 3.2607e6 I2s 4.15e4
    Ss 3.2212e5 I3s 1.68e4
    Es 4.2204e4 As 1.29e3
    Hs 1.1162e7 Rs 6.3e3
    Ps 4e4 tf 50
    I1s 1.15e5 u1max 1
    u2max 2

     | Show Table
    DownLoad: CSV
    Figure 7.  Simulations of model (2). Dashed lines: Populations with optimal control. Solid lines: Populations without control. Parameter values are B1=8.3e8 and B2=4e8.

    The controlled solutions together with the solutions for the uncontrolled case are presented in Figure 7. It can be seen that the control strategy is effective. Vaccinated individuals increase steadily and reach almost 400% at the terminal end. Susceptible individuals keep increasing and then stabilize during the whole period. The number of infected individuals decreases significantly when optimal control strategies are used compared to the number in the absence of control strategies.

    We considered another set of weights, the simulation results are shown in Figure 8. A higher focus on the control strategies leads to a drop in the importance of the vaccination and screening strategies. As the number of asymptomatic individuals depends on the immunity of the susceptible individuals and the protection of the susceptible population, we should consider strengthening their immunity or implement regular cost-effective screening to control HPV transmission.

    Figure 8.  The different strategies of u1(t) and u2(t) are plotted for B1=4e9 and B2=3e9. Other parameter values are the same as those in Figure 7.

    The human papillomavirus is among the most common sexually transmitted infections. Following infection, cervical carcinogenesis is a complex stepwise process characterized by slow progression. According to the known pathology, we represented the CIN stages with three corresponding components in the model. Our model accounted for the fact that preventive vaccines become ineffective over time. We derived three types of equilibria and their conditions of existence, analyzed the stability of the equilibria, and characterized the threshold condition as backward bifurcation for the stable fixed points. We also obtained the conditions for the elimination of the disease. We found that the possibility of HPV transmission to lead to endemic disease can be reduced by strengthening the protection after cure. We then simulated and compared practical mitigation strategies and performed sensitivity analysis to illustrate the key factors for the threshold condition. The results show that increasing the vaccination rate is the most effective way to reduce the basic reproduction number. The effect of optimal control was illustrated numerically, and a comparison of HPV infection was presented under different control strategies.

    This work was supported by the Fundamental Research Funds for the Central Universities (31920200037; 31920200070), the Research Fund for Humanities and Social Sciences of the Ministry of Education(20XJAZH006), the Program for Young Talent of State Ethnic Affairs Commission of China (No. [2014]121), the Innovation Team of Intelligent Computing and Dynamical System Analysis and Application.

    The authors declare that no conflict of interest.

    Table A1.  A detailed explanation of Theorem 3.2.
    a c b Results
    a>0 c>0 b>0 Two negative points
    b=0 No equilibrium points
    b<0 Two endemic equilibria if b24ac>0
    c=0 b>0 A negative point and a DFE
    b=0 Two DFE
    b<0 A DFE and an EEP (or b24ac=0)
    c<0 b>0 A negative point and an EEP
    b=0 A negative point and an EEP
    b<0 A negative point and an EEP

     | Show Table
    DownLoad: CSV

    Here, we explore the existence of backward bifurcation using the center manifold theory [46,47]. To apply this theory, it is necessary to carry out the following change of variables.

     Let E=x1,H=x2,P=x3,I3=x4,I2=x5,I1=x6,A=x7,R=x8,S=x9,

    V=x10, so that

    N=10i=1xi.

    Further, using the vector notation

    X1=(x1,x2,x3,x4,x5,x6,x7,x8,x9,x10)T.

    Model (2) can be rewritten in the form

    dX1dt=F=(f1,f2,f3,f4,f5,f6,f7,f8,f9,f10)T,

    as follows:

    {dx1dt=α1(t)x9(t)+δ3α1(t)x7(t)+σ2x3(t)(α2+cpcqγ1σ1+d)x1(t),dx2dt=α2x1(t)+σ3x3(t)(σ2+γ2σ2+α3+d)x2(t),dx3dt=α3x2(t)+σ4x6(t)(α4+γ3σ3+σ3+d)x3(t),dx4dt=α6x5(t)(σ6+γ6σ6+α7+d)x4(t),dx5dt=α5x6+σ6x4(t)(σ5+γ5σ5+α6+d)x5(t),dx6dt=α4x3(t)+σ5x5(t)(α5+γ4σ4+σ4+d)x6(t),dx7dt=α7x4(t)(γ7+d+d1)x7(t),dx8dt=cpcqγ1σ1x1(t)+γ2σ2x2(t)+γ3σ3x3(t)+γ4σ4x5(t)+γ5σ5x5(t)+γ6σ6x4(t)+γ7x7(t)(δ3α1(t)+d)x8(t),dx9dt=Λ+δ1x10(t)(δ2+δ4+α1(t)+d)x9(t),dx10dt=δ2x9(t)+δ4x9(t)(d+δ1)x10(t), (B.1)

    with

    α1(t)=βαcnck(1ccca)(x1+θ1x2+θ2x3+θ3x6+θ4x5+θ5x4)N.

    Consider the case when R0=1. Suppose, further, that δ2 is chosen as a bifurcation parameter.

    Solving for δ2=δ2 from R0 gives

    δ2=a1MM1(a3D6σ2D5)a1δ4.

    The Jacobian of model (B.1) evaluated at the DFE is given as

    J(ε0)=[J11J12J21J22],

    where

    J11=[a10a3a10θ1+σ2a10θ2a10θ5a10θ4a10θ3α2a4σ30000α3a500σ4000a8α60000σ6a7α500α40σ5a6],J12=[0]6×4,
    J21=[000α700cpcqγ1σ1γ2σ2γ3σ3γ6σ6γ5σ5γ4σ4a100a10θ1a10θ4a10θ3a10θ2000000],
    J22=[a9000γ7d0000a2δ100δ2+δ4a1].

    It is easy to verify that the transformed model (B.1), with δ2=δ2, has a hyperbolic equilibrium point (i.e., the linearized system has a simple eigenvalue with zero real part, and all other eigenvalues have negative real parts). Hence, the center manifold theory can be used to analyse the dynamics of model (B.1) near δ2=δ2.

    It can be shown that the Jacobian of model (B.1) at δ2=δ2 has a right eigenvector (associated with the zero eigenvalue) given by w=(w1,w2,w3,w4,w5,w6,w7,w8,w9,w10)T, where

    w1=a4D5σ3D4α2w4=D6w4>0,w2=a5D4σ4D3α3w4=D5w4>0,
    w3=a6D3σ5D2α4w4=D4w4>0,w4=w4>0,w5=a8α6w4=D2w4>0,
    w6=a7D2σ6α5w4=D3w4>0,w7=α7a9w4=D1w4>0,
    w8=cpcqγ1σ1D6+γ2σ2D5+γ3σ3D4+γ6σ6+γ5σ5D2+γ4σ4D3+γ7D1dw4>0,
    w9=a1δ2+δ4w10=G1G2w4=G3w4,w10=σ2D5a3D6a2G1δ1w4=G2w4.

    The components of the left eigenvector of Jε0|δ2=δ2,v=(v1,v2,v3,v4,v5,v6,v7,v8,v9,v10), satisfying vw=1 are

    v1>0,v2=a3α2v1,v3=a3a4α2σ2α2α3v1>0,v4=σ6a8v5,
    v5=a3a4a5a6a5a6σ2α2a3a6σ3α3a3a4σ4α4+σ4α4σ2α2α2α3α4α5>0,
    v6=a3a4a5a5σ2α2a3σ3α3α2α3α4>0,v7=v8=0,v9=v1,v10=δ1a1v1.

    It follows from [26]:

    a=10k,i,j=1vkωiωj2fkxixj(0,0),b=10k,i=1vkωi2fkxiδ2(0,0),

    are computed to be

    a=10k,i,j=1vkwiwj2fkxixj(0,0)=2v1w8Mδ3S0+V0(w1+θ1w2+θ2w3+θ5w4+θ3w6)>0, (B.2)
    b=10k,i=1vkwi2fkxiδ2(0,0)=v9w92f9x9δ2(0,0)+v10w92f10x9δ2(0,0)=v1σ2D5a3D6a2G1δ1×a1δ2+δ4w4+δ1a1v1σ2D5a3D6a2G1δ1×a1δ2+δ4w4=(δ1a11)v1σ2D5a3D6a2(a1δ2+δ4)δ1×a1δ2+δ4w4>0. (B.3)

    Thus, we have made the following conclusions

    Theorem A.1 Model (B.1) (or, equivalently, model (2)) undergoes a backward bifurcation at R0=1 if all parameters are positive.

    Table C1.  PRCC values of R0 with corresponding values of p (significant for p ≤ 0.01).
    Parameter PRCC p values
    θ1 0.1079 1.3332e-06
    θ2 0.0619 0.0056
    θ3 0.0375 0.0939
    θ4 0.0363 0.1050
    θ5 0.0130 0.5625
    δ1 0.2219 1.0079e-23
    δ2 −0.0972 1.3420e-05
    δ3 0.0139 0.5334
    δ4 −0.0503 0.0246
    σ1 −0.0474 0.0342
    σ2 −0.0907 4.8958e-05
    σ3 −0.1749 3.3636e-15
    σ4 −0.0631 0.0047
    σ5 −0.0038 0.8662
    σ6 0.0162 0.4703
    γ1 −0.0491 0.0280
    γ2 −0.1101 7.9369e-07
    γ3 −0.1100 8.1799e-07
    γ4 −0.0857 0.0001
    γ5 −0.0117 0.6015
    γ6 −0.0179 0.4227
    γ7 −0.0254 0.2562
    α2 0.1070 1.6317e-06
    α3 0.0391 0.0806
    α4 0.0389 0.0823
    α5 0.0347 0.1209
    α6 −0.0100 0.6578
    α7 −0.0331 0.1389
    Λ 0.0106 0.6363
    d1 0.0018 0.9352
    d −0.2728 1.7789e-35
    cp −0.1683 3.5473e-14
    cq −0.1044 2.9039e-06
    cc −0.0685 0.0022
    ca −0.0648 0.0037
    cn 0.3778 7.0664e-69
    ck 0.2383 3.1497e-27
    α 0.2481 1.9591e-29
    β 0.6344 1.0688e-225

     | Show Table
    DownLoad: CSV
    [1] Kelly F, Fuller G, Walton H, et al. (2012) Monitoring air pollution: Use of early warning systems for public health. Respirology 17: 7–19.1. NU (2009) HOME (Cine documental dirigido por Yann Arthus-Bertrand y producido por Luc Besson y la participación de Naciones Unidas, Nueva York). 
    [2] Boubel R, Fox D, Turner D, et al. (1994) The Fundamentals of Air Pollution, Third Edition. San Diego, Academic Press, 1–574. 
    [3] Mage D, Ozolins G, Peterson P, et al. (1996) Urban air pollution in megacities of the world. Atmos Environ 30: 681–686. 
    [4] Hoffman DJ, Rattner BA, Allen Burton Jr, G et al. (2002) Introduction, In: Hoffman DJ, Rattner BA, Allen Burton Jr, G, Cairus Jr, J, Eds., Handbook of Ecotoxicology, Second Edition, Boca Raton: Lewis Publishers, 1–15. 
    [5] Fenger J (2009) Air pollution in the last 50 years-from local to global. Atmos Environ 43:13–22. 
    [6] Hughes D (2009) An Environmental History of the World-Humankind's changing role in the community of life, Second Edition. Routledge 1–306. 
    [7] Moldoveanu AM (2011) Advanced Topics in Environmental Health and Air Pollution Case Studies. Croatia InTech 1–470. 
    [8] Rückerl R, Schneidr A, Breitner S, et al. (2011) Health effects of particulate air pollution: A review of epidemiological evidence. Inhalation Toxicol 23: 555–592. 
    [9] WMO (2012) Impacts of Megacities on air pollution and climate. Global Atmosphere Watch, Technical Report No. 205, CH-1211, Geneva, Switzerland. 
    [10] Mainka A, Kozielska B (2016) Assessment of the BTEX concentrations and health risk in urban nursery schools in Gliwice, Poland. AIMS Environ Sci 3: 199–219. 
    [11] Lebel J (2005) Salud. Un enfoque ecosistémico, Centro Internacional de Investigaciones para el Desarrollo. Ottawa, Eds., Alfaomega, 1–49. 
    [12] Andrade MI, Scarpati OE (2007) Recent changes in flood risk in the Gran La Plata, Buenos Aires province, Argentina: Causes and management strategy. Geojournal 70: 245–250. 
    [13] Soria J, Fernández M, Más allá del cambio climático: Las dimensiones psicosociales del cambio ambiental global, 2006. Primera edición. Instituto Nacional de Ecología (INE-Semarnat), Universidad Nacional Autónoma de México (UNAM), Facultad de Psicología. Available from: http//:www.ine.gob.mx. 
    [14] Cafaro P (2001) Thoreau, Leopold, and Carson: Toward an environmental virtue ethics. Environ Ethics 23: 3–17. 
    [15] PNUMA (2001) Justicia Ambiental: Construcción y defensa de los nuevos derechos ambientales culturales y colectivos en América Latina. Coord. E. Leff, Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y Universidad Nacional Autónoma de México, Centro de Investigaciones Interdisciplinarias en Ciencias y Humanidades, México D.F., 1–275. 
    [16] Minteer BA (2009) Nature in Common? Environmental Ethics and the Contested Foundations of Environmental Policy. Philadelphia: Temple University Press, 1–301. 
    [17] Gardiner S (2011) A Perfect Moral Storm: The Ethical Tragedy of Climate Change. Univ Oxford 1–408. 
    [18] Prieto Méndez JM (2013) Derechos de la Naturaleza, Fundamento, contenido y exigibilidad jurisdiccional. Centro de Estudios y Difusión del Derecho Constitucional-Corte Constitucional del Ecuador, Quito. 
    [19] Tosun J (2013) Environmental Policy Change in Emerging Market Democracies, Central and Eastern Europe and Latin America Compared. Toronto: University of Toronto Press, 1–253. 
    [20] Muller C, Chapman L, Grimmond C, et al. (2013) Sensors and the city: A review of urban meteorological networks. Int J Climatol 33: 1585–1600. 
    [21] Ramsey NR, Klein PM, Iii BM (2014) The impact of meteorological parameters on urban air quality. Atmos Environ 86: 58–67. 
    [22] Cochrane A, (2008) Cities: Urban Worlds, In: Daniels P., Bradshaw M., Shaw D., Sidaway J., Eds., An Introduction To Human Geography-Issues For The 21st Century, Third Edition, London: Pearson Education Limited, Prentice-Hall, 205–217. 
    [23] Koonings K, Kruijt D, (2009) The rise of megacities and the urbanization of informality, exclusion and violence, In: Koonings, Kruijt, Eds., Megacities: The politics of urban exclusion and violence in the global South, London: Zed Books, 8–16. 
    [24] Fernández MA (1996) Ciudades en riesgo, degradaciòn ambiental, riesgos urbanos y desastres. Red de Estudios Sociales en Prevención de Desastres en América Latina, Ed. La Red, 1–30. Available from: http://www.desenredando.org. 
    [25] PNUMA. Proyecto Geo Ciudades, PNUMA, 2012. Available from: http://www.pnuma.org. 
    [26] BID-AIDIS-OPS (2010) Informe de la evaluación regional del manejo de residuos sólidos urbanos en Amperica Latina y el Caribe 2010. Banco Interamericano de Desarrollo, Asociación Interamericana de Ingeniería Sanitaria y Ambiental, Organización Panamericana de la Salud. Available from: https://publications.iadb.org. 
    [27] UNEP­WHO (1992) Urban Air Pollution in Megacities of the World. United Nations Environmental Programme-World Health Organization, Blackwell, Oxford. 
    [28] Smook RAF, (1998) Chapter 62 European sustainable cities: The chanllenge of citylife: Being exposed to an air polluted urban environment, In: Schneider T, Ed., Air Pollution in the 21st Century: Priority Issues and Policy, Amsterdam, Elsevier, 1043–1056. 
    [29] Bicknell J, Dodman D, Satterthwaite D (2009) Adapting cities to climate change-understanding and Addressing the Development challenges. London, Ed. Earthscan, 1–397. 
    [30] Romero-Lankao P, Qin H, Borbor-Cordova M (2013) Exploration of health risks related to air pollution and temperature in three Latin American cities. Soc Sci Med 83: 110–118. 
    [31] Jabareen J (2015) The risk city: Cities countering climate change: Emerging planning theories and practices around the world. Springer Neth 1–204. 
    [32] Fenger J (1999) Urban air quality. Atmos Environ 33: 4877–4900. 
    [33] OECD (2010) Cities and Climate Change. OECD Publishing, Available from: http://dx.doi.org/10.1787/9789264091375-en. 
    [34] WB, (2011) Introduction: Cities and the Urgent Challenges of Climate Change, In: Hoornweg D., Freire M., Lee M., Bhada-Tata P., Yuen B., Eds., Cities and climate change-Responding to an urgent agenda, Washington: The World Bank, 1–14. 
    [35] UNEP (2014) La Asamblea histórica de la ONU para el Medio Ambiente reclama una acción más fuerte para mejorar la calidad del aire, responsable de 7 millones de muertes al año, junto a otras 16 resoluciones, Nairobi, June 2014. Available from: http://www.unep.org/Documents.Multilingual/Default.Print.asp? DocumentID =2791&ArticleID=10931&l=es. 
    [36] Riojas Rodríguez H, Soares da Silva A, Texcalac-Sangrador JL, et al. (2016) Air pollution management and control in Latin America and the Caribbean: Implications for climate change. Pan Am J Public Health 40: 150–159. 
    [37] Erikson LE, Jennings M (2017) Energy, Transportation, Air Quality, Climate Change, Health Nexus: Sustainable Energy is Good for Our Health. AIMS Public Health 4: 47–61. 
    [38] Khare A, Beckman T (2013) Mitigating Climate Change-the Emerging Face of Modern Cities, Heidelberg, Springer, 1–281. 
    [39] Thornbush MJ (2015) Vehicular Air Pollution and Urban Sustainability An Assessment from Central Oxford, UK. Heidelberg, Springer Cham, 1–71. 
    [40] De Flander K, (2013) Resource-Centered Cities and the Opportunity of Shrinkage, In: Khare A., Beckman T., Eds., Mitigating Climate Change-the Emerging Face of Modern Cities, Heidelberg, Springer, 45–58. 
    [41] Wais de Badgen IR (1998) Ecología de la Contaminación Ambiental, 1ra Edición, Buenos Aires, Ediciones Universo, 1–208. 
    [42] Korc ME, Sáenz R (1999) Monitoreo de la calidad del aire en América Latina. Korc Marcelo E 1–22. 
    [43] Petcheneshsky T, Gravarotto MC, Benitez R, et al. (2002) La Evaluación de la Calidad del Aire en la República Argentina. Departamento de Salud Ambiental del Ministerio de Salud y Acción Social de La Nación, Buenos Aires, AIDIS, 1–13. 
    [44] PNUMA (2004) Geo Argentina. Perspectivas del Medio Ambiente de la Argentina. Programa de las Naciones Unidas para el Medio Ambiente (PNUMA) y Secretaría de Ambiente y Desarrollo Sustentable de la República Argentina (SAyDS), 1–303. 
    [45] Mazzeo NA, Venegas LE, Choren H (2005) Analysis of NO, NO2, O3 and NOx concentrations measured at a green area of Buenos Aires City during wintertime. Atmos Environ 39: 3055–3068. 
    [46] Arkouli M, Ulke AG, Endlicher W, et al. (2010) Distribution and temporal behavior of particulate matter over the urban area of Buenos Aires. Atmos Pollut Res 1: 1–8. 
    [47] Fujiwara FG, Gomez D, Faggi A (2013) Perfiles químicos y patrones espaciales del polvo de la calle colectado en la megaciudad de Buenos Aires. Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 385–392. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [48] Olcese LE, Toselli BM (2002) Some aspects of air pollution in Córdoba, Argentina. Atmos Environ 36: 299–306. 
    [49] Diez S, Fonseca JM, Piccioni M, et al. (2013) Dispersión de PM10 generado por el tráfico vehicular en la ciudad universitaria, Córdoba capital. Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 469–482. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [50] Achad M (2015) Aerosoles: Efectos sobre la Radiación UV-B y sobre la Calidad de Aire en la Región Central de Argentina. Tesis Doctoral, Universidad Nacional de Córdoba, Córdoba, Argentina. 
    [51] Puliafito E, Guevar M, Puliafito C (2003) Characterization of urban air quality using GIS as a management system. Environ Pollut 122: 105–117. 
    [52] Allende D, Romero G, Cremades P, et al. (2013) Caracterización horaria y diaria de la concentración del número total de partículas en ambientes urbanos y suburbanos en Mendoza, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 393–409. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [53] Allende D, Flores P, Ruggeri R, et al. (2015) Medición y caracterización de las fuentes de PM10, PM2.5 y PM1 en las áreas urbanas y suburbanas del Gran Mendoza y Gran San Juan, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 157–172. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [54] Caminos JA, Enrique C, Ghirardi R, et al. (2011) Calidad de Aire en la Ciudad de Santa Fe. Facultad Regional Santa Fe, Universidad Tecnológica Nacional, Editorial UTN, 1–42. 
    [55] PNUMA (2007) Perspectivas del Medio Ambiente Urbano: Geo San Miguel de Tucumán, Programa de las Naciones Unidas para el Medio Ambiente (PNUMA), Facultad de arquitectura y urbanismo de la Universidad Nacional de Tucumán, Municipalidad de San Miguel de Tucumán, 1–249. Available from: http://www.pnuma.org/. 
    [56] Puliafito E, Rey Saravia F, Pereyra M, et al. (2007) Calidad del aire en el polo petroquímico de Bahía Blanca, Libro de Actas PROIMCA (publicado en 2009), Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 113–121. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [57] Arranz G, Pereyra M, Cifuentes O (2015) Herramienta de gestión: Monitoreo perimetral en tiempo real de emisiones industriales de VCM (Caso Polo Petroquímico de Bahía Blanca), Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 173–188. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [58] Puliafito E (2009) Gestión de la calidad del aire en la Argentina, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 67–82. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [59] Bell M, Davis DL, Gouveia N, et al. (2006) The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environ Res 100: 431–440. 
    [60] Garcia-Huidobro T, Marshall FM, Bell JNB (2001) A risk assessment of potential agricultural losses due to ambient SO2 in the central regions of Chile, Atmos Environ 35: 4903–4915. 
    [61] Mölders N (2012) Land Use and Land Cover Changes-Impact on Climate and Air Quality. New York Springer, 1–189. 
    [62] Miranda JJ (2006) Impacto Económico en la Salud por Contaminación del Aire en Lima Metropolitana, Programa de Investigaciones ACDI, IDRC (International Development Research Centre), Consorcio de Investigación Económica y Social (CIES), Instituto de Estudios Peruanos, 1–38. Available from: http://redpeia.minam.gob.pe. 
    [63] Sánchez Triana E, Kulsum A, Yewande A (2007) Prioridades ambientales para la reducción de la pobreza en Colombia. Un análisis ambiental del país para Colombia. Banco Internacional de Reconstrucción y Fomento/Banco Mundial, Washington. Bogotá, Banco Mundial y Mayol Ediciones S.A., 1–501. 
    [64] OECD (2014) The Cost of Air Pollution: Health Impacts of Road Transport. OECD Publishing, 1–80. Available from: http://dx.doi.org/10.1787/9789264210448-en. 
    [65]   Lovett GM, Burns DA, Driscoll CT, et al. (2007) Who needs environmental monitoring? Front Ecol Environ 5: 253–260. 
    [66] GPBA-UNLP (1982) La Plata, una obra de arte 1882–1982, GPBA (Gobierno de la Provincia de Buenos Aires)-UNLP (Universidad Nacional de La Plata), 1–437. Disponible en: Biblioteca Pública-Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [67] Cowen MP (2010) Viejos problemas en ciudades nuevas: La Plata: Agua potable y problemas sanitarios en la época fundacional. Res Gesta 2010: 69–96. 
    [68] Ravella O, Giacobbe N (2003) Sustentabilidad, movilidad y transporte: El caso del Gran La Plata. Av Energías Renov y Medio Ambiente 7: 19–24. 
    [69] LINTA-IIT (2016) Patrimonio cultural y turismo en La Plata, Berisso y Ensenada. Provincia de Buenos Aires, Argentina. Ed. LINTA (Laboratorio de Investigaciones del Territorio y el Ambiente) y IIT (Instituto de Investigaciones en Turismo), 1–110. Available from: http://sedici.unlp.edu.ar/handle/10915/55598. 
    [70] Lerange C, Pardo D, Diyelsi M, et al. (1982) La Plata ciudad milagro. Buenos Aires, Ed. Corregidor, 1–683. 
    [71] Romero LA (2012) Breve historia contemporánea de la Argentina, 3ra Ed., Buenos Aires, Fondo de Cultura Económica, 1–431. 
    [72] Lopez I, Etulain J (1992) Emergentes de los planes urbanos y nuevas estrategias. Estudio del casco del partido de La Plata. En: La Plata, de la ciudad antigua a la ciudad nueva. Sueños y Realidades. LINTA (Laboratorio de Investigaciones del Territorio y el Ambiente)-UNLP (Universidad Nacional de La Plata), La Plata, 67–72. Disponible en Biblioteca Pública-Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [73] Katz RS (2007) Ciudad de La Plata y su historia. Buenos Aires, Edición de Autor, 1–524. Disponible en: Biblioteca Pública- Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [74] Oszlak O (1991) Mereced la ciudad. Los pobres y el derecho al espacio urbano. Buenos Aires, Ed. CEDES- Hvumanitas, 1–315. 
    [75] Frediani J (2010) Lógicas y tendencias de la expansión residencial en áreas periurbanas-El partido de La Plata, Buenos Aires, Argentina, entre 1990 y 2010, Tesis de Doctorado, Argentina, Facultad de Humanidades y Ciencias de la Educación-Universidad Nacional de La Plata, 1–458. Available from: http://sedici.unlp.edu.ar/. 
    [76] VA (2017) Mapas de Villas de la Argentina. Obtenido en Febrero de 2017 de. Available from: http://relevamiento.techo.org.ar. 
    [77] Hurtado M, Cabral M, Gimenez J, et al. (1992) Cavas, Degradación ambiental producto de la actividad extractiva, In: La Plata, de la ciudad antigua a la ciudad nueva. Sueños y Realidades, LINTA (Laboratorio de Investigaciones del Territorio y el Ambiente)-UNLP (Universidad Nacional de La Plata), La Plata, 94–97. Disponible en: Biblioteca Pública- Universidad Nacional de La Plata, Plaza Rocha 137. Available from: http://biblio.unlp.edu.ar. 
    [78] MLP-UNLP (2001) Observatorio de Calidad de Vida La Plata. Diagnóstico de Calidad de Vida en el Partido de La Plata, Municipalidad de La Plata (MLP) y Universidad Nacional de La Plata (UNLP), La Plata, 1–316. Disponible en: Biblioteca Pública-Universidad Nacional de La Plata, Plaza Rocha, 137, Available from: http://biblio.unlp.edu.ar. 
    [79] Rozadilla G, Solimano F, Correa L, et al. (2015) Análisis de potabilidad de aguas subterráneas en La Plata y alrededores, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional, 519–530. Available from: http://www.utn.edu.ar/secretarias /pp(Memorias). 
    [80] FCLP (2011) El futuro de la ciudad, Fundación Ciudad de La Plata, Centro Cultural Dardo Rocha, La Plata. Available from: http://www.fundciudaddelaplata.org.ar. 
    [81] La Nación (2011) Advierten que La Plata pierde su esencia, National Dairy Newspaper "La Nación", Noviembre 21. Available from: http://www.lanacion.com.ar. 
    [82] Lauría D, Brugallera R, Couselo R, et al. (2010) Caracterización productiva regional, La Plata-Berisso-Ensenada, Fac. de Ciencias Económicas-Universidad Nacional de La Plata, La Plata, 1–52. Available from: http://www.mba.econo.unlp.edu.ara. 
    [83] Frediani JC, López MJ (2014) Diseño de una matriz de medidas tendientes a la integración ciudad-movilidad a partir de las componentes ambiental, energética y social. Rev Transp y Territorio 6: 33–52. 
    [84] Blanco EE, Porta AA (2013) La contaminación atmosférica y la salud de la población en la micro región La Plata, Berisso y Ensenada. Definición de variables e indicadores de gestión en el marco de políticas públicas. Reporte de la Editorial Universitaria de la Universidad Tecnológica Nacional (UTN-Argentina), 1–11. Available from: http://www.edutecne.utn.edu.ar/coini_2013/trabajos/COA20_TC.pdf. 
    [85] CIPPEC (2016) Gobernanza metropolitana en América Latina y el Caribe, Documento de Trabajo Nro. 51. Programa de Ciudades-Area de Instituciones y Gestión Pública, Centro de Implementación de Políticas Públicas para la Equidad y el Crecimiento (CIPPEC) y Banco Interamericano de Desarrollo (BID), Buenos Aires, 1–222. Available from: http://www.cippec.org. 
    [86] Barros V, Menéndez A, Nagy G (2005) El Cambio Climático en el Río de La Plata, CIMA Textos del reporte técnico de los proyectos: Impactos del Cambio Global en las áreas costeras del Río de la Plata y Variabilidad hidroclimática del estuario del Río de la Plata: Influencia humana, ENSO y estado trófico. Proyecto "Assessments of Impacts and Adaptations to Climate Change (AIACC)", START-TWAS-UNEP, 1–204. 
    [87] Scarpati O, Benitez M (2005) Las inundaciones en la ciudad de La Plata. Su análisis en relación con las precipitaciones durante las últimas décadas del siglo XX, Geograficando, 1: 1–11. Available from: http://geogra_cando.fahce.unlp.edu.ar. 
    [88] Dutton K (2013) La Vulnerabilidad de la Tercera edad en Desastres Naturales: Un Estudio de la Inundación en La Plata, Argentina el 2 de abril de 2013, Paper 1583. Independent Study Project (ISP) Collection, 1–57. Available from: http://digitalcollections.sit.edu/isp_collection/1583. 
    [89] Guerrero E, Agnolin F (2016) Recent changes in plant and animal distribution in the southern extreme of the Paranaense biogeographical province (northeastern Buenos Aires province, Argentina): Ecological responses to climate change? Rev Mus Argent Cienc Nat 18: 9–30. 
    [90] CAI (2012) La Calidad del Aire en América Latina: Una Visión Panorámica. Clean Air Institute, EUA, Washington DC, 1–36. Available from: http://www.cleanairinstitute.org/calidad delaireamericalatina/TransporteyAireLimpio-cai-april2013.pdf. 
    [91] WHO (2006) Planning to protect children against hazards, Europe, World Health Organization, 1–25. Available from: http://www.euro.who.int/eehc. 
    [92] WHO (2006) Principles for evaluating health risks in children associated with exposure to chemicals. Environmental Health Criteria 237, Geneva, World Health Organization, 1–351. 
    [93] Sánchez-González D, Rodríguez-Rodríguez V (2016) Environmental Gerontology in Europe and Latin America, Policies and Perspectives on Environment and Aging. Heidelberg, Springer International Publishing, 1–306. 
    [94] INDEC (2017) Informes Técnicos Vol. 1 Nro. 53, Condiciones de Vida Vol.1 Nro. 4, Incidencia de la pobreza y la indigencia en 31 aglomerados urbanos. Segundo Semestre 2016. Instituto Nacional de Estadísticas y Censos, ISSN 2545-6636, Ministerio de Hacienda, Argentina. Available from: http://indec.gob.ar. 
    [95] El Día (2017) La Plata es la ciudad bonaerense con más asentamientos y villas: Tiene 129, Local Daily Newspaper "El Día", January 15, La Plata. Available from: http://www.eldia.com. 
    [96] UN-HABITAT (2012) State of the World's Cities. Prosperity of Cites. Nairobi: United Nations Human Settlements Programme, 1–149. 
    [97] Lipfert FW (2004) Air pollution and poverty: Does the sword cut both ways? J Epidemiol Community Health 58: 2–3. 
    [98] Petcheneshsky T, Gravarotto MC, Benitez R, et al. (1998) Gestión de la Calidad de Aire Urbano-Industrial. Situación del Monitoreo de la Calidad del Aire (GEMS-AIRE) en la República Argentina. Departamento de Salud Ambiental del Ministerio de Salud y Acción Social de La Nación, Buenos Aires, AIDIS, 1–12. 
    [99] AAPLP (2006) Análisis Ambiental del Partido de La Plata. Aportes al Ordenamiento Territorial, Instituto de Geomorfología y Suelos-UNLP y Centro de Investigaciones de Suelos y Aguas de Uso Agropecuario (CISAUA), Provincia de Buenos Aires, Consejo Federal de Inversiones, Municipalidad de La Plata, 1–124. Available from: http://sedici.unlp.edu.ar/handle/10915/27046. 
    [100] Gassmann MI, Mazzeo NA (2000) Air pollution Potential: Regional Study in Argentina. Environ Manage 25: 375–382. 
    [101] WHO (1998) La Salud en las Américas, Vol. 1 & 2, Washington. Publicación Científica Nº 569, World Health Organization, 1–972. 
    [102] SPA (2007) Exp.2145-7007/06 Secretaría de Política Ambiental de la Provincia de Buenos Aires, La Plata, Argentina (Ref.: Solicitud de información ambiental de La Plata y alrededores según los beneficios de la Ley 25.831/04―Régimen de libre acceso a la información pública ambiental). 
    [103] Ratto G (2016) Estudio de parámetros ambientales utilizando técnicas espectroscópicas, datos meteorológicos y métodos estadísticos, Tesis de Doctorado, Centro de Investigaciones Opticas y Universidad Nacional de La Plata, Argentina. Available from: http://sedici.unlp.edu.ar/. 
    [104] Cabrera Christiansen F, Sosa E, Dobal M, et al. (2015) Polos: Injusticias ambientales e industrialización petrolera en Argentina. Ediciones del Jinete Insomne 1–136. 
    [105] McGregor GR, (1999) Basic Meteorology (Chapter 3), In: Holgate ST, Samet JM, Koren HS, Maynard RL, Eds., Air Pollution and Health, San Diego, Academic Press, 21–49. 
    [106] Wieringa J (1996) Does representative wind information exist? J Wind Eng Ind Aerod 65: 1–12. 
    [107] Wieringa J (1980) Representativeness of Wind Observations at Airports, Bull Am Meteorol Soc 61: 962–971. 
    [108] Holzworth GC (1967) Mixing depths, wind speeds and air pollution potential for selected locations in the United States. J Appl Meteorol 6: 1039–1044. 
    [109] Mazzeo NA, Nicolini M, Müler C, et al. (1974) Algunos aspectos climatológicos de la contaminación atmosférica en el área de La Plata (Prov. de Buenos Aires). Meteorológica 3: 99–134. 
    [110] Nieto AE, Macchi C, Digiani AR, (1971) Air pollution levels in the city of La Plata, In: Englund HM, W.T. Beery, Eds., Proceedings of the Second International Clean Air Congress, Washington: Academic Press Inc, 1–2. 
    [111] Mazzeo NA, Nicolini M, Moledo L, et al. (1972) Condiciones de Estabilidad Atmosférica y Capacidad de Dilución Vertical de Contaminantes en la Ciudad de La Plata. Congreso Interamericano de Ingeniería Sanitaria, Paraguay: Agosto, 1972: 101–114. 
    [112] Mazzeo NA, Nicolini M (1974) Eficiencia de las dispersión atmosférica en la zona de La Plata (Provincia de Buenos Aires). Meteorológica 5: 33–43. Available from: http://www.cenamet.org.ar. 
    [113] Cattogio J, Succar SD, Roca AF (1989) Polynuclear aromatic hydrocarbon content of particulate matter suspended in the atmosphere of La Plata, Argentina. Sci Total Environ 79: 43–58. 
    [114] Herbarth O, Rehwagen M, Ronco A (1997) The influence of localized emittants on the concentration of volatile organic compounds in the ambient air measured close to ground level. Environ Toxicol 12: 31–37. 
    [115] Colombo JC, Landoni P, Bilos C (1999) Sources, distribution and variability of airborne particles and hydrocarbons in La Plata area, Argentina. Environ Pollut 104: 305–314. 
    [116] Bilos C, Colombo JC, Skorupka CN, et al. (2001) Sources, distribution and variability of airborne trace metals in La Plata City area, Argentina. Environ Pollut 111: 149–158. 
    [117] Díscoli CA, Barbero DA (2001) Insustentabilidad urbano-energética-ambiental. Determinación y cuantificación de contaminantes aéreos y sumideros. Avances en Energías Renovables y Medio Ambiente Vol. 5 (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [118] San Juan G, Díscoli C, Martini I, et al. (2006) Estructura de un atlas urbano-ambiental para la región del Gran La Plata. Sistematización de las variables intervinientes, Avances en Energías Renovables y Medio Ambiente, Vol.10. (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [119] Díscoli CA (2009) Metodología para el diagnóstico urbano-energético-ambiental en aglomeraciones intermedias-El caso del Gran La Plata, Tesis de Doctorado, Facultad de Ciencias Exactas-Universidad Nacional de Salta. Publicada por Editorial de la Universidad Nacional de La Plata, La Plata. Available from: http://sedici.unlp.edu.ar/. 
    [120] Dicroce L, Esparza J, Díscoli C, et al. (2010) Evaluación de contrastes urbanos a partir del grado de percepción en patologías urbano-ambientales presentes en el área del gran la plata, Avances en Energías Renovables y Medio Ambiente, Vol. 14 (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [121] Massolo L, Müller A, Tueros M, et al. (2002) Assessment of Mutagenicity and Toxicity of Different-Size Fractions of Air articulates from La Plata, Argentina, and Leipzig, Germany. Environ Toxicol 17: 219–231. 
    [122] Marañon Di Leo J, Del Nero S, Ragaini JC, et al. (2004) Air Concentrations of SO2 and Wind Turbulence near La Plata Petrochemical Pole (Argentina). Lat Am Appl Res 34: 55–58. 
    [123] Rehwagen M, Müller A, Massolo L, et al. (2005) Polycyclic aromatic hydrocarbons associated with particles in ambient air from urban and industrial areas. Sci Total Environ 348: 199–210. 
    [124] Nitiu DS (2003) Annual, daily and intradiurnal variation of Celtis pollen in the city of La Plata, Argentina. Aerobiologia 19: 71–78. 
    [125] Nitiu DS (2006) Aeropalynologic analysis of La Plata City (Argentina) during 3-year period. Aerobiologia 22: 79–87. 
    [126] Negrin M, Del Panno T, Ronco A (2007) Study of bioaerosols and site influence in the La Plata area (Argentina) using conventional and DNA (fingerprint) based methods. Aerobiologia 23: 249–258. 
    [127] Rosato ME, Reyna Almandos J, Ratto G, et al. (2001) Mesure de SOà La Plata, Argentine. Pollut Atmosphérique 169: 85–98. 
    [128] Ratto G, Videla F, Almandos JR, et al. (2006) Study of meteorological aspects and urban concentration of SO2 in atmospheric environment of La Plata, Argentina. Environ Monit Assess 121: 327–342. 
    [129] Ratto G, Videla F, Maronna R (2009) Analyzing SOconcentrations and wind directions during a short monitoring campaign at a site far from the industrial pole of La Plata, Argentina. Environ Monit Assess 149: 229–240. 
    [130] Wichmann FA, Müller A, Busi LE, et al. (2009) Increased asthma and respiratory symptoms in children exposed to petrochemical pollution. J Allergy Clin Immun 123: 632–638. 
    [131] Massolo L, Rehwagen M, Porta A, et al. (2010) Indoor-outdoor distribution and risk assessment of volatile organic compounds in the atmosphere of industrial and urban areas. Environ Toxicol 25: 339–349. 
    [132] Orte MA (2011) Estudio y análisis de la contaminación atmosférica mediante técnicas físicas y químicas en los alrededores del Polo Petroquímico de La Plata, Tesina de Grado, Licenciatura en Tecnología Ambiental, Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Tandil. 
    [133] Ratto G, Videla F, Maronna R, et al. (2012) Calm analysis using a robust method. Argentina y Ambiente 2012, Primer Congreso Internacional de Ciencia y Tecnología Ambiental. Mar del Plata, 28 Mayo-1 Junio de 2012, Argentina. 
    [134] Ratto G, Nico A (2012) Preliminary wind analysis regarding different speed ranges in the city of La Plata, Argentina. Rev Bras Meteorol 27: 281–290. 
    [135] Colman Lerner JE, Kohajda T, Aguilar ME, et al. (2014) Improvement of health risk factors after reduction of VOC concentrations in industrial and urban areas. Environ Sci Pollut Res 21: 9676–9688. 
    [136] Gutiérrez M de los A (2015) Alteraciones oculares relacionadas con la contaminación del aire. Estudio comparativo en poblaciones de La Plata y Ensenada, Tesis de Doctorado, Centro de Investigaciones del Medio Ambiente y Universidad Nacional de La Plata, Argentina. Available from: http://sedici.unlp.edu.ar/. 
    [137] Orte MA, Coman Lerner J, Gutiérrez M, et al. (2015) Estudio de hidrocarburos aromáticos policíclicos asociados al material particulado y en fase gaseosa en la ciudad de La Plata y alrededores, Libro de Actas de PROIMCA, Proyecto Integrador para la Mitigación de la Contaminación Atmosférica, Universidad Tecnológica Nacional. Available from: http://www.utn.edu.ar/secretarias/pp(Memorias). 
    [138] Cavallotto JL (1995) Evolución geomorfológica de la llanura costera ubicada en la margen sur del Río de la Plata, Tesis de Doctorado, Facultad de Ciencias Naturales y Museo-Universidad Nacional de La Plata, Argentina. 
    [139] Michellod OE (2000) La identidad del paisaje urbano a través de la memoria: Berisso, Argentina. Tesis de Magister, (Magíster en Paisaje, Medio Ambiente y Ciudad), Universidad Central de Chile, Santiago. 
    [140] Berri GJ, Sraibman L, Tanco R. et al. (2010) Low-level wind field climatology over the La Plata River region obtained with a mesoscale atmospheric boundary layer model forced with local weather observations. J Clim Appl Meteorol 49: 1293–1305. 
    [141] Ratto G, Maronna R, Repossi P, et al. (2012) Analysis of winds affecting air pollutant transport at La Plata, Argentina. Atmos Clim Sci 2: 60–75. 
    [142] Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 1: 55–94. 
    [143] Arhens CD (2009) Meteorology Today. Brooks/cole Pub 1–621. 
    [144] Gianibelli JC, Köln J, Kruse EE (2001) The precipitation series in La Plata, Argentina and its possible relationship with geomagnetic activity. Geofís Int 40: 309–314. 
    [145] Ratto G, Maronna R, Berri G (2010) Analysis of wind roses using hierarchical cluster and multidimensional scaling analysis at La Plata, Argentina. Boundary Layer Meteorol 137: 477–492. 
    [146] WMO (2008) Guide to Meteorological Instruments and Methods of Observation. WMO-Nº 8, World Meteorological Organization, Switzerland. 
    [147] EPA (2008) Quality Assurance Handbook for Air Pollution Measurement Systems-Volume IV: Meteorological Measurements Version 2.0, EPA-454/B-08-002, United States Environmental Protection Agency, Washington. 
    [148] Rousseeuw PJ, Leroy AM (1987) Robust Regression and Outlier Detection. New York: John Wiley & Sons, 1–329. 
    [149] EPA (2009) Scout 2008 Version 1.0 User Guide, Second Edition, EPA/600/R-08/038, United States Environmental Protection Agency, Washington. 
    [150] Fauconnier C, Haesbroeck G (2009) Outliers Detection with the Minimum Covariance Determinant Estimator in Practice. Stat Methodol 6: 363–379. 
    [151] Seinfeld JH, Pandis SN, (2006) Atmospheric Chemistry and Physics, In: From Air Pollution to Climate Change, 2nd Edition, Hoboken, New York: John Wiley & Sons, 1–1225. 
    [152] Brunekreef B, Holgate S (2002) Air Pollution and Health. Lancet 360: 1233–1242. 
    [153] OMS (2006) Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre, Actualización mundial 2005. WHO/SDE/PHE/OEH/06.02, Ginebra. 
    [154] US ATSDR (1998) Toxicological Profile for Sulphur Dioxide, Chapter 5. Georgia, Agency for Toxics Substances and Disease Registry-Public Health Service: Science International Inc. Editors, 111–130. 
    [155] Cuciureanu R, Dimitriu G (2006) Photochemical reactions in the atmosphere-a source of secondary pollutants. Проблеми програмування (Спеціальний випуск) 2: 682–687. 
    [156] Cheng S, Lamb K (1998) An analysis of winds affecting air pollution concentrations in Hong Kong. Atmos Environ 32: 2559–2567. 
    [157] Goyal P (2002) Effect of winds on SO2 and SPM concentrations in Delhi. Atmos Environ 36: 2925–2930. 
    [158] Ratto G, Videla F, Maronna R, et al. (2010) Air pollutant transport analysis based on hourly winds in the city of La Plata and surroundings, Argentina. Water Air Soil Pollut 208: 243–257. 
    [159] SMN (2011) Estadísticas Climatológicas, Servicio Meteorológico Nacional 2001–2010, SMN, Buenos Aires. 
    [160] McCormik RA, (1968) Air Pollution Climatology, In: Air Pollution (Stern, A.) Vol. 1, Chapter 9 Second Edition, New York: Academic Press, 275–320. 
    [161] Moore DJ (1969) The distributions of surface concentrations of sulphur dioxide emitted from tall chimneys. Trans R Soc Can 265. 
    [162] Deardorff JW, (1984) Upstream diffusion in the convective boundary layer with weak or zero mean wind, In: Fourth joint conference on application of air pollution meteorology, American Meteorological Society, Boston, Massachusetts. 
    [163] EPA (2007) Ambient air monitoring network assessment guidance-Analytical techniques for technical assessments of ambient air monitoring networks, EPA-454/D-07-001, United States Environmental Protection Agency, Washington. 
    [164] Trujillo-Ventura A, Ellis J (1991) Multiobjective air pollution monitoring network design, Atmos Environ 25: 469–479. 
    [165] EPA (2013) Quality Assurance Handbook for Air Pollution Measurement Systems, Volume II, Ambient Air Quality Monitoring Program, EPA-454/B-13-003, Washington. 
    [166] Joly M, Peuch VH (2012) Objective classification of air quality monitoring sites over Europe. Atmos Environ 47: 111–123. 
    [167] Pickett EE, Whiting RG (1981) The design of cost-effective air quality monitoring networks. Environ Monit Assess 1: 59–74. 
    [168] Pérez-Abreu V, Rodríguez JE (1996) Index of effectiveness of a multivariate environmental monitoring network. Environmentrics 7: 489–501. 
    [169] Silva C, Quiroz A (2003) Optimization of the atmospheric pollution monitoring network at Santiago de Chile. Atmos Environ 37: 2337–2345 
    [170] Pires JCM, Pereira MC, Alvim-Ferraz MCM, et al. (2009) Identification of redundant air quality measurements through the use of principal component analysis. Atmos Environ 43: 3837–3842. 
    [171] Borge R, De la Paz D, Lumbreras J, et al. (2014) Analysis of Contributions to NO2 Ambient Air Quality Levels in Madrid City (Spain) through Modeling. Implications for the Development of Policies and Air Quality Monitoring. J Geosci Environ Prot 2: 6–11. 
    [172] Henriquez A, Gallardo L, Diaz Resquin M (2015) Analysis and optimal design of air quality monitoring networks using a variational approach. Tellus B 67: 25385: 1–13. 
    [173] Colombo JC, Pelletier E, Brochu C, et al. (1989) Determination of hydrocarbon sources using n-alkane and polyaromatic hydrocarbon distribution indexes. Case study: Rio de La Plata Estuary, Argentina. Environ Sci Technol 23: 888–894. 
    [174] Colombo J, Bilos C, Remes Lenicov R, et al. (2000) Detritivorous fish contamination in the Río de la Plata estuary: A critical accumulation pathway in the cycle of anthropogenic compounds. Can J Fish Aquat Sci 57: 1139–1150. 
    [175] Bower J (1997) Ambient Air Quality Monitoring-A review paper for the Royal Society of Chemistry, AEA Technology-National Environmental Technology Centre, Oxfordshire (England). 
    [176] Martinez AP, Romieu I (1997) Introducción al Monitoreo Atmosférico, Departamento del Distrito Federal de México, Ciudad de México, OPS/OMS, ECO-GTZ, 1–362. 
    [177] Jedrychowski W, Flak E, Mróz E (1999) The Adverse Effect of Low Levels of Ambient Air Pollutants on Lung Function Growth in Preadolescent Children. Environ Health Persp 107: 669–674. 
    [178] IACA (2014) Informe de Calidad de Aire-Informe Anual, Montevideo. Servicio Evaluación de la Calidad y Control Ambiental, Departamento de Desarrollo Ambiental, Intendencia de Montevideo, Uruguay. 
    [179] PAR (2012) Plan Ambiental de Rosario. Calidad de Aire y Ruido, Municipalidad de Rosario, Santa Fe. Available from: http://www.rosario.gov.ar/sitio/. 
    [180] Gorchakov G, Semoutnikova E, Karpov A, et al. (2011) Air Pollution in Moscow Megacity, In: Anca Maria Moldoveanu, Ed., Advanced Topics in Environmental Health and Air Pollution Case Studies, Croatia, INTECH, 211–236. 
    [181] WHO-WMO (1977) Air monitoring programme desing for urban and industrial areas. Offset publication No. 33, Geneva, World Health Organization, 1–46. 
    [182] WHO (1980) Analysing and Interpreting Air Monitoring Data. Offset publication No. 51, Geneva, World Health Organization, 1–59. 
    [183] EA (2006) Review of background air-quality data and methods to combine these with process contributions, Science report: SC030174/1 SR1, Bristol, Environmental Agency, 1–58. Available from: www.environment-agency.gov.uk. 
    [184] UNEP (2014b) Plan de Acción Regional de Cooperación Intergubernamental en materia de Contaminación Atmosférica para América Latina y el Caribe, Anexo de la XIX Reunión del Foro de Ministros de Medio Ambiente de América Latina y el Caribe, Los Cabos, 11–14 de Marzo de 2014, UNEP/LAC-IGWG.XIX/7 Final, Los Cabos, México. 
    [185] DEFRA (2016) Air Pollution in the UK 2015, Department for Environment, Food and Rural Affairs, Ed. OGL Crown, UK. Available from: https://uk-air.defra.gov.uk/library/annualreport/index. 
    [186] Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
    [187] Andersson JT, Achten C (2015) Time to Say Goodbye to the 16 EPA PAHs? Toward an Up-to-Date Use of PACs for Environmental Purposes. Polycyclic Aromat Compd 35: 330–354. 
    [188] WMO (2006) Initial guidance to obtain representative meteorological observations at urban sites-Instruments and observing methods, Report No. 81, WMO/TD-No. 1250, Switzerland, World Meteorological Organization, 1–47. 
    [189] EPA (2000) Meteorological Monitoring Guidance for Regulatory Modeling Applications, EPA-454/R-99-005, Environmental Protection Agency, Research Triangle Park, NC. 
    [190] Marc M, Tobiszewski M, Zabiegała B, et al. (2015) Current air quality analytics and monitoring: A review. Anal Chim Act 853: 116–126. 
    [191] Manes G, Collodi G, Fusco R, et al. (2011) Real-Time Monitoring of Volatile Organic Compounds in Hazardous Sites (Chapter 14), In: Ekundayo E., Ed., Environmental Monitoring, InTech-Open Access Publisher, 219–244. Available from: http://www.intechopen.com/. 
    [192] Mukerjee S, Smith LA, Norris GA, et al. (2004) Field Method Comparison between Passive Air Samplers and Continuous Monitors for VOCs and NO2 in El Paso, Texas. J Air Waste Manage 54: 307–319. 
    [193] Sigrist M (1994) Air Monitoring by Spectroscopic Techniques. New York: John Wiley and Sons, 1–560. 
    [194] Platt U, Stutz J (2008) Differential Optical Absorption Spectroscopy: Principles and Applications. Heidelberg Springer, 1–597. 
    [195] EPA (2011) Optical Remote Sensing for Measurement and Monitoring of Emissions Flux, United States Environmental Protection Agency, North Carolina. 
    [196] Plane JMC, Saiz-Lopez A, (2006) UV-Visible Differential Optical Absorption Spectroscopy, (DOAS) (Chapter 3), In: Heard DE, Ed., Analytical Techniques for Atmospheric Measurement, New York: Blackwell Publishing Ltd., 148–188. 
    [197] Edner H, Ragnarson P, Spännare S, et al. (1993) Differential Optical Absorption Spectroscopy (DOAS) system for urban atmospheric pollution monitoring. Appl Optics 32: 327–332. 
    [198] Kourtidis K, Ziomas I, Zerefos C, et al. (2000) Benzene and toluene levels measured with a commercial DOAS system in Thessaloniki, Greece. Atmos Environ 34: 1471–1480. 
    [199] Chiu KH, Sree U, Tseng SH, et al. (2005) Differential optical absorption spectrometer measurement of NO2, SO2, O3, HCHO and aromatic volatile organics in ambient air of Kaohsiung Petroleum Refinery in Taiwan. Atmos Environ 39: 941–955. 
    [200] Lee C, Choi IJ, Jung JS, et al. (2005) Measurement of atmospheric monoaromatic hydrocarbons using differential optical absorption spectroscopy: Comparison with on-line gas chromatography measurements in urban air. Atmos Environ 39: 2225–2234. 
    [201] Avino P, Manigrasso M (2008) Ten-year measurements of gaseous pollutants in urban air by an open-path analyzer. Atmos Environ 42: 4138–4148. 
    [202] Johanson M, Galle B, Yu T, et al. (2008) Quantification of total emission of air pollutants from Beijing using mobile mini-DOAS. Atmos Environ 42: 6926–6933. 
    [203] Baidar S, Oetjen H, Coburn S, et al. (2013) The CU Airborne MAX-DOAS instrument: Vertical profiling of aerosol extinction and trace gases. Atmos Meas Tech 6: 719–739. 
    [204] Frins E, Bobrowski N, Osorio M, et al. (2014) Scanning and mobile multi-axis DOAS measurements of SO2 and NO2 emissions from an electric power plant in Montevideo, Uruguay. Atmos Environ 98: 347–356. 
    [205] CFR (2011) Ambient Air Quality Surveillance, 40 Code of Federal Regulations, Part 58, 7-1-11 Edition, US EPA, Washington. 
    [206] Seibert P, Beyrich F, Gryning SE, et al. (2000) Review and intercomparison of operational methods for the determination of the mixing height. Atmos Environ 34: 1001–1027. 
    [207] Sicard M, Perez C, Rocadenbosch F, et al. (2006) Mixed-layer depth determination in the Barcelona coastal area from regular LIDAR measurements: Methods, results and limitations. Boundary Layer Meteorol 119: 135–157. 
    [208] Emeis S, Schäfer K, Münkel C (2008) Surface-based remote sensing of the mixing-layer height-a review. Meteorologische Z 17: 621–630. 
    [209] Pérez IA, García M de los A, Sanchez ML, et al. (2006) Fit of wind speed and temperature profiles in the low atmosphere from rass sodar data, J Atmos Sol-Terr Phy 68: 1125–1135 
    [210] Chan PW (2008) Measurement of turbulence intensity profile by a mini-sodar. Meteorol Appl 15: 249–258. 
    [211] EPA (2006) Guidance for Data Quality Assessment. Practical-Methods for Data Analysis, EPA QA/G9, US EPA-EPA/240/B-06/003, Environmental Protection Agency, Washington. 
    [212] Lacey M, West J (2006) The Air Spora. A manual for catching and identifying airborne biological particles. Springer, Dordrecht. 
    [213] Laner D, Crest M, Scharff H, et al. (2012) A review of approaches for the long-term management of municipal solid waste landfills. Waste Manag 32: 498–512. 
    [214] Sarkar U, Hobbs S, Longhurst P (2003) Dispersion of odour: A case study with a municipal solid waste landfill site in North London, United Kingdom. J Environ Manage 68: 153–160. 
    [215] Ancona C, Badaloni C, Mataloni F, et al. (2015) Mortality and morbidity in a population exposed to multiple sources of air pollution: A retrospective cohort study using air dispersion models. Environ Res 137: 467–474. 
    [216] Bolze U, De Freitas M (1997) Monitoring gas emissions from landfill sites. Waste Manage Res 15: 463–476. 
    [217] Palmiotto M, Fattore E, Paiano V, et al. (2014) Influence of a municipal solid waste landfill in the surrounding environment: Toxicological risk and odor nuisance effects. Environ Int 68: 16–24. 
    [218] Liu Y, Lu W, Guo H, et al. (2016) Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution. Atmos Environ 139: 205–213. 
    [219] El Día (2013a) Reclamo por malos olores. Local Daily Newspaper "El Día", January 9, La Plata. Available from: http://www.eldia.com. 
    [220] El Día (2013b) Reclamo por malos olores. Local Daily Newspaper "El Día", July 5, La Plata. Available from: http://www.eldia.com. 
    [221] El Día (2016)Aire irrespirable en Villa del Plata por el olor a basura de la Ceamse. Local Daily Newspaper "El Día", January 27, La Plata. Available from: http://www.eldia.com. 
    [222] Hoy (2013) YPF y una contaminación que ya da asco en Ensenada. Local Daily Newspaper "Hoy", September 23, La Plata. Available from: http://diariohoy.net. 
    [223] Hoy (2014) UNLP confirma contaminación letal de YPF, August 3, La Plata. Available from: http://diariohoy.net. 
    [224] Hoy (2015a) Otra vez la Refinería puso en vilo a los vecinos de la región. Local Daily Newspaper "Hoy", August 26, La Plata. Available from: http://diariohoy.net. 
    [225] Hoy (2015b) YPF puso otra vez en vilo a la región, November 3, Local Daily Newspaper "Hoy", August 26, La Plata. Available from: http://diariohoy.net. 
    [226] Hoy (2016a) Denuncian un fuerte olor en la periferia del CEAMSE. Local Daily Newspaper "Hoy", March 7, La Plata. Available from: http://diariohoy.net. 
    [227] Hoy (2016b) Vecinos denuncian fuertes olores nauseabundos emanados desde la refinería YPF. Local Daily Newspaper "Hoy", October 5, La Plata. Available from: http://diariohoy.net. 
    [228] Hoy (2016c) Nuevas emanaciones de YPF llegaron hasta City Bell. Local Daily Newspaper "Hoy", October 6, La Plata. Available from: http://diariohoy.net. 
    [229] SEPA (2010) Odour Guidance, Scottish Environment Protection Agency. Available from: www.sepa.org.uk/media/154129/odour_guidance.pdf. 
    [230] Vallero D (2008) Fundamentals of Air Pollution, 4th edition, California, Academic Press, 1–942. 
    [231] Majra JP, (2011) Air quality in rural areas (Chapter 23), In: Mazzeo N, Ed., Chemistry, Emission Control, Radioactive Pollution and Indoor Air Quality, Rijeka, InTech press, 619–638. 
    [232] Gupta A, Kumar R, Kumari K, et al. (2003) Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos Environ 37: 4837–4846 
    [233] Hunova I, Santroch J, Ostatnick J (2004) Ambient air quality and deposition trends at rural stations in the Czech Republic during 1993–2001. Atmos Environ 38: 887–898. 
    [234] Oke TR (1987) Boundary Layer Climates, 2nd Edition, London, Routledge, 1–435. 
    [235] Jacobson MZ (2005) Fundamentals of Atmospheric Modeling, Second Edition, Cambridge, Cambridge University Press, 1–813. 
    [236] Emeis S (2012) Wind Energy Meteorology. Atmospheric Physics for Wind Power Generation, Heidelberg, Springer, 1–196. 
    [237] Simpson JE (1994) Sea breeze and local wind, Cambridge, Cambridge University Press, 1–234. 
    [238] Ríos L (2007) Degradación de los espacios públicos del borde costero de Ensenada: Criterios para el diseño de políticas, Informe de Beca, Unidad de Investigación Nº 5, Instituto de Estudios del Hábitat-Universidad Nacional de La Plata. Available from: http://sedici.unlp.edu.ar/handle/10915/27071. 
    [239] Oke TR (1982) The energetic basis of the urban heat island. Q J of the Roy Meteor Soc 108: 1–24. 
    [240] Gartland L (2008) Heat islands understanding and mitigating heat in urban areas. Earthscan Publisher, London. 
    [241] Dousset B, Gourmelon F, Laaidi K, et al. (2010) Satellite monitoring of summer heat waves in the Paris metropolitan area. Int J Climatol 31: 313–323. 
    [242] Sarrat C, Lemonsu A, Masson V, et al. (2006) Impact of urban heat island on regional atmospheric pollution. Atmos Environ 40: 1743–1758. 
    [243] Bassett R, Cai X, Chapman L, et al. (2016) Observations of urban heat island advection from a high-density monitoring network. Q J R Meteorol Soc 142: 2434–2441. 
    [244] Chapman L, Azevedo JA, Prieto-Lopez T (2013) Urban heat & critical infrastructure networks: A viewpoint. Urban Climate 3: 7–12. 
    [245] Muller C, Chapman L, Grimmond C, et al. (2013b) Toward a Standardized Metadata Protocol for Urban Meteorological Networks. Bull Am Meteorol Soc 94: 1161–1185. 
    [246] Chapman L, Muller C, Young D, et al. (2014) The Birmingham Urban Climate Laboratory: An open meteorological testbed and challenges of the smart city. Bull Am Meteorol Soc 96: 1545–1560. 
    [247] Chen D, Wang X, Khoo Y, et al. (2013) Assessment of urban heat island and mitigation by urban green coverage, In: Khare A, Beckman T, Eds., Mitigating Climate Change-The Emerging Face of Modern Cities, Heidelberg, Springer, 247–258. 
    [248] Sawyer RF (2010) Vehicle emissions: Progress and Challenges. J Exposure Sci Environ Epidemiol 20: 487–488. 
    [249] Gallardo L, Escribano J, Dawidowski L, et al. (2012) Evaluation of vehicle emission inventories for carbon monoxide and nitrogen oxides for Bogotá, Buenos Aires, Santiago, and São Paulo. Atmos Environ 47: 12–19. 
    [250] ARPEL (2001) Enfoque sistémico para el control de las emisiones vehiculares en América Latina y el Caribe, Asociación regional de empresas de petróleo y gas natural en Latinoamérica y el Caribe (ARPEL), Montevideo. Available from: http://www.arpel.org. 
    [251] Baldauf R, Watkins N, Heist D, et al. (2009) Near-road air quality monitoring: Factors affecting network design and interpretation of data. Air Qual Atmos Health 2:1–9. 
    [252] HEI (2010) Traffic-related air pollution: A critical review of the literature on emissions, exposure, and health effects. Environment 131: 1–384. 
    [253] Guderian R (1985) Air pollution by photochemical oxidants, Formation, transport, control, and effects on plants. Heidelberg, Springer-Ver1ag, 1–346. 
    [254] Kado NY, Okamoto R, Kuzmicky P, et al. (2005) Emissions of Toxic Pollutants from Compressed Natural Gas and Low Sulfur Diesel-Fueled Heavy-Duty Transit Buses Tested over Multiple Driving Cycles. Environ Sci Technol 39: 7638–7649. 
    [255] Cooper CD, Alley FC (2010) Air Pollution Control: A Design Approach. Illinois, Waveland Press, 1–839. 
    [256] IARC (2013) Air Pollution and Cancer, Publication N°161, Lyon, International Agency for Research on Cancer, 1–169. 
    [257] NIOSH (2005) NIOSH Pocket Guide to Chemical Hazards, National Institute for Occupational Safety and Health, Cincinnati, Publication N°2005-149: 1–424. 
    [258] Joeng L, Bakand S, Hayes A (2015) Diesel exhaust pollution: Chemical monitoring and cytotoxicity assessment. AIMS Environ Sci 2: 718–736. 
    [259] Soares da Silva A, Cardoso MR, Meliefte K, et al. (2006) Use of passive diffusion sampling method for defining NO2 concentrations gradient in São Paulo, Brazil. Environ Health 5: 19. 
    [260] Greenwood R, Mills G, Vrana B (2007) Passive sampling techniques in environmental monitoring. Compr Anal Chem 48: 1–453. 
    [261] AEA (2008) Diffusion Tubes for Ambient NO2 Monitoring: Practical Guidance for Laboratories and Users. 1: 1–47. 
    [262] Masey N, Gillespie J, Heal MR, et al. (2017) Influence of wind-speed on short-duration NO2 measurements using Palmes and Ogawa passive diffusion samplers. Atmos Environ 160: 70–76. 
    [263] El Día (2014) Se multiplican las quejas de vecinos por ruidos en la refinería de YPF, July 7, La Plata. Available from: http://www.eldia.com. 
    [264] El Día (2015) Vecinos en alerta por fuertes ruidos en la Destilería de YPF0. Local Daily Newspaper "El Día", February 26, La Plata. Available from: http://www.eldia.com. 
    [265] Hoy (2015c) Nueva alerta por contaminación sonora en YPF0. Local Daily Newspaper "Hoy", November 28, La Plata. Available from: http://diariohoy.net. 
    [266] Hoy (2016d) Los ruidos y las llamas de la refinería seguirán toda la semana. Local Daily Newspaper "Hoy", July 12, La Plata. Available from: http://diariohoy.net. 
    [267] Rosenfeld E, Discoli C, Ferreyro C, et al. (2005) Desarrollo de una metodología y aplicación para la elaboración de un atlas energético-ambiental para la región del Gran La Plata. Avances en Energías Renovables y Medio Ambiente, Vol. 9 (Reunión Nacional de ASADES-Asociación Argentina de Energías Renovables y Ambiente). Available from: http://www.cricyt.edu.ar/asades/. 
    [268] Torras OS, Friedrich R (2013) A modelling approach for estimating background pollutant concentrations in urban areas. Atmos Pollut Res 4: 147–156. 
    [269] WHO (2013) Health risks of air pollution in Europe-HRAPIE project new emerging risks to health from air pollution-results from the survey of experts. World Health Organization Regional Office for Europe, Copenhagen. Available from: http://www.euro.who.int/pubrequest. 
    [270] Lalas DP, Veirs VR, Karras G, et al. (1982) An analysis of the SO2 concentration levels in Athens, Greece. Atmos Environ 16: 531–544. 
    [271] Perevochtchikova M (2009) La situación actual del sistema de monitoreo ambiental en la Zona Metropolitana de la Ciudad de México. Estud Demográficos Y Urbanos 24: 513–547. 
    [272] USAC-MAG (2012) Monitoreo del aire en la ciudad de Guatemala. Informe anual 2011. Universidad de San Carlos-Ministerio de Ambiente y Recursos Naturales, Guatemala. 
    [273] CR (2012) Estado de la Calidad del Aire del Área Metropolitana de Costa Rica. Informe Técnico Quinto, Ministerio de Salud de Costa Rica, Ministerio de Ambiente y Energía, Ministerio de Salud, Universidad de Costa Rica y Municipalidad de San José, San José. Available from: http://www.bvs.sa.cr/AMBIENTE/textos/quinto.pdf. 
    [274] LAQN (2015) London Air Quality Network. Summary Report 2013, Environmental Research Group, Kings College of London, London. Available from: http://www.londonair.org.uk. 
    [275] UNEP (2010) Geo Cities Manual-Guidelines for Integrated Environmental Assessment of Urban Areas. EECCA Region, United Nations Environment Programme, UNEP-DEWA/GRID-Europe. 
    [276] Kelly F, Fuller G, Walton H, et al. (2012) Monitoring air pollution: Use of early warning systems for public health. Respirology 17: 7–19.1. NU (2009) HOME (Cine documental dirigido por Yann Arthus-Bertrand y producido por Luc Besson y la participación de Naciones Unidas, Nueva York). 
    [277] 186. Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
    [278] Kelly F, Fuller G, Walton H, et al. (2012) Monitoring air pollution: Use of early warning systems for public health. Respirology 17: 7–19.
    [279] 1. NU (2009) HOME (Cine documental dirigido por Yann Arthus-Bertrand y producido por Luc Besson y la participación de Naciones Unidas, Nueva York). 
    [280] 186. Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
    [281] 186. Keith L (2014) The Source of U.S. EPA's Sixteen PAH Priority Pollutants. Polycyclic Aromat Compd 35: 147–160. 
  • This article has been cited by:

    1. Shasha Gao, Maia Martcheva, Hongyu Miao, Libin Rong, A two-sex model of human papillomavirus infection: Vaccination strategies and a case study, 2022, 536, 00225193, 111006, 10.1016/j.jtbi.2022.111006
    2. Chaoqian Wang, Ziwei Wang, Qiuhui Pan, Ning Cai, Injurious information propagation and its global stability considering activity and normalized recovering rate, 2021, 16, 1932-6203, e0258859, 10.1371/journal.pone.0258859
    3. Qinyue Zheng, Xinwei Wang, Qiuwei Pan, Lei Wang, Optimal strategy for a dose-escalation vaccination against COVID-19 in refugee camps, 2022, 7, 2473-6988, 9288, 10.3934/math.2022515
    4. Ye Xuan Li, Hua Liu, Yu Mei Wei, Ming Ma, Gang Ma, Jing Yan Ma, Ljubisa Kocinac, Population Dynamic Study of Prey-Predator Interactions with Weak Allee Effect, Fear Effect, and Delay, 2022, 2022, 2314-4785, 1, 10.1155/2022/8095080
    5. Yen-Chang Chang, Ching-Ti Liu, A Stochastic Multi-Strain SIR Model with Two-Dose Vaccination Rate, 2022, 10, 2227-7390, 1804, 10.3390/math10111804
    6. T.A. Midhun, K. Murugesan, A study of stochastically perturbed epidemic model of HPV infection and cervical cancer in Indian female population, 2025, 228, 03784754, 431, 10.1016/j.matcom.2024.09.008
    7. Ramziya Rifhat, Zhidong Teng, Lei Wang, Ting Zeng, Liping Zhang, Kai Wang, Dynamical behavior and density function of a stochastic model of HPV infection and cervical cancer with a case study for Xinjiang, China, 2023, 360, 00160032, 7770, 10.1016/j.jfranklin.2023.06.008
    8. Hua Liu, Xiaofen Lin, Xinjie Zhu, Qibin Zhang, Yumei Wei, Gang Ma, Modeling and analysis of a human papilloma virus transmission model with impact of media, 2024, 375, 00255564, 109247, 10.1016/j.mbs.2024.109247
    9. 丽娜 王, Dynamic Analysis of a Kind of HPV Transmission Model Incorporating Media Impact and Early Screening, 2024, 13, 2324-7991, 3845, 10.12677/aam.2024.138366
    10. H.J. Alsakaji, Y.A. El-Khatib, F.A. Rihan, A. Hashish, A stochastic epidemic model with time delays and unreported cases based on Markovian switching, 2024, 6, 25889338, 234, 10.1016/j.jobb.2024.08.002
    11. Bushra Bajjah, Mahmut Modanli, Francisco R. Villatoro, Finite Difference Method for Infection Model of HPV with Cervical Cancer under Caputo Operator, 2024, 2024, 1607-887X, 1, 10.1155/2024/2580745
    12. Jingwen Xu, Guzainuer Abudurusuli, Jia Rui, Zhuoyang Li, Zeyu Zhao, Yilan Xia, Xiaohao Guo, Buasiyamu Abudunaibi, Benhua Zhao, Qiwei Guo, Jing-An Cui, Yulin Zhou, Tianmu Chen, Epidemiological characteristics and transmissibility of HPV infection: A long-term retrospective study in Hokkien Golden Triangle, China, 2013–2021, 2023, 44, 17554365, 100707, 10.1016/j.epidem.2023.100707
    13. Ramziya Rifhat, Zhidong Teng, Lei Wang, Ting Zeng, Liping Zhang, Kai Wang, Mathematical modeling analysis and simulation of human papillomavirus infection and cervical cancer in Xinjiang, China, 2023, 46, 0170-4214, 18651, 10.1002/mma.9584
    14. Ali Akgül, Nauman Ahmed, Sadiya Ali Rano, Qasem Al-Mdallal, A hybrid fractional model for cervical cancer due to human papillomavirus infection, 2025, 26662027, 101098, 10.1016/j.ijft.2025.101098
    15. Sylas Oswald, Eunice Mureithi, Berge Tsanou, Michael Chapwanya, Kijakazi Mashoto, Crispin Kahesa, MCMC-Driven mathematical modeling of the impact of HPV vaccine uptake in reducing cervical cancer, 2025, 24682276, e02633, 10.1016/j.sciaf.2025.e02633
    16. Hua Liu, Xinjie Zhu, Xiaofen Lin, Qibin Zhang, Yumei Wei, Stability analysis and optimal control of a SVICR HPV model with vaccination and cancerous delay, 2025, 1598-5865, 10.1007/s12190-024-02335-6
    17. Ramziya Rifhat, Shayidan Abuduwaili, Zhidong Teng, Kai Wang, Analysis of vaccination strategies in a heterosexual HPV transmission model with a case study in Xinjiang of China, 2025, 24680427, 10.1016/j.idm.2025.06.004
    18. Md Mehedi Hasan, Md Hamidul Islam, Junyuan Yang, Herd immunity and prevention in HPV transmission with exogenous reinfection, 2025, 20, 1932-6203, e0327233, 10.1371/journal.pone.0327233
  • Reader Comments
  • © 2018 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(9760) PDF downloads(1186) Cited by(1)

Figures and Tables

Figures(5)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog