Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Use of an integrated biophysical process for the treatment of halo- and nitro- organic wastes

1 Environmental Protection Technologies Ltd., Kefar Netter, P.O. Box 3518, 40593 Israel
2 Unit of Environmental Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 Israel

Special Issues: Assessment and Management of Organic Pollutants

This study assessed the use of an integrated biophysical process incorporating the addition of powdered activated carbon (PAC) to a dual-sludge biological process, in order to improve the removal of problematic contaminants from complex herbicides production wastewater. The main focus was on the removal of nitrogen compounds, total organic carbon (TOC), and halogenated organics (AOX). The dual-sludge pilot setup comprised a conventional activated sludge (CAS) system followed by a membrane bioreactor (MBR) system. The dilution ratio of raw wastewater was gradually decreased (with groundwater) from 0.8 to 0 (no dilution), and PAC was added in the last phase of the study to maintain an equilibrium concentration of 2000 mg/L. PAC addition stimulated a high and steady removal (98%) of the ammoniacal nitrogen, conforming to the sea discharge limit of 5 mg/L. However, the effluent concentrations of total nitrogen, TOC, and AOX were still above the stringent discharge limits of 20, 100 and 0.5 mg/L respectively. Furthermore, it was shown that synergistic effect of various toxic organic compounds, rather than mineral salinity, was the major cause for the acute inhibitions of nitrification and AOX removal. The study showed that the proposed process can function as an efficient treatment system for the complex wastewater typically produced in the herbicide industry, however, it is recommended that complementary physico-chemical treatment steps be added to the treatment process.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved