Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Optimal wind farm sitting using high-resolution digital elevation models and randomized optimization

infoMETRICS L.t.d, Megalou Aleksandrou 20, Spata, Athens, PO 19004, Greece

Special Issues: Remote sensing and Geoinformation Technology to Explore and Predict Renewable Energy Potential

We investigate the problem of wind farm design in isolated mountainous areas. We first describe a remote sensing approach for the terrain reconstruction of complex terrains. We then employ a well--known evolutionary optimization algorithm to find the optimal wind farm layout. Although the algorithm has been efficiently used for off--shore or smooth on--shore areas, we show that its performance is significantly affected by the complex topography. Moreover, we illustrate how a priori information can be exploited to improve both the computational time and efficiency of the optimization algorithm.
  Figure/Table
  Supplementary
  Article Metrics

References

1. S. CHOWDHURY, J. Z HANG, A. M ESSAC, AND L. CASTILLO, Exploring key factors influencing optimal farm design using mixed-discrete particle swarm optimization, in 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, 2010.

2. S. CHOWDHURY, J. Z HANG, A. M ESSAC, AND L. CASTILLO, Unrestricted wind farm layout optimization (uwflo): Investigating key factors influencing the maximum power generation, Renewable Energy, 38 (2012), pp. 16–30.

3. C.-R. CHU AND P.-H. C HIANG, Turbulence effects on the wake flow and power production of a horizontal-axis wind turbine, Journal of Wind Engineering and Industrial Aerodynamics, 124(2014), pp. 82–89.

4. J. F ENG AND W. Z. SHEN, Wind farm layout optimization in complex terrain: A preliminary study on a gaussian hill, in Journal of Physics: Conference Series, vol. 524, IOP Publishing, 2014, p. 012146.

5. J. S. G ONZÁLEZ, M. B URGOS PAYAN, AND J. M. R IQUELME -S ANTOS, Optimization of wind farm turbine layout including decision making under risk, Systems Journal, IEEE, 6 (2012), pp. 94–102.

6. J. S. G ONZÁLEZ, A. G. G. R ODRIGUEZ, J. C. M ORA, J. R. S ANTOS, AND M. B. PAYAN, Optimization of wind farm turbines layout using an evolutive algorithm, Renewable Energy, 35 (2010), pp. 1671–1681.

7. S. GRADY, M. H USSAINI, AND M. M. ABDULLAH, Placement of wind turbines using genetic algorithms, Renewable energy, 30 (2005), pp. 259–270.

8. H. GU AND J. WANG, Irregular-shape wind farm micro-siting optimization, Energy, 57 (2013), pp. 535–544.

9. N. HANSEN, The cma evolution strategy: a comparing review, in Towards a new evolutionary computation, Springer, 2006, pp. 75–102.

10. H.-S. HUANG, Distributed genetic algorithm for optimization of wind farm annual profits, in Intelligent Systems Applications to Power Systems, 2007. ISAP 2007. International Conference on, IEEE, 2007, pp. 1–6.

11. T. JÄGER, R. M CKENNA, AND W. FICHTNER, Onshore wind energy in baden-württemberg: a bottom-up economic assessment of the socio-technical potential.

12. N. O. JENSEN, A note on wind generator interaction, 1983.

13. I. K ATIC, J. H ØJSTRUP , AND N. JENSEN, A simple model for cluster efficiency, in European Wind Energy Association Conference and Exhibition, 1986, pp. 407–410.

14. K. KOUTROUMPAS, E. C INQUEMANI , P. KOURETAS, AND J. LYGEROS, Parameter identification for stochastic hybrid systems using randomized optimization: A case study on subtilin production by bacillus subtilis, Nonlinear Analysis: Hybrid Systems, 2 (2008), pp. 786–802.

15. K. KOUTROUMPAS, E. C INQUEMANI , AND J. LYGEROS, Randomized optimization methods in parameter identification for biochemical network models, Proceedings of FOSBE 2007, (2007).

16. X. LI , J. WANG, AND X. ZHANG, Equilateral-triangle mesh for optimal micrositing of wind farms, in Proceedings of the 14th WSEAS international conference on Computers, Corfu Island, Greece, 2010, pp. 23–25.

17. J. E. G. M ARTÍNEZ, Layout optimisation of offshore wind farms with realistic constraints and options, Master’s thesis, Delft University of Technology, 2014. Available:http://www.lr.tudelft.nl/fileadmin/Faculteit/LR/Organisatie/Afdelingen_en_Leerstoelen/Afdeling_AEWE/Wind_Energy/Education/Masters_Projects/Finished_Master_projects/doc/Julian_Gonzalez_r.pdf.

18. J. C. M ORA, J. M. C. B ARÓN, J. M. R. S ANTOS, AND M. B. PAYÁN, An evolutive algorithm for wind farm optimal design, Neurocomputing, 70 (2007), pp. 2651–2658.

19. G. MOSETTI, C. P OLONI, AND B. DIVIACCO, Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm, Journal of Wind Engineering and Industrial Aerodynamics, 51 (1994), pp. 105–116.

20. B. PÉREZ, R. M ÍNGUEZ , AND R. GUANCHE, Offshore wind farm layout optimization using mathematical programming techniques, Renewable Energy, 53 (2013), pp. 389–399.

21. E. S. POLITIS, J. P ROSPATHOPOULOS, D. C ABEZON, K. S. H ANSEN, P. C HAVIAROPOULOS, AND R. J. BARTHELMIE, Modeling wake effects in large wind farms in complex terrain: the problem, the methods and the issues, Wind Energy, 15 (2012), pp. 161–182.

22. P.-E. R ÉTHORÉ, P. F UGLSANG, G. C. L ARSEN, T. B UHL, T. J. L ARSEN, H. A. M ADSEN, ET AL., Topfarm: Multi-fidelity optimization of offshore wind farm, Proceedings of the Twenty-first, (2011), pp. 516–524.

23. R. A. RIVAS , J. C LAUSEN, K. S. H ANSEN, AND L. E. JENSEN, Solving the turbine positioning problem for large offshore wind farms by simulated annealing, Wind Engineering, 33 (2009), pp. 287–297.

24. S. M. F. RODRIGUES, P. B AUER, AND J. P IERIK, Modular approach for the optimal wind turbine micro siting problem through cma-es algorithm, in Proceedings of the 15th annual conference companion on Genetic and evolutionary computation, ACM, 2013, pp. 1561–1568.

25. B. SAAVEDRA-M ORENO, S. S ALCEDO-S ANZ, A. PANIAGUA-T INEO, L. P RIETO, AND A. PORTILLAFIGUERAS, Seeding evolutionary algorithms with heuristics for optimal wind turbines positioning in wind farms, Renewable Energy, 36 (2011), pp. 2838–2844.

26. M. SAMORANI, The wind farm layout optimization problem, in Handbook of Wind Power Systems, Springer, 2013, pp. 21–38.

27. S. ¸SI ¸SBOT , Ö. T URGUT, M. T UNÇ, AND Ü. ÇAMDALI, Optimal positioning of wind turbines on gökçeada using multi-objective genetic algorithm, Wind Energy, 13 (2010), pp. 297–306.

28. M. SONG, K. C HEN, Z. H E, AND X. ZHANG, Wake flow model of wind turbine using particle simulation, Renewable energy, 41 (2012), pp. 185–190.

29. M. SONG, K. C HEN, Z. H E, AND X. ZHANG, Bionic optimization for micro-siting of wind farm on complex terrain, Renewable Energy, 50 (2013), pp. 551–557.

30. M. SONG, K. C HEN, Z. H E, AND X. ZHANG, Optimization of wind farm micro-siting for complex terrain using greedy algorithm, Energy, 67 (2014), pp. 454–459.

31. J. T ZANOS, K. M ARGELLOS, AND J. LYGEROS, Optimal wind turbine placement via randomized optimization techniques, in Proceedings of the 17th Power Systems Computation Conference, Stockholm, Sweden, 2011, pp. 22–26.

32.M. WAGNER, K. V EERAMACHANENI, F. N EUMANN, AND U.-M. OÂÂZREILLY, Optimizing the layout of 1000 wind turbines, European Wind Energy Association Annual Event, (2011), pp. 205–209.

33. C. A. WALFORD, Wind turbine reliability: understanding and minimizing wind turbine operation and maintenance costs, United States. Department of Energy, 2006.

34. C. WAN, J. WANG, G. YANG, X. L I , AND X. ZHANG, Optimal micro-siting of wind turbines by genetic algorithms based on improved wind and turbine models, in Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE Conference on, IEEE, 2009, pp. 5092–5096.

35. C. WAN, J. WANG, G. YANG, AND X. ZHANG, Optimal micro-siting of wind farms by particle swarm optimization, in Advances in swarm intelligence, Springer, 2010, pp. 198–205.

36. J. WANG, X. L I , AND X. ZHANG, Genetic optimal micrositing of wind farms by equilateraltriangle mesh, INTECH Open Access Publisher, 2011.

37. V. YAKHOT, S. O RSZAG, S. T HANGAM, T. G ATSKI, AND C. SPEZIALE, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A: Fluid Dynamics (1989-1993), 4 (1992), pp. 1510–1520.

38. M. H. ZHANG, Wind Resource Assessment and Micro-siting: Science and Engineering, Wiley, 2015.

Copyright Info: © 2015, John Koutroumpas, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved