Citation: Husam Al-Mashhadani, Sandun Fernando. Properties, performance, and applications of biofuel blends: a review[J]. AIMS Energy, 2017, 5(4): 735-767. doi: 10.3934/energy.2017.4.735
[1] | Mahmoud S. Mehany, Faizah D. Alanazi . An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions. AIMS Mathematics, 2025, 10(4): 7684-7705. doi: 10.3934/math.2025352 |
[2] | Abdur Rehman, Muhammad Zia Ur Rahman, Asim Ghaffar, Carlos Martin-Barreiro, Cecilia Castro, Víctor Leiva, Xavier Cabezas . Systems of quaternionic linear matrix equations: solution, computation, algorithm, and applications. AIMS Mathematics, 2024, 9(10): 26371-26402. doi: 10.3934/math.20241284 |
[3] | Vladislav N. Kovalnogov, Ruslan V. Fedorov, Denis A. Demidov, Malyoshina A. Malyoshina, Theodore E. Simos, Spyridon D. Mourtas, Vasilios N. Katsikis . Computing quaternion matrix pseudoinverse with zeroing neural networks. AIMS Mathematics, 2023, 8(10): 22875-22895. doi: 10.3934/math.20231164 |
[4] | Wenxv Ding, Ying Li, Anli Wei, Zhihong Liu . Solving reduced biquaternion matrices equation k∑i=1AiXBi=C with special structure based on semi-tensor product of matrices. AIMS Mathematics, 2022, 7(3): 3258-3276. doi: 10.3934/math.2022181 |
[5] | Abdur Rehman, Cecilia Castro, Víctor Leiva, Muhammad Zia Ur Rahman, Carlos Martin-Barreiro . Solving two-sided Sylvester quaternionic matrix equations: Theoretical insights, computational implementation, and practical applications. AIMS Mathematics, 2025, 10(7): 15663-15697. doi: 10.3934/math.2025702 |
[6] | Yang Chen, Kezheng Zuo, Zhimei Fu . New characterizations of the generalized Moore-Penrose inverse of matrices. AIMS Mathematics, 2022, 7(3): 4359-4375. doi: 10.3934/math.2022242 |
[7] | Abdur Rehman, Ivan Kyrchei, Muhammad Zia Ur Rahman, Víctor Leiva, Cecilia Castro . Solvability and algorithm for Sylvester-type quaternion matrix equations with potential applications. AIMS Mathematics, 2024, 9(8): 19967-19996. doi: 10.3934/math.2024974 |
[8] | Anli Wei, Ying Li, Wenxv Ding, Jianli Zhao . Three special kinds of least squares solutions for the quaternion generalized Sylvester matrix equation. AIMS Mathematics, 2022, 7(4): 5029-5048. doi: 10.3934/math.2022280 |
[9] | Dong Wang, Ying Li, Wenxv Ding . The least squares Bisymmetric solution of quaternion matrix equation AXB=C. AIMS Mathematics, 2021, 6(12): 13247-13257. doi: 10.3934/math.2021766 |
[10] | Qi Xiao, Jin Zhong . Characterizations and properties of hyper-dual Moore-Penrose generalized inverse. AIMS Mathematics, 2024, 9(12): 35125-35150. doi: 10.3934/math.20241670 |
In this paper, we establish the following four symmetric quaternion matrix systems:
{A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1H11+X2F22=G11, | (1.1) |
{A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+H11X2F22=G11, | (1.2) |
{A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+H11X2F22=G11, | (1.3) |
{A11X1=B11,C11X1D11=E11,A22X2=B22,C22X2D22=E22,F11X1+X2F22=G11, | (1.4) |
where Aii, Bii, Cii, Dii, Eii, Fii(i=¯1,2), H11, and G11 are known matrices, while Xi(i=¯1,2) are unknown.
In this paper, R and Hm×n denote the real number field and the set of all quaternion matrices of order m×n, respectively.
H={v0+v1i+v2j+v3k|i2=j2=k2=ijk=−1,v0,v1,v2,v3∈R}. |
Moreover, r(A), 0 and I represent the rank of matrix A, the zero matrix of suitable size, and the identity matrix of suitable size, respectively. The conjugate transpose of A is A∗. For any matrix A, if there exists a unique solution X such that
AXA=A,XAX=X,(AX)∗=AX,(XA)∗=XA, |
then X is called the Moore-Penrose (M−P) inverse. It should be noted that A† is used to represent the M−P inverse of A. Additionally, LA=I−A†A and RA=I−AA† denote two projectors toward A.
H is known to be an associative noncommutative division algebra over R with extensive applications in computer science, orbital mechanics, signal and color image processing, control theory, and so on (see [1,2,3,4]).
Matrix equations, significant in the domains of descriptor systems control theory [5], nerve networks [6], back feed [7], and graph theory [8], are one of the key research topics in mathematics.
The study of matrix equations in H has garnered the attention of various researchers; consequently they have been analyzed by many studies (see, e.g., [9,10,11,12]). Among these the system of symmetric matrix equations is a crucial research object. For instance, Mahmoud and Wang [13] established some necessary and sufficient conditions for the three symmetric matrix systems in terms of M−P inverses and rank equalities:
{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4W+ZB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Z+YB2+A5VB5=C5,A4Z+WB4=C4,{A1V=C1, VB1=C2,A3X+YB3=C3,A2Y+ZB2+A5VB5=C5,A4Z+WB4=C4. | (1.5) |
Wang and He [14] established the sufficient and necessary conditions for the existence of solutions to the following three symmetric coupled matrix equations and the expressions for their general solutions:
{A1X+YB1=C1,A2Y+ZB2=C2,A3W+ZB3=C3,{A1X+YB1=C1,A2Z+YB2=C2,A3Z+WB3=C3,{A1X+YB1=C1,A2Y+ZB2=C2,A3Z+WB3=C3. | (1.6) |
It is noteworthy that the following matrix equation plays an important role in the analysis of the solvability conditions of systems (1.1)–(1.4):
A1U+VB1+A2XB2+A3YB3+A4ZB4=B. | (1.7) |
Liu et al. [15] derived some necessary and sufficient conditions to solve the quaternion matrix equation (1.7) using the ranks of coefficient matrices and M−P inverses. Wang et al. [16] derived the following quaternion equations after obtaining some solvability conditions for the quaternion equation presented in Eq (1.8) in terms of M−P inverses:
{A11X1=B11,C11X1D11=E11,X2A22=B22,C22X2D22=E22,F11X1+X2F22=G11. | (1.8) |
To our knowledge, so far, there has been little information on the solvability conditions and an expression of the general solution to systems (1.1)–(1.4).
In mathematical research and applications, the concept of η-Hermitian matrices has gained significant attention [17]. An η-Hermitian matrix, for η∈{i,j,k}, is defined as a matrix A such that A=Aη∗, where Aη∗=−ηA∗η. These matrices have found applications in various fields including linear modeling and the statistics of random signals [1,17]. As an application of (1.1), this paper establishes some necessary and sufficient conditions for the following matrix equation:
{A11X1=B11,C11X1Cη∗11=E11,F11X1Fη∗11+(F22X1)η∗=G11 | (1.9) |
to be solvable.
Motivated by the study of Systems (1.8), symmetric matrix equations, η-Hermitian matrices, and the widespread use of matrix equations and quaternions as well as the need for their theoretical advancements, we examine the solvability conditions of the quaternion systems presented in systems (1.1)–(1.4) by utilizing the rank equalities and the M−P inverses of coefficient matrices. We then obtain the general solutions for the solvable quaternion equations in systems (1.1)–(1.4). As an application of (1.1), we utilize the M−P inverse and the rank equality of matrices to investigate the necessary and sufficient conditions for the solvability of quaternion matrix equations involving η-Hermicity matrices. It is evident that System (1.8) is a specific instance of System (1.1).
The remainder of this article is structured as follows. Section 2 outlines the basics. Section 3 examines some solvability conditions of the quaternion equation presented in System (1.1) using the M−P inverses and rank equalities of the matrices, and derives the solution of System (1.1). Section 4 establishes some solvability conditions for matrix systems (1.2)–(1.4) to be solvable. Section 5 investigates some necessary and sufficient conditions for matrix equation (1.9) to have common solutions. Section 6 concludes the paper.
Marsaglia and Styan [18] presented the following rank equality lemma over the complex field, which can be generalized to H.
Lemma 2.1. [18] Let A∈Hm×n, B∈Hm×k, C∈Hl×n, D∈Hj×k, and E∈Hl×i be given. Then, the following rank equality holds:
r(ABLDREC0)=r(AB0C0E0D0)−r(D)−r(E). |
Lemma 2.2. [19] Let A∈Hm×n be given. Then,
(1)(Aη)†=(A†)η,(Aη∗)†=(A†)η∗;(2)r(A)=r(Aη∗)=r(Aη);(3)(LA)η∗=−η(LA)η=(LA)η=LAη∗=RAη∗,(4)(RA)η∗=−η(RA)η=(RA)η=RAη∗=LAη∗;(5)(AA†)η∗=(A†)η∗Aη∗=(A†A)η=Aη(A†)η;(6)(A†A)η∗=Aη∗(A†)η∗=(AA†)η=(A†)ηAη. |
Lemma 2.3. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation A1X=A2 is solvable if, and only if, A2=A1A†1A2. In this case, the general solution to this equation can be expressed as
X=A†1A2+LA1U1, |
where U1 is any matrix with appropriate size.
Lemma 2.4. [20] Let A1 and A2 be given quaternion matrices with adequate shapes. Then, the equation XA1=A2 is solvable if, and only if, A2=A2A†1A1. In this case, the general solution to this equation can be expressed as
X=A2A†1+U1RA1, |
where U1 is any matrix with appropriate size.
Lemma 2.5. [21] Let A,B, and C be known quaternion matrices with appropriate sizes. Then, the matrix equation
AXB=C |
is consistent if, and only if,
RAC=0,CLB=0. |
In this case, the general solution to this equation can be expressed as
X=A†CB†+LAU+VRB, |
where U and V are any quaternion matrices with appropriate sizes.
Lemma 2.6. [15] Let Ci,Di, and Z(i=¯1,4) be known quaternion matrices with appropriate sizes.
C1X1+X2D1+C2Y1D2+C3Y2D3+C4Y3D4=Z. | (2.1) |
Denote
RC1C2=C12,RC1C3=C13,RC1C4=C14,D2LD1=D21,D31LD21=N32,D3LD1=D31,D4LD1=D41,RC12C13=M23,S12=C13LM23,RC1ZLD1=T1,C32=RM23RC12,A1=C32C14,A2=RC12C14,A3=RC13C14,A4=C14,D13=LD21LN32,B1=D41,B2=D41LD31,B3=D41LD21,B4=D41D13,E1=C32T1,E2=RC12T1LD31,E3=RC13T1LD21,E4=T1D13,A24=(LA2,LA4),B13=(RB1RB3),A11=LA1,B22=RB2,A33=LA3,B44=RB4,E11=RA24A11,E22=RA24A33,E33=B22LB13,E44=B44LB13,N=RE11E22,M=E44LE33,K=K2−K1,E=RA24KLB13,S=E22LN,K11=A2LA1,G1=E2−A2A†1E1B†1B2,K22=A4LA3,G2=E4−A4A†3E3B†3B4,K1=A†1E1B†1+LA1A†2E2B†2,K2=A†3E3B†3+LA3A†4E4B†4. |
Then, the following statements are equivalent:
(1) Equation (2.1) is consistent.
(2)
RAiEi=0,EiLBi=0(i=¯1,4),RE11ELE44=0. |
(3)
r(ZC2C3C4C1D10000)=r(D1)+r(C2,C3,C4,C1),r(ZC2C4C1D3000D1000)=r(C2,C4,C1)+r(D3D1),r(ZC3C4C1D2000D1000)=r(C3,C4,C1)+r(D2D1),r(ZC4C1D200D300D100)=r(D2D3D1)+r(C4,C1),r(ZC2C3C1D4000D1000)=r(C2,C3,C1)+r(D4D1),r(ZC2C1D300D400D100)=r(D3D4D1)+r(C2,C1),r(ZC3C1D200D400D100)=r(D2D4D1)+r(C3,C1),r(ZC1D20D30D40D10)=r(D2D3D4D1)+r(C1),r(ZC2C1000C4D3000000D1000000000−ZC3C1C4000D2000000D1000D400D4000)=r(D30D100D20D1D4D4)+r(C2C100C400C3C1C4). |
Under these conditions, the general solution to the matrix equation (2.1) is
X1=C†1(Z−C2Y1D2−C3Y2D3−C4Y3D4)−C†1U1D1+LC1U2,X2=RC1(Z−C2Y1D2−C3Y2D3−C4Y3D4)D†1+C1C†1U1+U3RD1,Y1=C†12TD†21−C†12C13M†23TD†21−C†12S12C†13TN†32D31D†21−C†12S12U4RN32D31D†21+LC12U5+U6RD21,Y2=M†23TD†31+S†12S12C†13TN†32+LM23LS12U7+U8RD31+LM23U4RN32,Y3=K1+LA2V1+V2RB1+LA1V3RB2, or Y3=K2−LA4W1−W2RB3−LA3W3RB4, |
where T=T1−C4Y3D4,Ui(i=¯1,8) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[A†24(K−A11V3B22−A33W3B44)−A†24U11B13+LA24U12],W1=(0,Im)[A†24(K−A11V3B22−A33W3B44)−A†24U11B13+LA24U12],W2=[RA24(K−A11V3B22−A33W3B44)B†13+A24A†24U11+U21RB13](0In),V2=[RA24(K−A11V3B22−A33W3B44)B†13+A24A†24U11+U21RB13](In0),V3=E†11KE†33−E†11E22N†KE†33−E†11SE†22KM†E44E†33−E†11SU31RME44E†33+LE11U32+U33RE33,W3=N†KE44+S†SE†22KM†+LNLSU41+LNU31RM−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are arbitrary quaternion matrices with appropriate sizes, and m and n denote the column number of C4 and the row number of D4, respectively.
Some necessary and sufficient conditions for System (1.1) to be solvable will be established in this section. The general solution of System (1.1) will also be derived in this section. Moreover, we provide an example to illustrate our main results.
Theorem 3.1. Let Aii,Bii,Cii,Dii,Eii,Fii,H11, and G11 (i = 1, 2) be given quaternion matrices. Put
{A1=C11LA11,P1=E11−C11A†11B11D11,B2=RA22D22,P2=E22−C22B22A†22D22,^B1=RB2RA22F22,^A2=F11LA11LA1,^A3=F11LA11,^B3=RD11H11,^A4=LC22,^B4=RA22F22,H11L^B1=^B11,P=G11−F11A†11B11H11−F11LA11A†1P1D†11H11−B22A†22F22−C†22P2B†2RA22F22, | (3.1) |
{^B22L^B11=N1,^B3L^B1=^B22,^B4L^B1=^B33,R^A2^A3=^M1,S1=^A3L^M1,T1=PL^B1,C=R^M1R^A2,C1=C^A4,C2=R^A2^A4,C3=R^A3^A4,C4=^A4,D=L^B11LN1,D1=^B33,D2=^B33L^B22,D4=^B33D,E1=CT1,E2=R^A2T1L^B22,E3=R^A3T1L^B11,E4=T1D,^C11=(LC2,LC4),D3=^B33L^B11,^D11=(RD1RD3),^C22=LC1,^D22=RD2,^C33=LC3,^D33=RD4,^E11=R^C11^C22,^E22=R^C11^C22,^E33=^D22L^D11,^E44=^D33L^D11,M=R^E11^E22,N=^E44L^E33,F=F2−F1,E=R^C11FL^D11,S=^E22LM,^F11=C2LC1,G1=E2−C2C†1E1D†1D2,^F22=C4LC3,G2=E4−C4C†3E3D†3D4,F1=C†1E1D†1+LC1C†2E2D†2,F2=C†3E3D†3+LC3C†4E4D†4. | (3.2) |
Then, the following statements are equivalent:
(1) System (1.1) is solvable.
(2)
RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11), | (3.3) |
r(E11D11)=r(D11),r(B22A22)=r(A22), | (3.4) |
r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22), | (3.5) |
r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11), | (3.6) |
r(H110−D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22), | (3.7) |
r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11), | (3.8) |
r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22), | (3.9) |
r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22), | (3.10) |
r(G11F110B22H110−D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11), | (3.11) |
r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11), | (3.12) |
r(G11B22H110F22A22)=r(H110F22A22), | (3.13) |
r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000−E1100A1100000−B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11). | (3.14) |
Proof. (1)⇔(2): The System (1.1) can be written as follows.
A11X1=B11, X2A22=B22, | (3.15) |
C11X1D11=E11, C22X2D22=E22, | (3.16) |
and
F11X1H11+X2F22=G11. | (3.17) |
Next, the solvability conditions and the expression for the general solutions of Eq (3.15) to Eq (3.17) are given by the following steps:
Step 1: According to Lemma 2.3 and Lemma 2.4, the system (3.15) is solvable if, and only if,
RA11B11=0, B22LA22=0. | (3.18) |
When condition (3.18) holds, the general solution of System (3.15) is
X1=A†11B11+LA11U1, X2=B22A†22+U2RA22. | (3.19) |
Step 2: Substituting (3.19) into (3.16) yields,
A1U1D11=P1, C22U2B2=P2, | (3.20) |
where A1,P1,B2,P2 are defined by (3.1). By Lemma 2.5, the system (3.20) is consistent if, and only if,
RA1P1=0, P1LD11=0, RC22P2=0, P2LB2=0. | (3.21) |
When (3.21) holds, the general solution to System (3.20) is
U1=A†1P1D†11+LA1W1+W2RD11,U2=C†22P2B†2+LC22W3+W4RB2. | (3.22) |
Comparing (3.22) and (3.19), hence,
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=B22A†22+C†22P2B†2RA22+LC22W3RA22+W4RB2RA22. | (3.23) |
Step 3: Substituting (3.23) into (3.17) yields
W4^B1+^A2W1H11+^A3W2^B3+^A4W3^B4=P, | (3.24) |
where ^Bi,^Aj(i=¯1,4,j=¯2,4) are defined by (3.1). It follows from Lemma 2.6 that Eq (3.24) is solvable if, and only if,
RCiEi=0,EiLDi=0(i=¯1,4),R^E11EL^E44=0. | (3.25) |
When (3.25) holds, the general solution to matrix equation (3.24) is
W1=^A2†T^B11†−^A2†^A3^M1†T^B11†−^A2†S1^A3†TN†1^B22^B11†−^A2†S1V4RN1^B22^B11†+L^A2V5+V6R^B11,W2=^M1†T^B22†+S†1S1^A3†TN†1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2−LC4V1−V2RD3−LC3V3RD4,W4=(P−^A2W1H11−^A3W2^B3−^A4W3^B4)^B1†+V3R^B1, |
where Ci,Ei,Di(i=¯1,4),^E11,^E44 are defined as (3.2), T=T1−^A4W3^B4,Vi(i=¯1,8) are arbitrary matrices with appropriate sizes over H,
^V1=(Im,0)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V1=(0,Im)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](0In),^V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](In0),^V3=^E11†F^E33†−^E11†^E22M†F^E33†−^E11†S^E22†FN†^E44^E33†−^E11†SU31RN^E44^E33†+L^E11U32+U33R^E33,V3=M†F^E44†+S†S^E22†FN†+LMLSU41+LMU31RN−U42R^E44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively. We summarize that System (1.1) has a solution if, and only if, (3.18), (3.21), and (3.25) hold, i.e., the System (1.1) has a solution if, and only if, (2) holds.
(2)⇔(3): We prove the equivalence in two parts. In the first part, we want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. In the second part, we want to show that (3.25) is equivalent to (3.6) to (3.14). It is easy to know that there exist X01,X02,U01, and U02 such that
A11X01=B11, X02A22=B22,A1U01D11=P1, C22U02B2=P2 |
holds, where
X01=A†11B11,U01=A†1P1D†11,X02=B22A†22,U02=C†22P2B†2, |
P1=E11−C11X01D11,P2=E22−C22X02D22, and P=G11−F11X01H11−F11LA11U01H11−X02F22−U02RA22F22.
Part 1: We want to show that (3.18) and (3.21) are equivalent to (3.3) to (3.5), respectively. It follows from Lemma 2.1 and elementary transformations that
(3.18)⇔r(RA11B11)=0⇔r(B11,A11)=r(A11)⇔(3.3),(3.21)⇔r(RA1P1)=0⇔r(P1,A1)=r(A1)⇔r(E11−C11A†11B11D11,C11LA11)=r(C11LA11)⇔r(E11C11B11D11A11)=r(C11A11)⇔(3.3),(3.21)⇔r(P1LD11)=0⇔r(P1D11)=r(D11)⇔r(E11−C11A†11B11D11D11)=r(D11)⇔r(E11D11)=r(D11)⇔(3.4),(3.18)⇔r(B22LA22)=0⇔r(B22A22)=r(A22)⇔(3.4). |
Similarly, we can show that (3.21) is equivalent to (3.5). Hence, (3.18) and (3.21) are equivalent to (3.3) and (3.5), respectively.
Part 2: In this part, we want to show that (3.25) is equivalent to (3.6) and (3.14). According to Lemma 2.6, we have that (3.25) is equivalent to the following:
r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4), | (3.26) |
r(P^A2^A4^B300^B100)=r(^A2,^A4)+r(^B3^B1), | (3.27) |
r(P^A3^A4H1100^B100)=r(^A3,^A4)+r(H11^B1), | (3.28) |
r(P^A4H110^B30^B10)=r(H11^B3^B1)+r(^A4), | (3.29) |
r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1), | (3.30) |
r(P^A2^B30^B40^B10)=r(^B3^B4^B1)+r(^A2), | (3.31) |
r(P^A3H110^B40^B10)=r(H11^B4^B1)+r(^A3), | (3.32) |
r(PH11^B3^B4^B1)=r(H11^B3^B4^B1), | (3.33) |
r(P^A200^A4^B30000^B1000000−P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4), | (3.34) |
respectively. Hence, we only prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14) when we prove that (3.25) is equivalent to (3.6)–(3.14). Now, we prove that (3.26)–(3.34) are equivalent to (3.6)–(3.14). In fact, we only prove that (3.26), (3.30), and (3.34) are equivalent to (3.6), (3.10), and (3.14); the remaining part can be proved similarly. According to Lemma 2.1 and elementary transformations, we have that
(3.26)=r(P^A2^A3^A4^B1000)=r(^B1)+r(^A2,^A3,^A4)⇔r(G11−F11X01H11−F11LA11U01H11−X02F22−U02RA22F22F11LA11LA1F11LA11LC22RB2RA22F22000)=r(RB2RA22F22)+r(F11LA11LA1,F11LA11,LC22)⇔r(G11−F11X01H11−X02F22−U02RA22F22F11I0RA22F2200B20A110000C220)=r(RA22F22,B2)+r(F11IA1100C22)⇔r(G11F11IU02B20F2200B2A22B11H11A11000C22X02F220C2200)=r(F22,D22,A22)+r(F11IA1100C22)⇔r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11F11C22)⇔(3.6). |
Similarly, we have that (3.27)⇔(3.7),(3.28)⇔(3.8),(3.29)⇔(3.9).
(3.30)=r(P^A2^A3^B400^B100)=r(^A2,^A3)+r(^B4^B1)⇔r(G11−F11X01H11−F11LA11U01H11−X02F22−U02RA22F22F11LA11LA1F11LA1RA22F2200RB2RA22F2200)=r(F11LA11LA1,F11LA11)+r(RA22F22RB2RA22F22)⇔r(G11−F11X01H11F11B22F220A220A110)=r(F11A11)+r(F22,A22)⇔r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)⇔(3.10). |
Similarly, we have that (3.31)⇔(3.11),(3.32)⇔(3.12),(3.33)⇔(3.13).
(3.34)=r(P^A200^A4^B30000^B1000000−P^A3^A400H110000^B100^B40^B400)=r(^B30^B100H110^B1^B4^B4)+r(^A20^A40^A3^A4)⇔r(PF11LA11LA100LC22RD11H110000RB2RA22F22000000−PF11LA11LC2200H110000RB2RA22F2200RA22F220RA22F2200)=r(RD11H110RB2RA22F2200H110RB2RA22F22RA22F22RA22F22)+r(F11LA11LA10LC220F11LA11LC22)⇔r(PF11LA1100LC22000H110000D1100RA22F2200000B2000−G11+X02F22+U02RA22F22F11LA11LC2200000H110000000RA22F220000B2RA22F220RA22F22000000A1000000)=r(H110D1100RA2200B200H110000RA22F2200B2RA22F22RA22F22000)+r(F11LA110LC220F11LA11LC22A100)⇔r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000−E1100A1100000−B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)⇔(3.14). |
Theorem 3.2. Let System (1.1) be solvable. Then, the general solution of System (1.1) is
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=B22A†22+C†22P2B†2RA22+LC22W3RA22+W4RB2RA22, |
where
W1=^A2†T^B11†−^A2†^A3^M1†T^B11†−^A2†S1^A3†TN†1^B22^B11†−^A2†S1V4RN1^B22^B11†+L^A2V5+V6R^B11,W2=^M1†T^B22†+S†1S1^A3†TN†1+L^M1LS1V7+V8R^B22+L^M1V4RN1,W3=F1+LC2^V1+^V2RD1+LC1^V3RD2, or W3=F2−LC4V1−V2RD3−LC3V3RD4,W4=(P−^A2W1H11−^A3W2^B3−^A4W3^B4)^B1†+V3R^B1,^V1=(Im,0)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V1=(0,Im)[^C11†(F−^C22V3^D22−^C33^V3^D33)−^C11†U11^D11+L^C11U12],V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](0In),^V2=[R^C11(F−^C22V3^D22−^C33^V3^D33)^D11†+^C11^C11†U11+U21R^D11](In0),^V3=^E11†F^E33†−^E11†^E22M†F^E33†−^E11†S^E22†FN†^E44^E33†−^E11†SU31RN^E44^E33†+L^E11U32+U33R^E33,V3=M†F^E44†+S†S^E22†FN†+LMLSU41+LMU31RN−U42R^E44, |
T=T1−^A4W3^B4,Vi(i=¯4,8) are arbitrary matrices with appropriate sizes over H, U11,U12,U21, U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of C22 and the row number of A22, respectively.
Next, we consider a special case of the System (1.1).
Corollary 3.3. [16] Let Aii,Bii,Cii,Dii,Eii,Fii(i=1,2), and G11 be given matrices with appropriate dimensions over H. Denote
T=C11LA11,K=RA22D22, B1=RKRA22F22,A1=F11LA11LT,C3=F11LA11,D3=RD11,C4=LC22,D4=RA22F22,Aα=RA1C3,Bβ=D3LB1,Cc=RAαC4,Dd=D4LB1,E=RA1E1LB1,A=A†11B11+LA11T†(E11−C11A†11B11D11)D†,B=B22A†22+C†22(E22−C22B22A†22D22)K†RA22,E1=G11−F11A−BF22,M=RAαCc,N=DdLBβ,S=CcLM. |
Then, the following statements are equivalent:
(1) Equation (1.8) is consistent.
(2)
RA11B11=0,B22LA22=0,RC22E22=0,E11LD11=0,RT(E11−C11A†11B11D11)=0,(E22−C22B22A†22D22)LK=0,RMRAαE=0,ELBβLN=0,RAαELDd=0,RCcELBβ=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(F220D22A22B11A1100C22G11C22F11E22C22B22)=r(F22,D22,A22)+r(A11C22F11),r(0F22D11D22A22C11E1100A11B11D1100C22F11C22G11D11E22C22B22)=r(C11A11C22F11)+r(F22D11,D22,A22),r(G11F11B22F220A22B11A110)=r(F11A11)+r(F22,A22),r(F11G11D11B220F22D11A22C11E110A11B11D110)=r(F22D11,A22)+r(F11C11A11). |
Finally, we provide an example to illustrate the main results of this paper.
Example 3.4. Conside the matrix equation (1.1)
A11=(a111a121),B11=(b111b112b121b122),C11=(c111c121),D11=(d111d121),E11=(e111e121),A22=(a211a212),B22=(b211b212b221b222),C22=(c211c212c221c222),D22=(d211),E22=(e211e221),F11=(f111f121),H11=(h111h112h121h122),F22=(f211f212),G11=(g111g112g121g122), |
where
a111=0.9787+0.5005i+0.0596j+0.0424k,a121=0.7127+0.4711i+0.6820j+0.0714k,b111=0.5216+0.8181i+0.7224j+0.6596k,b112=0.9730+0.8003i+0.4324j+0.0835k,b121=0.0967+0.8175i+0.1499j+0.5186k,b122=0.6490+0.4538i0.8253j+0.1332k,c111=0.1734+0.8314i+0.0605j+0.5269k,c121=0.3909+0.8034i+0.3993j+0.4168k,d111=0.6569+0.2920i+0.0159j+0.1671k,d121=0.6280+0.4317i+0.9841j+0.1062k,e111=0.3724+0.4897i+0.9516j+0.0527k,e121=0.1981+0.3395i+0.9203j+0.7379k,a211=0.2691+0.4228i+0.5479j+0.9427k,a212=0.4177+0.9831i+0.3015j+0.7011k,b211=0.6663+0.6981i+0.1781j+0.9991k,b212=0.0326+0.8819i+0.1904j+0.4607k,b221=0.5391+0.6665i+0.1280j+0.1711k,b222=0.5612+0.6692i+0.3689j+0.9816k,c211=0.1564+0.6448i+0.1909j+0.4820k,c212=0.5895+0.3846i+0.2518j+0.6171k,c221=0.8555+0.3763i+0.4283j+0.1206k,c222=0.2262+0.5830i+0.2904j+0.2653k,d211=0.8244+0.9827i+0.7302j+0.3439k,e211=0.5847+0.9063i+0.8178j+0.5944k,e221=0.1078+0.8797i+0.2607j+0.0225k,f111=0.4253+0.1615i+0.4229j+0.5985k,f121=0.3127+0.1788i+0.0942j+0.4709k,h111=0.6959+0.6385i+0.0688j+0.5309k,h112=0.4076+0.7184i+0.5313j+0.1056k,h121=0.6999+0.0336i+0.3196j+0.6544k,h122=0.8200+0.9686i+0.3251j+0.6110k,f211=0.7788+0.4235i+0.0908j+0.2665k,f212=0.1537+0.2810i+0.4401j+0.5271k,g111=0.4574+0.5181i+0.6377j+0.2407k,g112=0.2891+0.6951i+0.2548j+0.6678k,g121=0.8754+0.9436i+0.9577j+0.6761k,g122=0.6718+0.0680i+0.2240j+0.8444k. |
Computing directly yields the following:
r(B11A11)=r(A11)=2,r(E11C11B11D11A11)=r(C11A11)=2,r(E11D11)=r(D11)=1,r(B22A22)=r(A22)=2,r(E22C22)=r(C22)=2,r(E22C22B22D22A22)=r(D22A22)=3,r(F220D22A22B11H11A1100C22G11C22F11E22C22B22)=r(F22D22A22)+r(A11C22F11)=5,r(H110−D1100F2200D22A220C11E11000A11B11D1100C22G11C22F110E22C22B22)=r(C11A11C22F11)+r(H11D1100F220D22A22)=7,r(H11000F220D22A220A1100C22G11C22F11E22C22B22)=r(H1100F22D22A22)+r(A11C22F11)=6,r(H1100F22D22A22C22G11E22C22B22)=r(H1100F22D22A22)=5,r(G11F11B22F220A22B11H11A110)=r(F11A11)+r(F22,A22)=5,r(G11F110B22H110−D110F2200A220C11E1100A11B11D110)=r(H11D110F220A22)+r(F11C11A11)=6,r(G11F11B22H1100F220A220A110)=r(H110F22A22)+r(F11A11)=5, r(G11B22H110F22A22)=r(H110F22A22)=4,r(H11000000D110F220000D22A220000H1100000000F22D22A220000F220F2200000A220C1100000−E1100A1100000−B11D110C22G11C22F11000E22C22B2200)=r(H1100000D110F22000D22A22000H110000000F22D22A220000F22F2200000A22)+r(C11A11C22F11)=11. |
All rank equations in (3.3) to (3.14) hold. So, according to Theorem 3.1, the system of matrix equation (1.1) has a solution. By Theorem 3.2, the solution of System (1.1) can be expressed as
X1=(0.4946+0.1700i−0.1182j−0.3692k0.4051−0.0631i−0.2403j−0.1875k),X2=(−0.0122+0.2540i−0.3398j−0.3918k0.7002−0.3481i−0.2169j+0.0079k). |
In this section, we use the same method and technique as in Theorem 3.1 to study the three systems of Eqs (1.2)–(1.4). We only present their results and omit their proof.
Theorem 4.1. Consider the matrix equation (1.2) over H, where Aii,Bii,Cii,Dii,Eii,Fii,G11, and H11(i=¯1,2) are given. Put
A1=C11LA11,P1=E11−C11A†11B11D11,B2=RA22D22,P2=E22−C22B22A†22D22,^A1=F11LA11LA1,^A2=F11LA1,^B2=RD11,^A3=H11LC22,^B3=RA22F22,^B4=RB2RA22F22,B=G11−F11A†11B11−F11LA11A†1P1D†11−H11B22A†22F22−H11C†22P2B†2RA22F22,R^A1^A2=A12,R^A1^A3=A13,R^A1H11=A14,^B3L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA14,^C2=RA12A14,^C3=RA13A14,^C4=A14,D=L^B2LN1,^D1=^B4,^D2=^B4L^B3,^D3=^B4L^B2,^D4=^B4D,^E1=CT1,^E2=RA12T1L^B3,^E3=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C4),D13=(R^D1R^D3),C12=L^C1,D12=R^D2,C33=L^C3,D33=R^D4,E24=RC24C12,E13=RC24C33,E33=D12LD13,E44=D33LD13,M=RE24E13,N=E44LE33,F=F2−F1,E=RC24FLD13,S=E13LM,^F11=^C2L^C1,^G1=^E2−^C2^C1†^E1^D1†^D2,F33=^C4L^C3,^G2=^E4−^C4^C3†^E3^D3†^D4,F1=^C1†^E1^D1†+L^C1^C2†^E2^D2†,F2=^C3†^E3^D3†+L^C3^C4†^E4^D4†. |
Then, the following statements are equivalent:
(1) System (1.2) is consistent.
(2)
RA11B11=0,RA1P1=0,P1LD11=0,B22LA22=0,RC22P2=0,P2LB2=0,R^Ci^Ei=0,^EiL^Di=0(i=¯1,4),RE24ELE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22,C22)=r(C22),r(E22C22B22D22A22)=r(D22,A22),r(G11D11F11H11E11C110B11D11A110)=r(F11H11C110A110),r(G11D11F11H110F22D1100A22E11C1100B11D11A1100)=r(F22,A22)+r(F11H11C110A110),r(H11F11G11D110C11E110A11B11D11)=r(H11F110C110A11),r(H11F110G11D1100A22F22D110C110E110A110B11D11)=r(F22D11,A22)+r(H11F110C110A11),r(G11D11F11H1100F22D1100D22A22E11C1100000C22−E22−C22B22B11D11A11000)=r(F11H11C1100C22A110)+r(F22,D22,A22),r(G11D11F11H11B22F22D110A22E11C110B11D11A110)=r(F11C11A11)+r(F22,A22),r(H11F1100G11D1100D22A22F22D110C1100E110A1100B11D11C220−E22−C22B220)=r(H11F110C110A11C220)+r(D22,A22,F22D11),r(F11H11B22G11D110A22F22D11C110E11A110B11D11)=r(F11C11A11)+r(A22,F22D11),r(G11F1100H1100H5B220F22000000A22000H11F11H110−H11B220G11D1100000D22A220−F22D1100C2200E22000000C110000E11000A110000B11D11B11A110000000)=r(F2200A2200D22A220F22D11)+r(F1100H110H11F11H110C220000C11000A110A11000). |
Under these conditions, the general solution of System (1.2) is
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=B22A†22+C†22P2B†2RA22+LC22W3RA22+W4RB2RA22, |
where
W1=^A1†(B−^A2W1^B2−^A3W3^B3−H11W4^B4)+L^A1U1,W2=A†12T^B2†−A†12A13M†1T^B2†−A†12S1A†13TN†1^B3^B2†−A†12S1U2RN1^B3^B2†+LA12U3+U4R^B2,W3=M†1T^B3†+S†1S1A†13TN†1+LM1LS1U5+U6R^B3+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2−L^C4^V1−^V2R^D3−L^C3^V3R^D4, |
where T=T1−H11W4^B4,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[C†24(F−C12V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V1=(0,Im)[C†24(F−C12V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V2=[RC24(F−C12V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](0In),V2=[RC24(F−C12V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](In0),V3=E†24FE†33−E†24E13M†FE†33−E†24SE†13FN†E44E†33−E†24SU31RNE44E†33+LE24U32+U33RE33,^V3=M†FE†44+S†SE†13FN†+LMLSU41+LMU31RN−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of H11 and the row number of A22, respectively.
Theorem 4.2. Consider the matrix equation (1.3) over H, where Aii,Bii,Cii,Dii,Eii,Fii,G11H11(i=¯1,2) are given. Put
A1=C11LA11,P1=E11−C11A†11B11D11,A2=C22LA22,P2=E22−C22A†22B22D22,^A1=F11LA11LA1,^A2=F11LA11,^B2=RD11,^A11=H11LA22LA2,^A22=H11LA22,^B4=RD22F22,B=G11−F11A†11B11−F11LA11A†1P1D†11−H11A†22B22F22−H11LA22A†2P2D†22F22,R^A1^A2=A12,R^A1^A11=A13,R^A1^A22=A33,F22L^B2=N1,RA12A13=M1,S1=A13LM1,R^A1B=T1,C=RM1RA12,^C1=CA33,^C2=RA12A33,^C11=RA13A33,^C22=A33,D=L^B2LN1,^D1=^B4,^D2=^B4LF22,^D11=^B4L^B2,^D22=^B4D,^E1=CT1,^E2=RA12T1LF22,^E11=RA13T1L^B2,^E4=T1D,C24=(L^C2,L^C22),D13=(R^D1R^D11),C21=L^C1,D12=R^D2,C33=L^C11,D33=R^D22,E11=RC24C21,E22=RC24C33,E33=D12LD13,E44=D33LD13,M=RE11E22,N=E44LE33,F=F2−F1,E=RC24FLD13,S=E22LM,^F11=^C2L^C1,^G1=^E2−^C2^C1†^E1^D1†^D2,^F22=^C22L^C11,^G2=^E4−^C22^C11†^E11^D11†^D22,F1=^C1†^E1^D1†+L^C1^C2†^E2^D2†,F2=^C11†^E11^D11†+L^C11^C22†^E4^D22†. |
Then, the following statements are equivalent:
(1) System (1.3) is consistent.
(2)
RA11B11=0,RA1P1=0,P1LD11=0,RA22B22=0,RA2P2=0,P2LD22=0,R^Ci^Ei=0,R^C11^E11=0,R^C22^E4=0,^EiL^Di=0(i=¯1,2),^E11L^D11=0,^E4L^D22=0,RE11ELE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11),r(B22,A22)=r(A22),r(E22C22B4D22A22)=r(C22A22),r(E22D22)=r(D22),r(G11F11H11B11A110B22F220A22)=r(F11H11A1100A22),r(G11F11H11F2200B11A11000A22)=r(F22)+r(F11H11A1100A22),r(H11F11G11D11A220B22F22D110C11E110A11B11D11)=r(H11F110C110A11A220),r(H11F11G11D1100F22D110C11E110A11B11D11A2200)=r(H11F110C110A11A220)+r(F22D11),r(G11F11H110F2200D22B11A110000C22−E2200A22−B22D22)=r(F11H11A1100C220A22)+r(F22,D22),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(H11F110G11D1100D22F22D11C220−E2200C110E11A2200B22F22D110A110B11D11)=r(H11F11C2200C11A2200A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11),r(G11F11000H110F2200000000−G11D11H11F11H11000F22D11000B22B11A1100000000C2200E2200−E110C110000−B22F22D11A2200000−B11D110A110000000A220)=r(F22000D22F22D11)+r(F1100H110H11F11H110C22000A220000C11000A110A11000000A22). |
Under these conditions, the general solution of System (1.3) is
X1=A†11B11+LA11A†1P1D†11+LA11LA1W1+LA11W2RD11,X2=A†22B4+LA22A†2P2D†22+LA22LA2W3+LA22W4RD22, |
where
W1=^A1†(B−^A2W1^B2−^A11W3F22−^A22W4^B4)+L^A1U1,W2=A†12T^B2†−A†12A13M†1T^B2†−A†12S1A†13TN†1F22^B2†−A†12S1U2RN1F22^B2†+LA12U3+U4R^B2,W3=M†1TF†22+S†1S1A†13TN†1+LM1LS1U5+U6RF22+LM1U2RN1,W4=F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=F2−L^C22^V1−^V2R^D11−L^C11^V3R^D22, |
where T=T1−^A22W4^B4,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[C†24(F−C21V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V1=(0,Im)[C†24(F−C21V3D12−C33^V3D33)−C†24U11D13+LC24U12],^V2=[RC24(F−C21V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](0In),V2=[RC24(F−C21V3D12−C33^V3D33)D†13+C24C†24U11+U21RD13](In0),V3=E†11FE†33−E†11E22M†FE†33−E†11SE†22FN†E44E†33−E†11SU31RNE44E†33+LE11U32+U33RE33,^V3=M†FE†44+S†SE†22FN†+LMLSU41+LMU31RN−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any matrices with appropriate sizes, and m and n denote the column number of H11 and the row number of D22, respectively.
Theorem 4.3. Consider the matrix equation (1.4) over H, where Aii,Bii,Cii,Dii,Eii,Fii(i=¯1,2), and G11 are given. Put
^A1=C11LA11,P1=E11−C11A†11B11D11,^A2=C22LA22,P2=E22−C22A†22B22D22,A5=F11LA1L^A1,A6=F11LA11,A7=LA22L^A2,A8=LA22,B5=RD11,B7=RD22F22,B=G11−F11A†11B11−F11LA1^A1†P1D†11−A†22B22F22−LA22^A2†P2D†22F22,RA5A6=A11,RA5A7=A2,RA5A8=A33,F22LB5=N1,RA11A2=M1,S1=A2LM1,RA5B=T1,C=RM1RA11,^C1=CA33,^C2=RA11A33,^C11=RA2A33,^C4=A33,D=LB5LN1,^D1=B7,^D2=B7LF22,^D3=B7LB5,^D4=B7D,^E1=CT1,^E2=RA11T1LF22,^E11=RA2T1LB5,^E4=T1D,C1=(L^C2,L^C4),D13=(R^D1R^D3),D1=L^C1,D2=R^D2,C33=L^C11,D33=R^D4,E11=RC1D1,E2=RC1C33,E33=D2LD13,E44=D33LD13,M=RE11E2,N=E44LE33,F=^F2−^F1,E=RC1FLD13,S=E2LM,F11=^C2L^C1,^G1=^E2−^C2^C1†^E1^D1†^D2,F33=^C4L^C11,^G2=^E4−^C4^C11†^E11^D3†^D4,^F1=^C1†^E1^D1†+L^C1^C2†^E2^D2†,^F2=^C11†^E11^D3†+L^C11^C4†^E4^D4†. |
Then, the following statements are equivalent:
(1) Equation (1.4) is consistent.
(2)
RA11B11=0,R^A1P1=0,P1LD11=0,RA22B22=0,R^A2P2=0,P2LD22=0, R^Ci^Ei=0,^EiL^Di=0(i=¯1,2),R^C11^E11=0,R^C4^E4=0,^E11L^D3=0,^E4L^D4=0,RE11ELE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11D11A11)=r(C11A11),r(E11D11)=r(D11), r(B22,A22)=r(A22),r(E22C22B22D22A22)=r(C22A22),r(E22D22)=r(D22),r(B11A11A22G11−B22F22A22F11)=r(A11A22F11),r(F220B11A11A22G11A22F11)=r(F22)+r(A11A22F11),r(C11E11A11B11D11−A22F11B22F22D11−A22G11D11)=r(C11A11A22F11),r(0F22D11C11E11A11B11D11A22F11A22G11D11)=r(C11A11A22F11)+r(F22D11),r(F220D22C22G11C22F11E22B11A110A22G11A22F11B22D22)=r(F22,D22)+r(C22F11A22F11A11),r(G11F11F220B11A11)=r(F11A11)+r(F22),r(0D22F22D11C22F11E22C22G11D11C110E22A22F110A22G11D11−B22F22D11A110B11D11)=r(C22F11C11A22F11A11)+r(D22,F22D11),r(F11G11D110F22D11C11E11A11B11D11)=r(F11C11A11)+r(F22D11), |
r(F22000000F22D110B22B11A11000C22G11C22F11C22G11D11−C22F11E2200−E11C110A22G11A22F11A22G11D11−B22F22D11−A22F11000−B11D11A110A22G11A22F11000)=r(F22000F22D11D22)+r(−C22F11C22F11−A22F11A22F110C110A11A110A110−A22F110). |
Under these conditions, the general solution of System (1.4) is
X1=A†11B11+LA1^A1†P1^B1†+LA1L^A1W1+LA1W2R^B1,X2=A†2B22+LA2^A2†P2^B2†+LA2L^A2W3+LA3W4R^B2, |
where
W1=A†5(B−A6W1B5−A7W3F22−A8W4B7)+LA5U1,W2=A†1TB†5−A†1A2M†1TB†5−A†1S1A†2TN†1F22B†5−A†1S1U2RN1F22B†5+LA1U3+U4RB5,W3=M†1TF†22+S†1S1A†2TN†1+LM1LS1U5+U6RF22+LM1U2RN1,W4=^F1+L^C2V1+V2R^D1+L^C1V3R^D2, or W4=^F2−L^C4^V1−^V2R^D3−L^C11^V3R^D4, |
where T=T1−A8W4B7,Ui(i=¯1,6) are arbitrary matrices with appropriate sizes over H,
V1=(Im,0)[C†1(F−D1V3D2−C33^V3D33)−C†1U11D1+LC1U12],^V1=(0,Im)[C†1(F−D1V3D2−C33^V3D33)−C†1U11D1+LC1U12],^V2=[RC1(F−D1V3D2−C33^V3D33)D†1+C1C†1U11+U21RD1](0In),V2=[RC1(F−C2V3D2−C33^V3D33)D†1+C1C†1U11+U21RD1](In0),V3=E†11FE†33−E†11E2M†FE†33−E†11SE†2FN†E44E†33−E†11SU31RNE44E†33+LE11U32+U33RE33,^V3=M†FE†44+S†SE†2FN†+LMLSU41+LMU31RN−U42RE44, |
U11,U12,U21,U31,U32,U33,U41, and U42 are any quaternion matrices with appropriate sizes, and m and n denote the column number of A22 and the row number of D22, respectively.
In this section, we use the Lemma 2.2 and the Theorem 3.1 to study matrix equation (1.9) involving η-Hermicity matrices.
Theorem 5.1. Let A11,B11,C11,E11,F11,F22, and G11(G11=Gη∗11) be given matrices. Put
A1=C11LA11,P1=E11−C11A†11B11Cη∗11,B2=Aη∗1,P2=Pη∗1,ˆB1=RB2(F22LA11)η∗,ˆA3=F11LA11,ˆA2=ˆA3LA1,ˆA4=LC11,ˆB3=(F11ˆA4)η∗,ˆB4=(F22LA11)η∗,Fη∗11LˆB1=ˆB11,P=G11−F11A†11B11Fη∗11−ˆA3A†1P1(F11C†11)η∗−(F22A†11B11)η∗−C†11P2B†2ˆB4,ˆB22LB11=N1,ˆB3LˆB1=ˆB22,ˆB4LˆB1=ˆB33,RˆA2ˆA3=ˆM1,S1=ˆA3LM1,T1=PL^B1,C=RM1RˆA2,C1=CˆA4,C2=RˆA2ˆA4,C3=RˆA3ˆA4,C4=ˆA4,D=LˆB11LN1,D1=ˆB33,D2=ˆB33LˆB22,D4=ˆB33D,E1=CT1,E2=RˆA2T1LˆB11,E4=T1D,ˆC11=(LC2,LC4),D3=ˆB33LˆB11,ˆD11=(RD1RD3),ˆC22=LC1,ˆD22=RD2, ˆC33=LC3,ˆD33=RD4,ˆE11=RˆC11ˆC22,ˆE22=RˆC11ˆC33,ˆE33=ˆD22LˆD11,ˆE44=ˆD33LˆD11,M=RˆE11ˆE22,N=ˆE44LˆE33, F=F2−F1,E=RˆC11FLˆD11,S=ˆE22LM,^F11=C2LC1,G1=E2−C2C†1E1D†1D2,^F22=C4LC3,G2=E4−C4C†3E3D†3D4,F1=C†1E1D†1+L†C1C†2E2D†2,F2=C†3E3D†3+LC3C†4E4D†4. |
Then, the following statements are equivalent:
(1) System (1.9) is solvable.
(2)
RA11B11=0,RA1P1=0,P1(RC11)η∗=0,RCiEi=0,EiLDi=0(i=¯1,4),RˆE11ELˆE44=0. |
(3)
r(B11,A11)=r(A11),r(E11C11B11Cη∗11A11)=r(C11A11), r(E11Cη∗11)=r(C11),r(Fη∗220Cη∗11Aηη∗11B11Fη∗11A1100C11G11C11F11Eη∗11C11Bη∗11)=r(Fη∗22,Cη∗11,Aη∗11)+r(A11C11F11),r(Fη∗110−Cη∗1100Fη∗2200Cη∗11Aη∗110C11E11000A11B11Cη∗1100C11G11C11F110Eη∗11C11Bη∗11)=r(C11A110)+r(Fη∗11Cη∗1100Fη∗220Cη∗11Aη∗11),r(Fη∗11000Fη∗220Cη∗11Aη∗110A1100C11G11C11F11Eη∗11C11Bη∗11)=r(Fη∗1100Fη∗22Cη∗11Aη∗11)+r(A11C11F11),r(Fη∗1100Fη∗22Cη∗11Aη∗11C11G11Eη∗11C11Bη∗11)=r(Fη∗1100Fη∗22Cη∗11Aη∗11,),r(G11F11Bη∗11Fη∗220Aη∗11B11Fη∗11A110)=r(F11A11)+r(Fη∗22,Aη∗11),r(G11F110Bη∗11Fη∗110−Cη∗110Fη∗2200Aη∗110C11E1100A11B11Cη∗110)=r(Fη∗11Cη∗110Fη∗220Aη∗11)+r(F11C11A11),r(G11F11Bη∗11Fη∗1100Fη∗220Aη∗110A110)=r(Fη∗110Fη∗22Aη∗11)+r(F11A11),r(G11Bη∗11Fη∗110Fη∗22Aη∗11)=r(Fη∗110Fη∗22Aη∗11),r(Fη∗11000000Cη∗110Fη∗220000Cη∗11Aη∗110000Fη∗1100000000Fη∗22Cη∗11Aη∗110000Fη∗220Fη∗2200000Aη∗110C1100000−E1100A1100000−B11Cη∗110C11G11C11F11000Eη∗11C11Bη∗1100)=r(Fη∗1100000Cη∗110Fη∗22000Cη∗11Aη∗11000Fη∗110000000Fη∗22Cη∗11Aη∗110000Fη∗22Fη∗2200000Aη∗11)+r(C11A11C11F11). |
Proof. Evidently, the system of Eq (1.9) has a solution if and only if the following matrix equation has a solution:
A11^X1=B11,C11^X1Cη∗11=E11,^X2Aη∗11=Bη∗11,C11^X2Cη∗11=Eη∗11,F11X1Fη∗11+^X2η∗Fη∗22=G11. | (5.1) |
If (1.9) has a solution, say, X1, then (^X1, ^X2):=(X1, Xη∗1) is a solution of (5.1). Conversely, if (5.1) has a solution, say (^X1, ^X2), then it is easy to show that (1.5) has a solution
X1:=^X1+Xη∗22. |
According to Theorem 3.1, we can deduce that this theorem holds.
We have established the solvability conditions and the expression of the general solutions to some constrained systems (1.1)–(1.4). As an application, we have investigated some necessary and sufficient conditions for Eq (1.9) to be consistent. It should be noted that the results of this paper are valid for the real number field and the complex number field as special number fields.
Long-Sheng Liu, Shuo Zhang and Hai-Xia Chang: Conceptualization, formal analysis, investigation, methodology, software, validation, writing an original draft, writing a review, and editing. All authors of this article have contributed equally. All authors have read and approved the final version of the manuscript for publication.
This work is supported by the National Natural Science Foundation(No. 11601328) and Key scientific research projects of univesities in Anhui province(No. 2023AH050476).
The authors declare that they have no conflicts of interest.
[1] |
Lois E (2007) Definition of biodiesel. Fuel 86: 1212–1213. doi: 10.1016/j.fuel.2006.09.028
![]() |
[2] |
Ma F, Hanna MA (1999) Biodiesel production: a review. Bioresource Technol 70: 1–15. doi: 10.1016/S0960-8524(99)00025-5
![]() |
[3] |
Sharma KR (2015) Improvement of biodiesel product yield during simple consecutive-competitive reactions. JEAS 5: 204–216. doi: 10.4236/jeas.2015.54017
![]() |
[4] |
Hossain AS, Salleh A, Boyce AN, et al. (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotech 4: 250–254. doi: 10.3844/ajbbsp.2008.250.254
![]() |
[5] |
Demirbas A (2007) Importance of biodiesel as transportation fuel. Energ policy 35: 4661–4670. doi: 10.1016/j.enpol.2007.04.003
![]() |
[6] |
Sarin R, Sharma M, Sinharay S, et al. (2007) Jatropha-palm biodiesel blends: an optimum mix for Asia. Fuel 86: 1365–1371. doi: 10.1016/j.fuel.2006.11.040
![]() |
[7] |
Demirbas A (2008) Relationships derived from physical properties of vegetable oil and biodiesel fuels. Fuel 87: 1743–1748. doi: 10.1016/j.fuel.2007.08.007
![]() |
[8] |
Silitonga A, Masjuki H, Mahlia T, et al. (2013) Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew Sust Energ Rev 22: 346–360. doi: 10.1016/j.rser.2013.01.055
![]() |
[9] | Center UAFD (2016) ASTM Biodiesel Specifications. Available from: http://wwwafdcenergygov/fuels/biodiesel_specificationshtml. |
[10] | Tyson KS, McCormick RL (2006) Biodiesel handling and use guidelines: US Department of Energy, Energy Efficiency and Renewable Energy. |
[11] | Capareda S (2013) Introduction to biomass energy conversions, CRC Press. |
[12] | Canakci M, van Gerpen JH (1998) The performance and emissions of a diesel engine fueled with biodiesel from yellow grease and soybean oil. Available from: http://web.cals.uidaho.edu/biodiesel/files/2013/08/ASABE-016050.pdf. |
[13] |
Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87: 3490–3496. doi: 10.1016/j.fuel.2008.07.008
![]() |
[14] |
Candeia R, Silva M, Carvalho FJ, et al. (2009) Influence of soybean biodiesel content on basic properties of biodiesel-diesel blends. Fuel 88: 738–743. doi: 10.1016/j.fuel.2008.10.015
![]() |
[15] |
Altın R, Cetinkaya S, Yücesu HS (2001) The potential of using vegetable oil fuels as fuel for diesel engines. Energ Convers Manage 42: 529–538. doi: 10.1016/S0196-8904(00)00080-7
![]() |
[16] |
Dhar A, Kevin R, Agarwal AK (2012) Production of biodiesel from high-FFA neem oil and its performance, emission and combustion characterization in a single cylinder DICI engine. Fuel Process Technol 97: 118–129. doi: 10.1016/j.fuproc.2012.01.012
![]() |
[17] |
Gumus M, Kasifoglu S (2010) Performance and emission evaluation of a compression ignition engine using a biodiesel (apricot seed kernel oil methyl ester) and its blends with diesel fuel. Biomass Bioenerg 34: 134–139. doi: 10.1016/j.biombioe.2009.10.010
![]() |
[18] |
Haas MJ, Scott KM, Alleman TL, et al. (2001) Engine performance of biodiesel fuel prepared from soybean soapstock: a high quality renewable fuel produced from a waste feedstock ‖. Energ Fuel 15: 1207–1212. doi: 10.1021/ef010051x
![]() |
[19] |
Chiu CW, Schumacher LG, Suppes GJ (2004) Impact of cold flow improvers on soybean biodiesel blend. Biomass Bioenerg 27: 485–491. doi: 10.1016/j.biombioe.2004.04.006
![]() |
[20] |
Lapuerta M, Armas O, Rodriguez-Fernandez J (2008) Effect of biodiesel fuels on diesel engine emissions. Prog Energ Combust 34: 198–223. doi: 10.1016/j.pecs.2007.07.001
![]() |
[21] |
Barker LR, Kelly WR, Guthrie WF (2008) Determination of sulfur in biodiesel and petroleum diesel by X-ray fluorescence (XRF) using the gravimetric standard addition method−II. Energ Fuel 22: 2488–2490. doi: 10.1021/ef800165j
![]() |
[22] | Sirviö K, Niemi S, Heikkilä S, et al. (2016) The effect of sulphur content on B20 fuel stability. Agronomy Res 14: 244–250. |
[23] |
Fernando S, Hanna M, Adhikari S (2007) Lubricity characteristics of selected vegetable oils, animal fats, and their derivatives. Appl Eng Agric 23: 5–11. doi: 10.13031/2013.22324
![]() |
[24] |
Baig A, Ng FT (2011) Determination of acid number of biodiesel and biodiesel blends. J Am Oil Chem Soc 88: 243–253. doi: 10.1007/s11746-010-1667-x
![]() |
[25] |
Catoire L, Naudet V (2004) A unique equation to estimate flash points of selected pure liquids application to the correction of probably erroneous flash point values. J Phys Chem Ref Data 33: 1083–1111. doi: 10.1063/1.1835321
![]() |
[26] | Ateeq EA (2015) Biodiesel viscosity and flash point determination: Faculty of Graduate Studies Biodiesel Viscosity and Flash Point Determination By Eman Ali Ateeq Supervisor Prof. Issam Rashid Abdelraziq Co-Supervisor Prof. Sharif Mohammad Musameh This Thesis is Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Physics, Faculty of Graduate Studies, An–Najah National University. |
[27] | Sivaramakrishnan K, Ravikumar P (2012) Determination of cetane number of biodiesel and its influence on physical properties. ARPN J Eng Appl Sci 7: 205–211. |
[28] | Demirbas A (2008) Biodiesel a realistic fuel alternative for diesel engines. El Campo Boletín De Información Agraria 107: 99–103. |
[29] | Zappi M, Hernandez R, Sparks D, et al. (2003) A review of the engineering aspects of the biodiesel industry. MSU E-TECH Laboratory Report ET-03-003. Available from: https://shazaam.mississippi.org/assets/docs/library/eng_aspects_ch1.pdf. |
[30] |
Hazrat M, Rasul M, Khan MMK (2015) Lubricity improvement of the ultra-low sulfur diesel fuel with the biodiesel. Energ Procedia 75: 111–117. doi: 10.1016/j.egypro.2015.07.619
![]() |
[31] | Green A (1967) Lubrication and lubricants. New York, NY: Elsevier, 317–328. |
[32] | Georgi CW (1950) Motor oils and engine lubrication. Wear 12: 381–382. |
[33] | ASTM D 974-08 (2008) Standard Test Method for Acid and Base Number by Color-Indicator Titration,American Society for Testing and Materials. |
[34] |
Wang H, Tang H, Wilson J, et al. (2008) Total acid number determination of biodiesel and biodiesel blends. J Am Oil Chem Soc 85: 1083–1086. doi: 10.1007/s11746-008-1289-8
![]() |
[35] |
Mahajan S, Konar SK (2006) Determining the acid number of biodiesel. J Am Oil Chem Soc 83: 567–570. doi: 10.1007/s11746-006-1241-8
![]() |
[36] | Kalghatgi GT (2014) Fuel/engine interactions. SAE International. |
[37] | Heywood J (1988) Internal combustion engine fundamentals, McGraw-Hill Education. |
[38] |
Zou L, Atkinson S (2003) Characterising vehicle emissions from the burning of biodiesel made from vegetable oil. Environ Technol 24: 1253–1260. doi: 10.1080/09593330309385667
![]() |
[39] |
Lee SW, Herage T, Young B (2004) Emission reduction potential from the combustion of soy methyl ester fuel blended with petroleum distillate fuel. Fuel 83: 1607–1613. doi: 10.1016/j.fuel.2004.02.001
![]() |
[40] |
Hadavi SA, Li H, Przybyla G, et al. (2012) Comparison of gaseous emissions for B100 and diesel fuels for real world urban and extra urban driving. SAE Int J Fuel Lubricants 5: 1132–1154. doi: 10.4271/2012-01-1674
![]() |
[41] | Powell JJ (2007) Engine performance and exhaust emissions from a diesel engine using cottonseed oil biodiesel, Texas A&M University. |
[42] |
Muñoz M, Moreno F, Monné C, et al. (2011) Biodiesel improves lubricity of new low sulphur diesel fuels. Renew Energ 36: 2918–2924. doi: 10.1016/j.renene.2011.04.007
![]() |
[43] |
Ramadhas A, Muraleedharan C, Jayaraj S (2005) Performance and emission evaluation of a diesel engine fueled with methyl esters of rubber seed oil. Renew energ 30: 1789–1800. doi: 10.1016/j.renene.2005.01.009
![]() |
[44] | Nowatzki J, Shrestha D, Swenson A, et al. (2010) Biodiesel Cloud Point and Cold Weather Issues. Extension. org. Extension. |
[45] |
Labeckas G, Slavinskas S (2006) The effect of rapeseed oil methyl ester on direct injection diesel engine performance and exhaust emissions. Energ Convers Manage 47: 1954–1967. doi: 10.1016/j.enconman.2005.09.003
![]() |
[46] |
Ropkins K, Quinn R, Beebe J, et al. (2007) Real-world comparison of probe vehicle emissions and fuel consumption using diesel and 5% biodiesel (B5) blend. Sci Total Environ 376: 267–284. doi: 10.1016/j.scitotenv.2006.11.021
![]() |
[47] | Yacobucci BD (2007) Fuel ethanol: background and public policy issues. Congressional Research Service, Library of Congress. Available from: https://plbrgen.cals.cornell.edu/sites/plbrgen.cals.cornell.edu/files/shared/documents/forage/fuelethanol.pdf. |
[48] |
Zabed H, Sahu J, Boyce A, et al. (2016) Fuel ethanol production from lignocellulosic biomass: An overview on feedstocks and technological approaches. Renew Susta Energ Rev 66: 751–774. doi: 10.1016/j.rser.2016.08.038
![]() |
[49] | Newes EK, Bush BW, Peck CT, et al. (2015) Potential leverage points for development of the cellulosic ethanol industry supply chain. Biofuels 6: 1–9. |
[50] |
Park SH, Kim HJ, Suh HK, et al. (2009) Atomization and spray characteristics of bioethanol and bioethanol blended gasoline fuel injected through a direct injection gasoline injector. Int J Heat Fluid Fl 30: 1183–1192. doi: 10.1016/j.ijheatfluidflow.2009.07.002
![]() |
[51] | Kheiralla AF, El-Awad M, Hassan MY, et al. (2011) Effect of ethanol-gasoline blends on fuel properties characteristics of spark ignition engines. Philos T R Soc A 295: 125–125. |
[52] | Nwufo OC, Nwafor OMI, Igbokwe JO (2013) Effects of blends on the physical properties of bioethanol produced from selected Nigerian crops. Int J Ambient Energ 37: 10–15. |
[53] | Renewable Fuel Association (2005) Ethanol fuel: industry guidelines, specifications, and procedures. Available from: https://ethanolrfa.3cdn.net/4eea401b7975120b97_nrm6bhv0i.pdf. |
[54] |
Koç M, Sekmen Y, Topgül T, et al. (2009) The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renew Energ 34: 2101–2106. doi: 10.1016/j.renene.2009.01.018
![]() |
[55] |
Topgül T, Yücesu HS, Cinar C, et al. (2006) The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions. Renew Energ 31: 2534–2542. doi: 10.1016/j.renene.2006.01.004
![]() |
[56] |
Ershov M, Trifonova E, Khabibullin I, et al. (2015) Chemmotological requirements of e30 and e85 bioethanol fuels and their potential uses. Chem Tech Fuels Oil 51: 438–443. doi: 10.1007/s10553-015-0622-9
![]() |
[57] | Simio LD, Gambino M, Iannaccone S (2012) Effect of ethanol content on thermal efficiency of a spark-ignition light-duty engine. ISRN Renew Energ 2012: 1–8. |
[58] |
Al-Hasan M (2003) Effect of ethanol–unleaded gasoline blends on engine performance and exhaust emission. Energ Convers Manage 44: 1547–1561. doi: 10.1016/S0196-8904(02)00166-8
![]() |
[59] |
Bayraktar H (2005) Experimental and theoretical investigation of using gasoline–ethanol blends in spark-ignition engines. Renew Energ 30: 1733–1747. doi: 10.1016/j.renene.2005.01.006
![]() |
[60] | Zhu B, Zhang YY (2010) Physical properties of gasoline-alcohol blends and their influences on spray characteristics from a low pressure DI injector. 한국액체미립화학회학술발표논문집 2010: 73–79. |
[61] |
Hsieh WD, Chen RH, Wu TL, et al. (2002) Engine performance and pollutant emission of an SI engine using ethanol–gasoline blended fuels. Atmos Environ 36: 403–410. doi: 10.1016/S1352-2310(01)00508-8
![]() |
[62] | Thakur AK, Kaviti AK, Mehra R, et al. (2016) Performance analysis of ethanol–gasoline blends on a spark ignition engine: a review. Biofuels 2016: 1–22. |
[63] | Hamdan M (1986) The effect of ethanol addition on the performance of diesel and gasoline engines. Dirasat Administrative Sciences, XIII. |
[64] | Turner J, Pearson R, Holland B, et al. (2007) Alcohol-based fuels in high performance engines. Sae Technical Paper. 0148-7191 0148-7191. |
[65] | Can O, Celikten I, Usta N (2005) Effects of ethanol blended diesel fuel on exhaust emissions from a diesel engine. J Eng Sci 11: 219–224. |
[66] | Rahman MN, Atan N, Mokhtar A, et al. (2014) Influences of intake temperature and bio-petrol fuel temperature on SI engine: an overview. Appl Mech Mater 2015: 773–774. |
[67] |
He BQ, Wang JX, Hao JM, et al. (2003) A study on emission characteristics of an EFI engine with ethanol blended gasoline fuels. Atmos Environ 37: 949–957. doi: 10.1016/S1352-2310(02)00973-1
![]() |
[68] | Cities C (2010) Flexible Fuel Vehicles: Providing a Renewable Fuel Choice. Avialable From: http://www.nrel.gov/docs/fy10osti/47505.pdf. |
[69] |
Pasadakis N, Gaganis V, Foteinopoulos C (2006) Octane number prediction for gasoline blends. Fuel Process Technol 87: 505–509. doi: 10.1016/j.fuproc.2005.11.006
![]() |
[70] | Bromberg L, Cohn D (2008) Effective octane and efficiency advantages of direct injection alcohol engines. MIT Laboratory for Energy and the Environment Cambridge. Avialable From: http://pdfs.semanticscholar.org/5735/a5426014511d2538aa58d0b99ced80d865d8.pdf. |
[71] | Bossel U (2003) Well-to-wheel studies, heating values, and the energy conservation principle. European Fuel Cell Forum 22: 1–5. |
[72] |
Graham LA, Belisle SL, Baas CL (2008) Emissions from light duty gasoline vehicles operating on low blend ethanol gasoline and E85. Atmos Environ 42: 4498–4516. doi: 10.1016/j.atmosenv.2008.01.061
![]() |
[73] |
Budik G (2010) Conversion of internal combustion engine from gasoline to E85 fuel. Periodica Polytechnica Transport Eng 38: 19–23. doi: 10.3311/pp.tr.2010-1.04
![]() |
[74] | Duncan DN (2014) Utilizing the thermodynamic properties of E85 to increase the specific efficiency of a high specific output single cylinder Formula SAE engine. Avialable From: http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/54818/DuncanDerekN2014.pdf;sequence=1. |
[75] | Caton P, Hamilton L, Cowart J (2007) An experimental and modeling investigation into the comparative knock and performance characteristics of e85, gasohol [e10] and regular unleaded gasoline [87 (r+ m)/2]. SAE World Congress & Exhibition, 106–109. |
[76] |
Anderson J, DiCicco D, Ginder J, et al. (2012) High octane number ethanol–gasoline blends: quantifying the potential benefits in the United States. Fuel 97: 585–594. doi: 10.1016/j.fuel.2012.03.017
![]() |
[77] |
Yücesu HS, Topgül T, Cinar C, et al. (2006) Effect of ethanol–gasoline blends on engine performance and exhaust emissions in different compression ratios. Appl Therm Eng 26: 2272–2278. doi: 10.1016/j.applthermaleng.2006.03.006
![]() |
[78] |
Agarwal AK, Karare H, Dhar A (2014) Combustion, performance, emissions and particulate characterization of a methanol–gasoline blend (gasohol) fuelled medium duty spark ignition transportation engine. Fuel Process Technol 121: 16–24. doi: 10.1016/j.fuproc.2013.12.014
![]() |
[79] |
Najafi G, Ghobadian B, Tavakoli T, et al. (2009) Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network. Appl Energ 86: 630–639. doi: 10.1016/j.apenergy.2008.09.017
![]() |
[80] | Ajav E, Akingbehin O (2002) A study of some fuel properties of local ethanol blended with diesel fuel. Agricultural Engineering International Cigr Ejournal, 65–82. |
[81] | Kheiralla A, El-Awad M, Hassan M, et al. (2012) Experimental Determination of Fuel Properties of Ethanol/Gasoline Blends as Biofuel for SI engines, International Conference on Mechanical, Automobile and Robotics Engineering (ICMAR'2012) Penang. Malaysia, 244–249. |
[82] |
Kim S, Dale B (2006) Ethanol fuels: E10 or E85–Life cycle perspectives (5 pp). Int J Life Cycle Ass 11: 117–121. doi: 10.1065/lca2005.02.201
![]() |
[83] |
Abdel‐Rahman A, Osman M (1997) Experimental investigation on varying the compression ratio of SI engine working under different ethanol–gasoline fuel blends. Int J Energ Res 21: 31–40. doi: 10.1002/(SICI)1099-114X(199701)21:1<31::AID-ER235>3.0.CO;2-5
![]() |
[84] | Palmer FH (1986) Vehicle performance of gasoline containing oxygenates, International conference on petroleum based fuels and automotive applications. Imeche conference publications 1986-11. PAPER NO C319/86. |
[85] | El-Kassaby M (1993) Effect of using differential ethanol–gasoline blends at different compression ratio on SI engine. Alexandria Engng J 32: A135–142. |
[86] | Pikūnas A, Pukalskas S, Grabys J (2003) Influence of composition of gasoline–ethanol blends on parameters of internal combustion engines. J KONES Int Combus Eng 10: 3–4. |
[87] | Alexandrian M, Schwalm M (1992) Comparison of ethanol and gasoline as automotive fuels. Winter Annual Meeting, Anaheim, CA, USA, 1–10. |
[88] | Baker QA (1981) Use of alcohol-in-diesel fuel emulsions and solutions in a medium-speed diesel engine. SAE International Congress and Exposition. 0148-7191 0148-7191. |
[89] |
Gerdes K, Suppes G (2001) Miscibility of ethanol in diesel fuels. Ind Eng Chem Res 40: 949–956. doi: 10.1021/ie000566w
![]() |
[90] | Hansen AC, Lyne PW, Zhang Q (2001) Ethanol-diesel blends: a step towards a bio-based fuel for diesel engines. Asae Paper. Avialable From: paperuri:(5d9650eadf9ab1e2392a41dab26f1215). |
[91] | Waterland LR, Venkatesh S, Unnasch S (2003) Safety and performance assessment of ethanol/diesel blends (E-diesel): National Renewable Energy Laboratory. Avialable From: http://www.nrel.gov/docs/fy03osti/34817.pdf. |
[92] | Torres-Jimenez E, Svoljšak-Jerman M, Gregorc A, et al. (2009) Physical and chemical properties of ethanol− biodiesel blends for diesel engines. Energ Fuel 24: 2002–2009. |
[93] | Ghobadian B, Rahimi H, Tavakkoli HT, et al. (2010) Production of bioethanol and sunflower methyl ester and investigation of fuel blend properties. J Agr Sci Tech-Iran 10: 225–232. |
[94] |
Garcia-Perez M, Adams TT, Goodrum JW, et al. (2007) Production and fuel properties of pine chip bio-oil/biodiesel blends. Energ Fuel 21: 2363–2372. doi: 10.1021/ef060533e
![]() |
[95] |
Chiaramonti D, Oasmaa A, Solantausta Y (2007) Power generation using fast pyrolysis liquids from biomass. Renew Sust Energ Rev 11: 1056–1086. doi: 10.1016/j.rser.2005.07.008
![]() |
[96] |
Abu-Zaid M, Badran O, Yamin J (2004) Effect of methanol addition on the performance of spark ignition engines. Energ Fuel 18: 312–315. doi: 10.1021/ef030103d
![]() |
[97] | Alasfour F (2000) The effect of elevated temperatures on spark ignition engine using 15% methanol-gasoline blend. ICE-ASME 34: 119–129. |
[98] | Huanran H, Rui Z (2001) Methanol gasoline mixed fuel for gasoline engine. Patent. |
[99] |
Elfasakhany A (2015) Investigations on the effects of ethanol–methanol–gasoline blends in a spark-ignition engine: performance and emissions analysis. Eng Sci Technol Int J 18: 713–719. doi: 10.1016/j.jestch.2015.05.003
![]() |
[100] |
Çelik MB, Özdalyan B, Alkan F (2011) The use of pure methanol as fuel at high compression ratio in a single cylinder gasoline engine. Fuel 90: 1591–1598. doi: 10.1016/j.fuel.2010.10.035
![]() |
[101] |
Yanju W, Shenghua L, Hongsong L, et al. (2008) Effects of methanol/gasoline blends on a spark ignition engine performance and emissions. Energ Fuel 22: 1254–1259. doi: 10.1021/ef7003706
![]() |
[102] | Bardaie M, Janius R (1984) Conversion of spark-ignition engine for alcohol usage--comparative performance. Ama Agricultural Mechanization in Asia Africa & Latin America. |
[103] | Arapatsakos CI, Karkanis AN, Sparis PD (2003) Behavior of a small four-stroke engine using as fuel methanol-gasoline mixtures. SAE Technical Paper. 0148-7191 0148-7191. |
[104] | Arapatsakos C, Karkanis A, Sparis P (2004) Gasoline–ethanol, methanol mixtures and a small four-stroke engine. Int J heat Technol 22: 69–73. |
[105] |
Turner J, Pearson R, Dekker E, et al. (2013) Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol. Appl Energ 102: 72–86. doi: 10.1016/j.apenergy.2012.07.044
![]() |
[106] |
Sileghem L, Coppens A, Casier B, et al. (2014) Performance and emissions of iso-stoichiometric ternary GEM blends on a production SI engine. Fuel 117: 286–293. doi: 10.1016/j.fuel.2013.09.043
![]() |
[107] |
Fernando S, Hanna M (2004) Development of a novel biofuel blend using ethanol-biodiesel-diesel microemulsions: EB-diesel. Energ Fuel 18: 1695–1703. doi: 10.1021/ef049865e
![]() |
[108] |
Labeckas G, Slavinskas S, Mažeika M (2014) The effect of ethanol–diesel–biodiesel blends on combustion, performance and emissions of a direct injection diesel engine. Energ Convers Manage 79: 698–720. doi: 10.1016/j.enconman.2013.12.064
![]() |
[109] |
Hulwan DB, Joshi SV (2011) Performance, emission and combustion characteristic of a multicylinder DI diesel engine running on diesel–ethanol–biodiesel blends of high ethanol content. Appl Energ 88: 5042–5055. doi: 10.1016/j.apenergy.2011.07.008
![]() |
[110] |
Abdel‐Rahman A (1998) On the emissions from internal‐combustion engines: a review. Int J Energ Res 22: 483–513. doi: 10.1002/(SICI)1099-114X(199805)22:6<483::AID-ER377>3.0.CO;2-Z
![]() |
[111] |
Ajav E, Singh B, Bhattacharya T (1999) Experimental study of some performance parameters of a constant speed stationary diesel engine using ethanol–diesel blends as fuel. Biomass Bioenerg 17: 357–365. doi: 10.1016/S0961-9534(99)00048-3
![]() |
[112] | Hansen AC, Taylor AB, Lyne PWL, et al. (1987) Heat release in the compression-ignition combustion of ethanol. ASAE 5: 1507–1511. |
1. | Mahmoud S. Mehany, Faizah D. Alanazi, An η-Hermitian solution to a two-sided matrix equation and a system of matrix equations over the skew-field of quaternions, 2025, 10, 2473-6988, 7684, 10.3934/math.2025352 |