
Citation: Sandrine Chifflet, Marc Tedetti, Hana Zouch, Rania Fourati, Hatem Zaghden, Boubaker Elleuch, Marianne Quéméneur, Fatma Karray, Sami Sayadi. Dynamics of trace metals in a shallow coastal ecosystem: insights from the Gulf of Gabès (southern Mediterranean Sea)[J]. AIMS Environmental Science, 2019, 6(4): 277-297. doi: 10.3934/environsci.2019.4.277
[1] | Weike Zhou, Aili Wang, Fan Xia, Yanni Xiao, Sanyi Tang . Effects of media reporting on mitigating spread of COVID-19 in the early phase of the outbreak. Mathematical Biosciences and Engineering, 2020, 17(3): 2693-2707. doi: 10.3934/mbe.2020147 |
[2] | Hamdy M. Youssef, Najat A. Alghamdi, Magdy A. Ezzat, Alaa A. El-Bary, Ahmed M. Shawky . A new dynamical modeling SEIR with global analysis applied to the real data of spreading COVID-19 in Saudi Arabia. Mathematical Biosciences and Engineering, 2020, 17(6): 7018-7044. doi: 10.3934/mbe.2020362 |
[3] | Haonan Zhong, Wendi Wang . Mathematical analysis for COVID-19 resurgence in the contaminated environment. Mathematical Biosciences and Engineering, 2020, 17(6): 6909-6927. doi: 10.3934/mbe.2020357 |
[4] | Fang Wang, Lianying Cao, Xiaoji Song . Mathematical modeling of mutated COVID-19 transmission with quarantine, isolation and vaccination. Mathematical Biosciences and Engineering, 2022, 19(8): 8035-8056. doi: 10.3934/mbe.2022376 |
[5] | Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298 |
[6] | Lin Feng, Ziren Chen, Harold A. Lay Jr., Khaled Furati, Abdul Khaliq . Data driven time-varying SEIR-LSTM/GRU algorithms to track the spread of COVID-19. Mathematical Biosciences and Engineering, 2022, 19(9): 8935-8962. doi: 10.3934/mbe.2022415 |
[7] | Yujie Sheng, Jing-An Cui, Songbai Guo . The modeling and analysis of the COVID-19 pandemic with vaccination and isolation: a case study of Italy. Mathematical Biosciences and Engineering, 2023, 20(3): 5966-5992. doi: 10.3934/mbe.2023258 |
[8] | Ahmed Alshehri, Saif Ullah . A numerical study of COVID-19 epidemic model with vaccination and diffusion. Mathematical Biosciences and Engineering, 2023, 20(3): 4643-4672. doi: 10.3934/mbe.2023215 |
[9] | Dipo Aldila, Meksianis Z. Ndii, Brenda M. Samiadji . Optimal control on COVID-19 eradication program in Indonesia under the effect of community awareness. Mathematical Biosciences and Engineering, 2020, 17(6): 6355-6389. doi: 10.3934/mbe.2020335 |
[10] | Tianfang Hou, Guijie Lan, Sanling Yuan, Tonghua Zhang . Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate. Mathematical Biosciences and Engineering, 2022, 19(4): 4217-4236. doi: 10.3934/mbe.2022195 |
Population dynamics has always been an important research object of biomathematics. Various groups often have complex interspecific relationships, such as predation, competition, parasitism and mutualism [1]. Predation behavior, as a widespread interspecies relationship, has been widely studied. Lotka and Volterra were the first to propose a predator-prey system to describe the widespread interspecies relationship of predation [2]. Holling further proposed three functional responses of predators to describe the energy transfer between predators and prey [3]. These three functional responses have been applied and perfected by many scientists [4]. In 1991, Hastings and Powell proposed a food chain system with chaotic dynamics and studied the dynamics of the model [5]. In recent years, many mathematicians have also studied the development and improvement of Hastings-Powell food chain models [6,7,8,9].
Fractional calculus is a generalization of traditional calculus, and its order can be composed of integers, fractions or complex numbers[10]. Fractional calculus can better describe some systems or processes with memory and hereditary properties, and it has been widely used in many fields, such as physics, secure communication, system control, neural networks, and chaos[11,12]. The method of solving the fractional model has also been widely studied[13,14]. In [15], the Caputo fractional derivative operator is used instead of the integer first derivative to establish an effective numerical method for solving the dynamics of the reaction-diffusion model based on a new implicit finite difference scheme. In [16], a numerical approximation for the Caputo-Fabrizio derivative is used to study the dynamic complexity of a predator-prey system with a Holling-type functional response. In [17], a new fractional chaotic system described by the Caputo fractional derivative is presented, and how to use the bifurcation diagram of this chaotic system to detect chaotic regions is analyzed. In [18], the generalization of Lyapunov's direct method applying Bihari's and Bellman-Gronwall's inequalities to Caputo-type fractional-order nonlinear systems is proposed. In [19], the Fourier spectral method is introduced to explore the dynamic richness of two-dimensional and three-dimensional fractional reaction-diffusion equations. In [20], the spatial pattern formation of the predator-prey model with different functional responses was studied. [21] studied the numerical solution of the space-time fractional reaction-diffusion problem that simulates the dynamic and complex phenomena of abnormal diffusion.
Since most biological mathematical models have long-term memory, fractional differential equations can more accurately and reliably describe the actual dynamic process [1,22]. [23] proposed fractional predator-prey models and fractional rabies models and studied their equilibrium points, stability and numerical solutions. In [24], the authors studied the stability of a fractional-order system by the Lyapunov direct method, which substantially developed techniques to study the stability of fractional-order population models. In [9], the authors extended the Hastings-Powell food chain system to fractional order and analyzed its dynamic behavior.
As an important research object of biological mathematics and control theory, population model control has received extensive research and development in recent years [25,26,27]. In [28], the authors conducted random detection and contacted tracking on the HIV/AIDS epidemic model and used the Adams-type predictor-corrector method to perform fractional optimal control of the model, which significantly reduced the number of AIDS patients and HIV-infected patients. In [29], the authors applied the time-delay feedback controller to the fractional-order competitive Internet model to solve the bifurcation control problem of this model. In [30], the author considered the influence of additional predators on the Hastings-Powell food chain model and studied the control of chaos in this model.
Biological models are widely studied by scientists, but many classic models study food chain models composed of herbivores and carnivores, and omnivores are rarely considered. In fact, omnivores are widespread in nature and play an important role in the food chain. In this article, the existence of omnivores is fully considered, and a food chain model in which herbivores, omnivores and carnivores coexist is studied. Based on these works, this paper proposes a fractional food chain model with a Holling type-II functional response. The main contributions of this paper are as follows. First, this paper proves the existence and uniqueness of the solution and the nonnegativity and boundedness of the solution. Second, the equilibrium point of the model is calculated, and the local stability of the equilibrium point is proven. Third, a controller is designed to prove the global asymptotic stability of the system by using the Lyapunov method.
This paper is organized as follows. In Section 2, the definitions and lemmas are given, and the food chain model is established. In Section 3, the existence, uniqueness, nonnegativity and boundedness are proven, and the local stability of the equilibrium point of the model is studied. The global stability of the model is studied through the controller. In Section 4, numerical simulations are performed to verify the theoretical results. The conclusion of this article is given in Section 5.
In this section, some basic knowledge about fractional equations and the theorems and lemmas used in this paper are given, and the fractional food chain system is introduced.
Definition 1. [10]. The Caputo fractional derivative of order α of a function f, R+→R, is defined by
Dαtf(t)=1Γ(n−α)∫t0fn(τ)(t−τ)α+1−ndτ,(n−1<α<n), n∈Z+, |
where Γ(⋅) is the Gamma function. When 0<α<1,
Dαtf(t)=1Γ(1−α)∫t0f′(τ)(t−τ)αdτ. |
Definition 2. [31]. When the order a>0, for a function f:(0,∞)→R, the Riemann-Liouville representation of the fractional integral operator is defined by
RLD−atf(t)=RLIatf(t)=1Γ(a)∫t0(t−τ)a−1f(τ)dτ,t>0, |
RLI0tg(t)=g(t), |
where a>0 and Γ(⋅) is the Gamma function.
Lemma 1. (Generalized Gronwall inequality) [32]. Assume that m≥0, γ>0, and a(t) are nonnegative, locally integrable, and nondecreasing functions defined on 0≤t≤T(T≤∞). In addition, h(t) is a nonnegative, locally integrable function defined in 0≤t≤T and satisfies
h(t)≤a(t)+m∫t0(t−s)γ−1h(t)ds, |
then,
h(t)=a(t)Eγ(mΓ(γ)tγ), |
where the Mittag-Leffler function Eγ(z)=∞∑k=0zkΓ(kγ+1).
Lemma 2. [10]. Consider the fractional-order system
{Dαtx(t)=f(t,x(t)),x(0)=x0, | (2.1) |
where f(t,x(t)) defined in R+×Rn→Rn and α∈(0,1].
The local asymptotic stability of the equilibrium point of this system can be derived from |arg(λi)|>απ2, where λi are the eigenvalues of the Jacobian matrix at the equilibrium points.
Lemma 3. [24]. Consider the system
{Dαtx(t)=f(t,x(t)),x(0)=xt0, | (2.2) |
where α∈(0,1], f:[t0,∞)×Ω→Rn, and Ω∈Rn; if f(t,x) satisfies the local Lipschitz condition about x on [t0,∞)×Ω, then there exists a unique solution of (2.2).
Lemma 4. [33]. The function x(t)∈R+ is continuous and derivable; then, for any t≥t0
Dαt[x(t)−x∗−x∗lnx(t)x∗]≤(1−x∗x(t))Dαtx(t),x∗∈R+,∀α∈(0,1). |
There are a variety of complex biological relationships in nature. Predation is the most important biological relationship, and it has received attention from and been studied by many scientists. In [5], the author proposed a three-species food chain model. The model consists of one prey ˆX and two predators ˆY and ˆZ. The top predator ˆZ feeds on the secondary predator ˆY, and the secondary predator ˆY feeds on the prey ˆX. This is the famous Hastings-Powell model:
{dˆXdT=ˆRˆX(1−ˆXˆK)−^C1^A1ˆXˆY^B1+ˆX,dˆYdT=^A1ˆXˆY^B1+ˆX−^A2ˆYˆZ^B2+ˆY−^D1ˆY,dˆZdT=^C2^A2ˆYˆZ^B2+ˆY−^D2ˆZ, | (2.3) |
where ˆR and ˆK represent the intrinsic growth rates and environmental carrying capacity, respectively. For i=1,2, parameters^Ai, ^Bi, ^Ci and ^Di are the predation coefficients, half-saturation constant, food conversion coefficients and death rates.
The Hastings-Powell model considers a food chain composed of herbivores, small carnivores and large carnivores but does not consider the existence of omnivores. We consider a food chain consisting of small herbivores X, medium omnivores Y and large carnivores Z. Among them, omnivores Y prey on herbivores X, and carnivores Z prey on omnivores Y. They all respond according to Holling II type. This system can be expressed mathematically as
{dXdT=R1X(1−XK1)−C1A1XYB1+X,dYdT=R2Y(1−YK2)+A1XYB1+X−A2YZB2+Y,dZdT=C2A2YZB2+Y−DZ, | (2.4) |
where X, Y and Z represent the densities of the prey population, primary predator population and top-predator population, respectively. For i=1,2, parameters Ri, Ki, Ai, Bi and Ci are the intrinsic growth rates, environmental carrying capacity, predation coefficients, half-saturation constant and food conversion coefficients, respectively. The parameter D is the death rates for Z.
Then, we obtain the following dimensionless version of the food chain model:
{dxdt=r1x(1−xK1)−a1xy1+b1x,dydt=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y,dzdt=a2yz1+b2y−dz, | (2.5) |
the independent variables x, y and z are dimensionless population variables; t represents a dimensionless time variable; and ai, bi(i=1,2) and d are positive.
Research results show that using fractional derivatives to model real-life biological problems is more accurate than classical derivatives[15]. To better analyze the dynamics between these three populations, we studied the following fractional-order Hastings-Powell System food chain model:
{Dαtx=r1x(1−xK1)−a1xy1+b1x,Dαty=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y,Dαtz=a2yz1+b2y−dz, | (2.6) |
where α∈(0,1) is the fractional order.
Theorem 1. The fractional-order Hastings-Powell System food chain model (2.6) has a unique solution.
Proof: We will study the existence and uniqueness of the system (2.6) in [0,T]×Ω, where Ω={(x,y,z)∈R3:0≤x,y,z≤H}. Let S=(x,y,z), ˉS=(ˉx,ˉy,ˉz), F(S)=(F1(S),F2(S),F3(S)) and
{F1(S)=Dαtx=r1x(1−xK1)−a1xy1+b1x,F2(S)=Dαty=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y,F3(S)=Dαtz=a2yz1+b2y−dz, | (3.1) |
For any S,ˉS∈Ω, it follows from (3.1) that
‖F(S)−F(ˉS)‖=|F1(S)−F1(ˉS)|+|F2(S)−F2(ˉS)|+|F3(S)−F3(ˉS)|=|r1x(1−xK1)−a1xy1+b1x−(r1ˉx(1−ˉxK1)−a1ˉxˉy1+b1ˉx)|+|r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y−(r2ˉy(1−ˉyK2)+a1ˉxˉy1+b1ˉx−a2ˉyˉz1+b2ˉy)|+|a2yz1+b2y−dz−(a2ˉyˉz1+b2ˉy−dˉz)|≤r1|x(1−xK1)−ˉx(1−ˉxK1)|+r2|y(1−yK2)−ˉy(1−ˉyK2)|+2a1|xy1+b1x−ˉxˉy1+b1ˉx|+2a2|yz1+b2y−ˉyˉz1+b2ˉy|+d|z−ˉz|≤r1|x−ˉx|+r2|y−ˉy|+r1K1|x2−ˉx2|+r2K2|y2−ˉy2|+d|z−ˉz|+|xy−ˉxˉy+b1ˉxxy−b1ˉxxˉy(1+b1x)(1+b1ˉx)|+|yz−ˉyˉz+b2ˉyyz−b2ˉyyˉz(1+b2y)(1+b2ˉy)|≤r1|x−ˉx|+r2|y−ˉy|+r1K1|(x+ˉx)(x−ˉx)|+r2K2|(y+ˉy)(y−ˉy)|+d|z−ˉz|+|xy−ˉxˉy+b1xˉx(y−ˉy)|+|yz−ˉyˉz+b2yˉy(z−ˉz)|≤r1|x−ˉx|+r2|y−ˉy|+r1MK1|(x−ˉx)|+r2MK2|(y−ˉy)|+d|z−ˉz|+|xy−xˉy+xˉy−ˉxˉy|+b1|xˉx||y−ˉy|+|yz−yˉz+yˉz−ˉyˉz|+b2|yˉy||z−ˉz|≤(r1+r1MK1)|x−ˉx|+(r2+r2MK2)|y−ˉy|+d|z−ˉz|+M|y−ˉy|+M|x−ˉx|+b1M2|y−ˉy|+M|z−ˉz|+M|y−ˉy|+b2M2|z−ˉz|=(r1+r1MK1+M)|x−ˉx|+(r2+r2MK2+2M+b1M2)|y−ˉy|+(d+M+b2M2)|z−ˉz|≤L‖S−ˉS‖. |
where L=max{r1+r1MK1+M,r2+r2MK2+2M+b1M2,d+M+b2M2}, Based on Lemma 3, F(S) satisfies the Lipschitz condition with respect to S in Ω. According to the Banach fixed point theorem in [34], system (2.6) has a unique solution in Ω.
Theorem 2. Set A={x,y,z)∈R3:0<x+y+z<K1(r1+v)24r1v+K2(r2+v)24r2v} as a positively invariant set of system (2.6), and the solutions are bounded.
Proof: let g(t)≜g(x(t),y(t),z(t))=x(t)+y(t)+z(t),
Dαtg(t)+vg(t)=(r1+v)x(t)−r1K1x2(t)+(r2+v)y(t)−r2K2y2(t)−(d−v)z(t)=−r1K1(x(t)−K1(r1+v)2r1)2−r2K2(y(t)−K2(r2+v)2r2)2−(d−v)z(t)+K1(r1+v)24r1+K2(r2+v)24r2, |
let
u=K1(r1+v)24r1+K2(r2+v)24r2,v=d. |
According to the positive knowledge of all parameters and the nonnegativity of the solutions,
Dαtg(t)+vg(t)≤u, |
we obtain
g(t)≤uv+[g(0)−uv]Eα(−vtα), |
Since Eα(−vtα)≥0, when g(0)≤uv, limt→∞supg(t)≤uv. According to the nonnegativity of the system (2.6), g(t)≥0(∀t≥0); hence, A={x,y,z)∈R3:0<x+y+z<K1(r1+v)24r1v+K2(r2+v)24r2v} is a positively invariant set of system (2.6), and the solutions are bounded.
Let
{r1x(1−xK1)−a1xy1+b1x=0,r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y=0,a2yz1+b2y−dz=0, |
Then, the equilibrium points are E0=(0,0,0), E1=(K1,0,0), E2=(0,K2,0) and E∗=(x∗,y∗,z∗), where
x∗=b1K1−12b1+√b21K21r21+2b1K1r21−4a1b1K1r1y∗+y2∗2b1r1,y∗=da2−b2d,z∗=a1x∗(b2y∗+1)a2(b1x∗+1)−r2(b2y∗+1)(y∗−K2)a2K2. |
For system (2.6), the Jacobian matrix at the equilibrium point (x′,y′,z′) is
J(x′,y′,z′)=[r1−2r1x′K1−a1de1e23−e50e4r1+e5−a2z′e2−2dr2K2e1+a2b2dz′e1e22−d0e21z′a20], |
where e1=a2−b2d, e2=b2de1+1, e3=1+b1x′, e4=2r1x′K1+a1de1e23, e5=a1x′e3.
Theorem 3.3. For system (2.6), the equilibrium points E0 and E1 are saddle points.
Proof: The Jacobian matrices evaluated at E0 and E1 are
J(0,0,0)=[r1000r2000−d],J(K1,0,0)=[−r1−a1K1b1K1+100r2+a1K1b1K1+1000−d], |
According to Lemma 2, when the eigenvalues are all real numbers and all negative, the equilibrium points are locally asymptotically stable.
The eigenvalues of J(E0) are λ01=r1, λ02=r2 and λ03=−d. The eigenvalues of J(E1) are λ11=−r1, λ12=r2+a1K1b1K1+1 and λ13=−d.
Then, we have λ01,λ02>0, λ03,λ11<0, and λ13<0, so the equilibrium points E0 and E1 are saddle points.
Theorem 4. For system (2.6), if r1<a1K2 and a2K2(b2K2+1)<d, then the equilibrium point E2=(0,K2,0) is locally asymptotically stable.
Proof: The Jacobian matrix evaluated at E2 is
J(0,K2,0)=[r1−a1K200a1K2−r2−a2K2b2K2+100a2K2b2K2+1−d], |
The eigenvalues of J(E2) are λ1=r1−a1K2, λ2=−r2 and λ3=a2K2b2K2+1−d.
Therefore, if r1<a1K2 and a2K2(b2K2+1)<d, the equilibrium point E2 is locally asymptotically stable.
The characteristic equation of equilibrium points E∗=(x∗,y∗,z∗) is given as
P(λ)=λ3+Aλ2+Bλ+C=0, | (3.2) |
where
A=2f4−2r1−e5+f2z∗+f1de23+f5−f2b2dz∗e1e2,
B=(B1+B2),
B1=e4e5+e5r1+r21−2r1f4−f2r1z∗−2e5f4+e21dz∗a2−f6e5−f6r1−2r1f5,
B2=2e23f1f5+2f2f4z∗+a1f3e23z∗+4dr2f4e1k1+r1f7−f1f7de3−2f4f7,
C=dz∗(a1dK1e23−e1K1r1+2e1r1x∗)f1K1,
where f1=a1e1, f2=a2e2, f3=f2de1, f4=r1x∗K1, f5=r2de1K2, f6=a1de23e1, f7=b2f3z∗e2.
For Eq. (3.2), define the discriminant as
D(P)=18ABC+(AB)2−4CA2−4B3−27C2, |
With reference to the results of [35] and [36], we obtain the following fractional Routh-Hurwitz conditions:
1. If D(P)>0, A>0, C>0, and AB−C>0, E∗ is locally asymptotically stable.
2. If D(P)<0 and A≥0, B≥0, and C>0, when α<23, E∗ is locally asymptotically stable.
3. If D(P)<0, A>0, B>0, and AB=C, then for all α∈(0,1), E∗ is locally asymptotically stable.
Theorem 5. If D(P)<0, C>0 and AB≠C, then α∗∈(0,1) exists; when α∈(0,α∗), E∗ is locally asymptotically stable; when α∈(α∗,1), E∗ is unstable. The system diverges at the critical value E∗.
Proof: If D(P)<0, then the eigenvalues of Eq. (3.2) have one real root λ1=a and two complex conjugate roots λ2,3=b±ci. Then, Eq. (3.2) can be written as
P(λ)=(λ−a)[λ−(b+ci)][λ−(b−ci)]=0, | (3.3) |
where A=−a−2b, B=b2+c2+2ab, C=−a(b2+c2), c>0, a,b,c∈R.
From C>0, then a<0, and then |arg(λ1)|=π>απ2.
From AB≠C, then −a2b+b(b2+c2)≠−2ab2 ⟹ −2b[(a+b)2+c2]≠0 ⟹ b≠0 and (a+b)2+c2≠0.
Thus, we can obtain |arg(λ2,3)|=|arctan(cb)|=arctan|cb|∈(0,π2).
Then, α∗∈(0,1) exists; when α∈(0,α∗), απ2<arctan|cb|, according to Lemma 2, E∗ is locally asymptotically stable, and when α∈(α∗,1), απ2>arctan|cb|, E∗ is unstable.
To study the asymptotic stability of system (2.6), three controllers will be added. The controller is proposed as follows: μ1=m1x(x−x∗), μ2=m2y(y−y∗), and μ3=m3z(z−z∗). where m1, m2 and m3 represent negative feedback gains, which are defined as real numbers. Clearly, if mi=0(i=1,2,3) or x=x∗(y=y∗,z=z∗), then μi=0(i=1,2,3), so it will not change the equilibrium point of system (2.6).
Controllers added into system (2.6) as follows
{Dαtx=r1x(1−xK1)−a1xy1+b1x−m1x(x−x∗),Dαty=r2y(1−yK2)+a1xy1+b1x−a2yz1+b2y−m2y(y−y∗),Dαtz=a2yz1+b2y−dz−m3z(z−z∗), | (3.4) |
One gives a Lyapunov function as:
V(x,y,z)=x−x∗−x∗lnxx∗+y−y∗−y∗lnyy∗+z−z∗−z∗lnzz∗. |
then,
DαtV≤x−x∗xDαx+y−y∗yDαy+z−z∗zDαz=(x−x∗)(r1−r1xK1−a1y1+b1x)−m1(x−x∗)2+(y−y∗)(r2−r2yK2+a1x1+b1x−a2z1+b2y)−m2(y−y∗)2+(z−z∗)(a2y1+b2y−d)−m3(z−z∗)2. |
Consider E∗ to be the equilibrium point:
{r1−r1x∗K1−a1y∗1+b1x∗=0,r2−r2y∗K2+a1x∗1+b1x∗−a2z∗1+b2y∗=0,a2y∗1+b2y∗−d=0, |
According to Lemma 4, we can obtain
DαtV≤(x−x∗)(r1x∗K1+a1y∗1+b1x∗−r1xK1−a1y1+b1x)−m1(x−x∗)2+(y−y∗)(r2y∗K2−a1x∗1+b1x∗+a2z∗1+b2y∗−r2yK2+a1x1+b1x−a2z1+b2y)−m2(y−y∗)2+(z−z∗)(a2y1+b2y−a2y∗1+b2y∗)−m3(z−z∗)2=a1(x−x∗)(y∗1+b1x∗−y1+b1x)+a1(y−y∗)(x1+b1x−x∗1+b1x∗)+a2(y−y∗)(z∗1+b2y∗−z1+b2y)+a2(z−z∗)(y1+b2y−y∗1+b2y∗)−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2=a1(x−x∗)(y∗1+b1x∗−y∗1+b1x+y∗1+b1x−y1+b1x)+a1(y−y∗)(x1+b1x−x∗1+b1x+x∗1+b1x−x∗1+b1x∗)+a2(y−y∗)(z∗1+b2y∗−z∗1+b2y+z∗1+b2y−z1+b2y)+a2(z−z∗)(y1+b2y−y∗1+b2y+y∗1+b2y−y∗1+b2y∗)−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2=a1(x−x∗)(b1y∗(x−x∗)(1+b1x∗)(1+b1x)+y∗−y1+b1x)+a1(y−y∗)(x−x∗1+b1x+b1x∗(x∗−x)(1+b1x∗)(1+b1x))+a2(y−y∗)(b2z∗(y−y∗)(1+b2y∗)(1+b2y)+z∗−z1+b2y)+a2(z−z∗)(y−y∗1+b2y+b2y∗(y∗−y)(1+b2y∗)(1+b2y))−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2≤a1b1y∗1+b1x∗(x−x∗)2+a2b2z∗1+b2y∗(y−y∗)2+a1b1x∗1+b1x∗(x−x∗)(y∗−y)+a2b2y∗1+b2y∗(y−y∗)(z∗−z)−(m1+r1K1)(x−x∗)2−(m2+r2K2)(y−y∗)2−m3(z−z∗)2≤a1b1x∗2(1+b1x∗)((x−x∗)2+(y−y∗)2)+a2b2y∗2(1+b2y∗)((y−y∗)2+(z−z∗)2)+(a1b1y∗1+b1x∗−m1−r1K1)(x−x∗)2+(a2b2z∗1+b2y∗−m2−r2K2)(y−y∗)2−m3(z−z∗)2=(a1b1(2y∗+x∗)2(1+b1x∗)−m1−r1K1)(x−x∗)2+(a2b2y∗2(1+b2y∗)−m3)(z−z∗)2+(a2b2(2z∗+y∗)2(1+b2y∗)+a1b1x∗2(1+b1x∗)−m2−r2K2)(y−y∗)2. |
When m1≥a1b1(2y∗+x∗)2(1+b1x∗)−r1K1, m_{2}\geq\frac{a_{2}b_{2}(2z_{*}+y_{*})}{2(1+b_{2}y_{*})}+\frac{a_{1}b_{1}x_{*}}{2(1+b_{1}x_{*})}-\frac{r_{2}}{K_{2}} , and m_{3}\geq\frac{a_{2}b_{2}y_{*}}{2(1+b_{2}y_{*})} , it follows that D^{\alpha}V\leq0 . We can show that the equilibrium point E_{*} is uniformly asymptotically stable.
In this section, we use the Adams-Bashforth-Molton predictor-corrector algorithm numerical simulation. This method is described in detail in [37] and [38].
Example 1. In system (2.6), let r_{1} = 1 , r_{2} = 0.6 , K_{1} = 50 , K_{2} = 10 , a_{1} = 1 , a_{2} = 0.6 , b_{1} = 5 , b_{2} = 0.01 and d = 0.5 . System (2.6) has a positive equilibrium point E_{*} = (49.8479, 0.8403, 1.2597) . According to Theorem 3.5, when \alpha = 1 , \alpha = 0.9 , \alpha = 0.8 , and E_{*} is locally asymptotically stable, it can be seen from Figure 1 that the order \alpha will affect the speed at which the system converges to the equilibrium point. The relevant results are shown in Figure 1.
Example 2. In system (2.6), let r_{1} = 1 , r_{2} = 0.6 , K_{1} = 50 , K_{2} = 30 , a_{1} = 1 , a_{2} = 0.6 , b_{1} = 5 , b_{2} = 0.2 and d = 0.2 . System (2.6) has a positive equilibrium point E_{*} = (49.9382, 0.3571, 1.4158) . It follows from Theorem 3.5 that system (2.6) has a bifurcation at \alpha_{*} . When \alpha = 0.95 and \alpha = 0.8 , E_{*} is locally asymptotically stable, and when \alpha = 0.98 , E_{*} is unstable. The relevant results are shown in Figure 2.
Example 3. To verify the sensitivity of the system (2.6) to initial conditions and other parameters, according to the method in [39], apply the positive Euler format to transform the differential model into the following discrete form:
\begin{equation} \left\{ \begin{array}{ll} x_{t+1} = x_{t}+\delta(r_{1}x_{t}(1-\frac{x_{t}}{K_{1}})-\frac{a_{1}x_{t}y_{t}}{1+b_{1}x_{t}}), \\ y_{t+1} = y_{t}+\delta(r_{2}y_{t}(1-\frac{y_{t}}{K_{2}})+\frac{a_{1}x_{t}y_{t}}{1+b_{1}x_{t}}-\frac{a_{2}y_{t}z_{t}}{1+b_{2}y_{t}}), \\ z_{t+1} = z_{t}+\delta(\frac{a_{2}y_{t}z_{t}}{1+b_{2}y_{t}}-dz_{t}), \end{array} \right. \end{equation} | (4.1) |
where \delta is the time step size. We use the parameters of Example 1 to study Lyapunov exponents. Figure 3 shows that system (2.6) is in a stable state and is less sensitive to initial conditions.
This paper studies a new fractional-order food chain model with a Holling type-II functional response. First, the existence, uniqueness, nonnegativity and boundedness of the solution of the model are discussed. Second, the local stability of each equilibrium point is discussed. Third, controllers \mu_{1} = m_{1}x(x-x_{*}) , \mu_{2} = m_{2}y(y-y_{*}) and \mu_{3} = m_{3}z(z-z_{*}) are proposed and added to the system. Using the Lyapunov method, sufficient conditions for the positive equilibrium point to reach the global uniformly asymptotically stable state are obtained. Finally, we use numerical simulations to verify the theoretical results.
This work was supported by the Shandong University of Science and Technology Research Fund (2018 TDJH101).
The author declares no conflicts of interest in this paper.
[1] |
Cobelo-Garcia A, Prego R, Labandeira A (2004) Land inputs of trace metals, major elements, particulate organic carbon and suspended solids to an industrial coastal bay of the NE Atlantic. Water Res 38: 1753–1764. doi: 10.1016/j.watres.2003.12.038
![]() |
[2] | Duarte B, Gilda S, Costa JL, et al. (2014) Heavy metal distribution and partitioning in the vicinity of discharge areas of Lisbon drainage basin (Tagus Estuary, Portugal) J Sea Res 93: 101–111. |
[3] |
Oursel B, Garnier C, Pairaud I, et al. (2014) Behaviour and fate of urban particles in coastal waters: settling rate, size distribution and metals contamination characterization. Estuar Coast Shelf S 138: 14–26. doi: 10.1016/j.ecss.2013.12.002
![]() |
[4] |
Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30: 973–980. doi: 10.1016/j.envint.2004.03.001
![]() |
[5] | Morillo J, Usero J, Gracia I (2007) Potential mobility of metals in polluted coastal sediments in two bays of Southern Spain. J Coastal Res 23: 352–61. |
[6] | Pérez-López R, Álvarez-Valero AM, Nieto JM, et al. (2008) Use of sequential extraction procedure for assessing the environmental impact at regional scale of the São Domingos Mine (Iberian Pyrite Belt) Appl Geochem 23: 3452–63. |
[7] |
Ayata SD, Irisson JO. Aubert A, et al. (2018) Regionalisation of the Mediterranean basin, a MERMEX synthesis. Pr Oceanogr 163: 7–20. doi: 10.1016/j.pocean.2017.09.016
![]() |
[8] |
Bel Hassen M, Drira Z, Hamza A, et al. (2009) Phytoplankton dynamics related to water mass properties in the Gulf of Gabes: ecological implications. J Marine Sys 75: 216–226. doi: 10.1016/j.jmarsys.2008.09.004
![]() |
[9] | Meddeb S (2014) GEF: Governance and knowledge Generation Socio-economic Evaluation of Maritime Activities. Plan Bleu Project ID :P118145, Borrower/Bid N°:FC006, 103p. |
[10] |
Caçador I, Costa JL, Duarte B, et al. (2012) Macroinvertebrates and fishes as biomonitors of heavy metal concentration in the Seixal Bay (Tagus estuary): which species perform better? Ecol Indic 19: 184–190. doi: 10.1016/j.ecolind.2011.09.007
![]() |
[11] | Gargouri D, Azri C, Serbaji MM, et al. (2011) Heavy metal concentrations in the surface marine sediments of Sfax Coast, Tunisia. Environ Monit Assess 175: 514–530. |
[12] |
Ghannem N, Azri C, Serbaji MM, et al. (2011) Spatial distribution of heavy metals in the coastal zone of "Sfax-Kerkennah" plateau, Tunisia. Environ Progress Sustain Energy 30: 221–233. doi: 10.1002/ep.10462
![]() |
[13] |
Ghannem N, Gargouri D, Serbaji MM, et al. (2014) Metal contamination of surface sediments of the Sfax–Chebba coastal line, Tunisia. Environ Earth S 72: 3419–3427. doi: 10.1007/s12665-014-3248-z
![]() |
[14] | Ben Salem Z, Habib A (2016) Assessment of heavy metal contamination levels and toxicity in sediments and fishes from Mediterranean Sea (southern coast of Sfax, Tunisia) Environ Sci Pollut Res 23: 13954–13963. |
[15] |
Sammari C, Koutitonsky VG, Moussa M (2006) Sea level variability and tidal resonance in the Gulf of Gabès, Tunisia. Cont Shelf Res 26: 338–350. doi: 10.1016/j.csr.2005.11.006
![]() |
[16] | Hattour MJ, Sammari C, Ben Nassrallah S (2010) Hydrodynamics of the Gulf of Gabès deducted from the observations of currents and rivers levels. Revue Paralia 3: 13–24. |
[17] | Ben Mustapha KB, Komatsu T, Sammari Ch, et al. (2002) Tunisian megabenthos from infra (posidonia meadows) and circalittoral (coralligenous) sites. Bulletin de l'Institut National des Sciences et Technologies de la Mer de Salammbô 29: 24–36. |
[18] | Boudouresque CF, Bernard G, Pergent G, et al. (2009) Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: a critical review. Bot Mar 52: 395–418. |
[19] | D'Ortenzio F, Ribera d'Alcalà M (2009) On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6: 1–10. |
[20] |
Feki-Sahnoun W, Hamza A, Mahfoudi M, et al. (2014) Long-term microphytoplankton variability patterns using multivariate analyses: ecological and management implications. Environ Sci Pollut Res 21: 1–19. doi: 10.1007/s11356-013-1996-z
![]() |
[21] | Fourati R, Tedetti M, Guigue C, et al. (2018) Sources and spatial distribution of dissolved aliphatic and polycyclic aromatic hydrocarbons in surface coastal waters from the Gulf of Gabès (Tunisia, southern Mediterranean Sea) Prog Oceanogr 163: 232–247. |
[22] |
Chamtouri I, Abida H, Khanfir H, et al. (2008) Impact of at-site wastewater disposal systems on the groundwater aquifer in arid regions: case of Sfax city, Southern Tunisia. Environ Geol 55: 1123–1133. doi: 10.1007/s00254-007-1060-8
![]() |
[23] | Dahri N, Atoui A, Abida H, 2014. Environmental impact assessment of a flood control channel in Sfax city, Tunisia. Int J Sci Engin 7: 23–29. |
[24] | Callaert B, Bogaert JVD. (2010) The Taparura project: sustainable coastal remediation and development at Sfax, Tunisia. Terra et Aqua 118: 1–7. |
[25] | Houda B, Dorra G, Chafai A, et al. (2011) Impact of a mixed "industrial and domestic" wastewater effluent on the southern coastal sediments of Sfax (Tunisia) in the Mediterranean Sea. Int J Env Res 5: 691–704. |
[26] |
Naifar I, Pereira F, Zmemla R, et al. (2018) Spatial distribution and contamination assessment of heavy metals in marine sediments of the southern coast of Sfax, Gabes Gulf, Tunisia. Mar Pollut Bull 131: 53–62. doi: 10.1016/j.marpolbul.2018.03.048
![]() |
[27] | Louati A, Elleuch B, Kallel A, et al. (2001) Hydrocarbon contamination of coastal sediments from the Sfax area (Tunisia), Mediterranean Sea. Mar Pollut Bull 42: 445–452. |
[28] |
Quevauviller Ph (1998) Operationally defined extraction procedures for soil and sediment analysis: standardization. TrAC Trend Anal Chem 17: 289–298. doi: 10.1016/S0165-9936(97)00119-2
![]() |
[29] |
Rauret G, Lopez-Sanchez JF, Sahuquillo A, et al. (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monitor 1: 57–61. doi: 10.1039/a807854h
![]() |
[30] |
Field MP, Cullen JT, Sherrell RM. (1999) Direct determination of 10 trace metals in 50 µL samples of coastal seawater using desolvating micronebulization sector field ICP-MS. J Anal Atom Spectrom 14: 1425–1431. doi: 10.1039/A901693G
![]() |
[31] | Chester R, Stoner JH. (1973) Pb in particulates from the lower atmosphere of the Eastern Atlantic. Nature 245: 27–28. |
[32] |
Duce RA, Hoffman GL, ZoUer WH (1975) Atmospheric trace metals at remote Northern and Southern hemisphere sites: pollution or natural. Science 187: 59–61. doi: 10.1126/science.187.4171.59
![]() |
[33] | Alves-Martins MV, Laut L, Dumeba W, et al. (2017) Sediment quality and possible uses of dredged materials: the ria de Aveiro lagoon mouth area (Portugal) J Sediment Environ 2: 149–166. |
[34] | Müller G. (1969) Index of geoaccumulation in sediments of the Rhine river. Geol J 2: 108–118. |
[35] | Tomlinson D, Wilson J, Harris C, et al. (1980) Problem in Heavy Metals in Estuaries and the Formation of Pollution Index. Helgoländer Meeresunltersuchung 33: 566–575. |
[36] | Reimann C, de Caritat P (1998) Chemical elements in environment. Springer-Verlag, Berlin, 398p. |
[37] |
Reimann C, de Caritat P (2000) Intrinsic flaws of element enrichment factors (EFs) in environmental geochemistry. Envir Sci Tech 34: 5084–5091. doi: 10.1021/es001339o
![]() |
[38] |
Ergin M, Saydam C, Bastürk Ö, et al. (1991) Heavy metal concentrations in surface sediments from the two coastal inlets (Golden Horn Estuary and Izmit Bay) of the northeastern sea of Marmara. Chem Geol 91: 269–285. doi: 10.1016/0009-2541(91)90004-B
![]() |
[39] |
Schiff KC, Weisberg SB (1999) Iron as a reference element for determining trace metal enrichment in Southern California coast shelf sediments. Mar Environ Res 48: 161–176. doi: 10.1016/S0141-1136(99)00033-1
![]() |
[40] |
Karageorgis AP, Katsanevakis S, Kaberi H (2009) Use of enrichment factor for the assessment of Koumoundourou lake, Greece. Water Air Soil Pollut 204: 243–258. doi: 10.1007/s11270-009-0041-9
![]() |
[41] |
Sekabira K, Oryem Origa H, Basamba T, et al. (2010) Assessment of heavy metal pollution in urban stream sediments and its tributaries. Inter J Environ Sci Tech 7: 435–446. doi: 10.1007/BF03326153
![]() |
[42] | Shaw PJA (2003) Multivariate statistic for environmental sciences. Arnold, London, 233. |
[43] | Schaule BK, Patterson CC (1983) Perturbation of the natural lead depth profile in the Sargasso Sea by industrial lead. In: Wong C.S, Boyle E, Bruland K.W. (Eds.), Trace Metals in Sea Water Plenum Press, New York, 497–504. |
[44] |
Duce RA, Liss PS, Merill JT, et al. (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cy 5: 193–259. doi: 10.1029/91GB01778
![]() |
[45] |
D'Amore JJ, Al-Abed RS, Scheckel KG, et al. (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34: 1707–1745. doi: 10.2134/jeq2004.0014
![]() |
[46] |
Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? The analyst 133: 25–46. doi: 10.1039/B711896A
![]() |
[47] |
Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedures for the speciation of particulate trace metals. Anall Chem 51: 844–851. doi: 10.1021/ac50043a017
![]() |
[48] |
Bryan GW, Langstone WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76: 89–131. doi: 10.1016/0269-7491(92)90099-V
![]() |
[49] |
Forstner U, Ahlf W, Calmano W (1989) Studies on the transfer of heavy metals between sedimentary phases with a multi-chamber device: combined effects of salinity and redox potential. Mar Chem 28:145–58 doi: 10.1016/0304-4203(89)90192-8
![]() |
[50] | Calmano W, Hong J, Forstner U (1993) Binding and mobilisation of heavy metals in contaminated sediments affected by pH and redox potential. Water Sci Techno 28: 8–9, 223–235 |
[51] |
Zhuang Y, Allen HE, Fu G (1994) Effect of aeration of sediment on cadmium binding. Environ Toxicol Chem 13: 717–724. doi: 10.1002/etc.5620130505
![]() |
[52] | Ramos L, Hernandez M, Gonzalez MJ (1984) Sequential fractionation of copper, lead, cadmium and zinc in soils from or near Doñana National Park. J Environ Qual 23: 50–57. |
[53] | Lopez-Sanchez JF, Rubio R, Samitier C, et al. (1996) Trace metal partitioning in marine sediments and sludges deposited off the coast of Barcelona (Spain) Water Res 30: 153–159. |
[54] |
Delgado J, Barba-Brioso C, Nieto JM, et al. (2011) Speciation and ecological risk of toxic elements in estuarine sediments affected by multiple anthropogenic contributions (Guadiana saltmarshes, SW Iberian Peninsula): I. Surficial sediments. Sci Total Environ 409: 3666–3679. doi: 10.1016/j.scitotenv.2011.06.013
![]() |
[55] | Fernandez-Leborans G, Novillo A (1994) Experimental approach to cadmium effects on a marine protozoan community. Clean Soil Air Water 22: 19–27. |
[56] |
Fernandez-Leborans G, Olalla, Y. (1999) Toxicity and bioaccumulation of cadmium in marine protozoa communities. Ecotox Environ Safe 43: 292–300. doi: 10.1006/eesa.1999.1793
![]() |
[57] |
Hamzeh M, Ouddane B, Daye M, et al. (2014) Trace metal mobilization from surficial sediments of the Seine river estuary. Water air soil pollut 225: 1878–1893. doi: 10.1007/s11270-014-1878-0
![]() |
[58] | Massolo S, Bignasca A, Sarkar SK, et al. (2012) Geochemical fractionation of trace elements in sediments of Hugli River (Ganges) and Sundarban wetland (West Bengal, India) Environ Monitor Assess 1984: 7561–7577. |
[59] | Bruemer GW, Gerth J, Tiller KG (1988) Reaction kinetics of the adsorption and desorption of nickel, zinc and cadmium by goethite. I. Adsorption and diffusion of metals. J Soil Sci 39: 37–52. |
[60] |
Gerringa L (1990) Aerobic degradation of organic matter and the mobility of Cu, Cd, Ni, Pb, Zn, Fe and Mn in marine sediment slurries. Marine Chem 29: 355–374. doi: 10.1016/0304-4203(90)90023-6
![]() |
[61] | Waeles M, Tanguy V, Lespes G, et al. (2008) Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: an approach using frontal ultrafiltrtaion (UF) and stripping chronopotentiometric methods (SCP) Estuar Coast Shelf Sci 80: 538–544. |
[62] | Grousset FE, Quetel CR, Thomas B, et al. (1995) Anthropogenic vs. lithogenic origins of trace elements (As, Cd, Pb, Rb, Sb, Sc, Sn, Zn) in water column particles: northwestern Mediterranean Sea. Mar Chem 48: 291–310. |
[63] |
Dong D, Nelson YM, Lion LW, et al. (2000) Adsorption of Pb and Cd onto metal oxides and organic material in natural surface coatings as determined by selective extractions: new evidence for the importance of Mn and Fe oxides. Water Res 34: 427–36. doi: 10.1016/S0043-1354(99)00185-2
![]() |
[64] | Shul'kin VM, Bogdanova NN (1998) Mobilization of zinc, copper, cadmium and lead in aerated seawater from a suspension of bottom sediments. Mar Chem 38: 620–627. |
[65] |
Banerjee ADK (2003) Heavy metal and solid phase speciation in street dusts of Delhi, India. Environ Pollut 123: 95–105. doi: 10.1016/S0269-7491(02)00337-8
![]() |
[66] |
Crane M, Kwok KWH, Wells C, et al. (2007) Use of field data to support European Water Framework Directive Quality Standards for dissolved metals. Environ S Technol 41: 5014–5021. doi: 10.1021/es0629460
![]() |
[67] | EC (2011) Technical report on common implementation strategy for the Water Framework Directive (2000/60/EC) Technical guidance for deriving Environmental Quality Standards, Guidance document n°27, European Community, 204. |
[68] | OSPAR (2005) Analysis of synergies in assessment and monitoring of hazardous substances, eutrophication, radioactive substances and offshore industry in the North-East Atlantic. Ass Monitor Series, vol. I, n°2005/230, 67. |
[69] |
Papanicolaou F, Antaniou S, Pashalidis I (2009) Experimental and theoretical studies on physic-chemical parameters affecting the solubility of phosphogypsum. J Environ Radioactiv 100: 854–857. doi: 10.1016/j.jenvrad.2009.06.012
![]() |
[70] |
Kuryatnyk T, Angulski da Luz C, Pera JA (2008) Valorization of phosphogypsum as hydraulic binder. J Hazard Mater 160: 681–687. doi: 10.1016/j.jhazmat.2008.03.014
![]() |
[71] |
Tayibi H, Choura M, López FA, et al. (2009) Environmental impact and management of phosphogypsum. J Environ Manage 90: 2377–2386. doi: 10.1016/j.jenvman.2009.03.007
![]() |
[72] |
Hentati O, Abrantes N, Caetano AL, et al. (2015) Phosphogypsum as a soil fertilizer: ecotoxicity of amended soil and elutriates to bacteria, invertebrates, algae and plants. J Hazard Mater 294: 80–89. doi: 10.1016/j.jhazmat.2015.03.034
![]() |
[73] |
Masson M, Blanc G, Schafer J (2006) Geochemical signals and source contributions to heavy metal (Cd, Zn, Pb, Cu) fluxes into the Gironde Estuary via its major tributaries. Sci Total Environ 370: 133–146. doi: 10.1016/j.scitotenv.2006.06.011
![]() |
1. | Jinghui Lin, Meifang Li, Shijie Chen, Lihong Weng, Zhiyong He, Efficacy and Safety of First-Generation EGFR-TKIs Combined with Chemotherapy for Treatment-Naïve Advanced Non-Small-Cell Lung Cancer Patients Harboring Sensitive EGFR Mutations: A Single-Center, Open-Label, Single-Arm, Phase II Clinical Trial, 2021, Volume 14, 1178-7031, 2557, 10.2147/JIR.S313056 | |
2. | Shizhe Li, He Zhang, Ting Chen, Xiaowen Zhang, Guanning Shang, Current treatment and novel insights regarding ROS1‐targeted therapy in malignant tumors, 2024, 13, 2045-7634, 10.1002/cam4.7201 | |
3. | Hakan Şat Bozcuk, Leyla Sert, Muhammet Ali Kaplan, Ali Murat Tatlı, Mustafa Karaca, Harun Muğlu, Ahmet Bilici, Bilge Şah Kılıçtaş, Mehmet Artaç, Pınar Erel, Perran Fulden Yumuk, Burak Bilgin, Mehmet Ali Nahit Şendur, Saadettin Kılıçkap, Hakan Taban, Sevinç Ballı, Ahmet Demirkazık, Fatma Akdağ, İlhan Hacıbekiroğlu, Halil Göksel Güzel, Murat Koçer, Pınar Gürsoy, Bahadır Köylü, Fatih Selçukbiricik, Gökhan Karakaya, Mustafa Serkan Alemdar, Enhancing Treatment Decisions for Advanced Non-Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutations: A Reinforcement Learning Approach, 2025, 17, 2072-6694, 233, 10.3390/cancers17020233 | |
4. | Pakorn Prakaikietikul, Pattraporn Tajarenmuang, Phumiphat Losuriya, Natee Ina, Thanika Ketpueak, Thanat Kanthawang, Mirosława Püsküllüoğlu, Non-cancerous CT findings as predictors of survival outcome in advanced non-small cell lung cancer patients treated with first-generation EGFR-TKIs, 2025, 20, 1932-6203, e0313577, 10.1371/journal.pone.0313577 | |
5. | Die Zhang, Jumei Zhao, Yue Yang, Qiangfang Dai, Ning Zhang, Zhikuan Mi, Qianqian Hu, Xiaolong Liu, Fourth-generation EGFR-TKI to overcome C797S mutation: past, present, and future, 2025, 40, 1475-6366, 10.1080/14756366.2025.2481392 |