Review Special Issues

Molecular mechanisms of intestinal inflammation leading to colorectal cancer

  • Inflammatory bowel disease (IBD) is recognized as a leading cause in the development of colorectal cancer (CRC). Inflammatory bowel disease associated colorectal cancer (IBD-CRC) is a growing healthcare burden, causing significant morbidity and mortality world-wide. In the present review, relevant preclinical models of IBD-CRC, a concise overview of potential molecular mechanisms that are involved and responsible for IBD associated colonic tumorigenesis along with the current and the future therapeutic approaches including the role of novel natural and synthetic compounds for the prevention and treatment of IBD-CRC are outlined. This review will benefit various clinicians and translational researchers working in the area of IBD-CRC to have a quick snap-shot of the ongoing trends in IBD-CRC research and discoveries.

    Citation: Sonia Shastri, Ravichandra Vemuri, Nuri Gueven, Madhur D. Shastri, Rajaraman Eri. Molecular mechanisms of intestinal inflammation leading to colorectal cancer[J]. AIMS Biophysics, 2017, 4(1): 152-177. doi: 10.3934/biophy.2017.1.152

    Related Papers:

    [1] Luis M. Pedruelo-González, Juan L. Fernández-Martínez . Generalization of Snell's Law for the propagation of acoustic waves in elliptically anisotropic media. AIMS Mathematics, 2024, 9(6): 14997-15007. doi: 10.3934/math.2024726
    [2] Shengying Mu, Yanhui Zhou . An analysis of the isoparametric bilinear finite volume element method by applying the Simpson rule to quadrilateral meshes. AIMS Mathematics, 2023, 8(10): 22507-22537. doi: 10.3934/math.20231147
    [3] Mohamed Abdelsabour Fahmy, Ahmad Almutlg . A time-stepping BEM for three-dimensional thermoelastic fracture problems of anisotropic functionally graded materials. AIMS Mathematics, 2025, 10(2): 4268-4285. doi: 10.3934/math.2025197
    [4] Wenjuan Liu, Zhouyu Li . Global weighted regularity for the 3D axisymmetric non-resistive MHD system. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017
    [5] Aissa Boukarou, Kaddour Guerbati, Khaled Zennir, Mohammad Alnegga . Gevrey regularity for the generalized Kadomtsev-Petviashvili I (gKP-I) equation. AIMS Mathematics, 2021, 6(9): 10037-10054. doi: 10.3934/math.2021583
    [6] Lirong Huang . A local Palais-Smale condition and existence of solitary waves for a class of nonhomogeneous generalized Kadomtsev-Petviashvili equations. AIMS Mathematics, 2023, 8(6): 14180-14187. doi: 10.3934/math.2023725
    [7] Yixin Li, Chunguang Li, Wei Yang, Wensheng Zhang . A new conjugate gradient method with a restart direction and its application in image restoration. AIMS Mathematics, 2023, 8(12): 28791-28807. doi: 10.3934/math.20231475
    [8] Wei Ma, Qiongfen Zhang . Existence of solutions for Kirchhoff-double phase anisotropic variational problems with variable exponents. AIMS Mathematics, 2024, 9(9): 23384-23409. doi: 10.3934/math.20241137
    [9] Armel Judice Ntsokongo, Daniel Moukoko, Franck Davhys Reval Langa, Fidèle Moukamba . On higher-order anisotropic conservative Caginalp phase-field type models. AIMS Mathematics, 2017, 2(2): 215-229. doi: 10.3934/Math.2017.2.215
    [10] Jamilu Sabi'u, Ibrahim Mohammed Sulaiman, P. Kaelo, Maulana Malik, Saadi Ahmad Kamaruddin . An optimal choice Dai-Liao conjugate gradient algorithm for unconstrained optimization and portfolio selection. AIMS Mathematics, 2024, 9(1): 642-664. doi: 10.3934/math.2024034
  • Inflammatory bowel disease (IBD) is recognized as a leading cause in the development of colorectal cancer (CRC). Inflammatory bowel disease associated colorectal cancer (IBD-CRC) is a growing healthcare burden, causing significant morbidity and mortality world-wide. In the present review, relevant preclinical models of IBD-CRC, a concise overview of potential molecular mechanisms that are involved and responsible for IBD associated colonic tumorigenesis along with the current and the future therapeutic approaches including the role of novel natural and synthetic compounds for the prevention and treatment of IBD-CRC are outlined. This review will benefit various clinicians and translational researchers working in the area of IBD-CRC to have a quick snap-shot of the ongoing trends in IBD-CRC research and discoveries.


    Domestic pigs originated from the Eurasian wild boar (Sus scrofa), which first appeared about 9000 years ago [1]. They are essential for the transmission of swine influenza. Human beings raise domestic pigs, and then slaughter them for pork [2]. Domestic pigs grow in the food and environment provided by human beings, while human beings get the necessary nutrients by eating them. Consequently, in the breeding process, the swine flu virus is transmitted to human beings through domestic pig-human contact [2,3]. According to this process, a new breed-slaughter model with swine influenza transmission can be proposed as a model (1.1).

    {S1(x,t)t=D12S1(x,t)x2+(B12N2(x,t)ω0N1(x,t))N1(x,t)s0S1(x,t)                 β11I1(x,t)S1(x,t)+γ1I1(x,t),xR,t>0,I1(x,t)t=D12I1(x,t)x2+β11I1(x,t)S1(x,t)(s0+γ1)I1(x,t),xR,t>0,S2(x,t)t=D22S2(x,t)x2+(b2r2N2(x,t)K2+B21N1(x,t))N2(x,t)d2S2(x,t)                  2j=1β2jIj(x,t)S2(x,t)+γ2I2(x,t),xR,t>0,I2(x,t)t=D22I2(x,t)x2+2j=1β2jIj(x,t)S2(x,t)[e2+γ2+d2]I2(x,t),xR,t>0,Ni(x,t)=Si(x,t)+Ii(x,t),i=1,2,xR,t>0. (1.1)

    Domestic pig population N1(x,t) and human population N2(x,t) are assumed to be divided into 2 epidemiological compartments: susceptibles (Si(x,t)) and infectives (Ii(x,t)) at time t and location x, i=1,2. Susceptibles can become infected by means of intra-species or inter-species transmission and then recover as new susceptibles. The notation B12 represents the human breeding parameter for the population growth of domestic pigs, while B21 represents the nutrients from eating domestic pigs to increase the birth rate of human beings. The notation s0 represents the slaughter rate of domestic pigs. It's noteworthy that domestic pigs cannot survive independently without human beings, but human beings can still survive well without the supply of pork [2]. Restrictions on the development of human population mainly come from intra-species competition.

    For humans, the notation r2=b2d2 is the intrinsic growth rate of humans, where b2 and d2 represents the natural natality rate and mortality rate, respectively. K2 is the environmental carrying capacity of human population without domestic pig supply. e2 is the additional mortality rate of humans caused by swine flu. For domestic pigs, ω0 represents the intraspecific competition. During the spread of swine flu, the parameters βij represent the per capita incidence rate from species j to species i, where i,j=1,2. γi denote the recovery rate for domestic animals and humans, i=1,2. D1 and D2 are the diffusion coefficients for domestic animals and humans. It is noteworthy that all parameters mentioned above is positive.

    The main purpose of this paper is to propose a new breed-slaughter model with swine influenza transmission, and study the dynamic behavior of it. And then, we focus on the invasion process of infected domestic animals into the habitat of humans. Under certain conditions as in Theorem 2, we construct a propagating terrace linking human habitat to animal-human coexistent habitat, then to swine flu natural foci, which is divided by spreading speeds. Firstly, we calculate the equilibrium points of the model without spatial heterogeneity as a model (1.2) and analyze the existence of them by the persistence theory. Secondly, we discuss their stability by the basic reproduction number. Thirdly, we use these equilibrium points to construct a propagating terrace linking them by spreading speeds.

    {dS1(t)dt=(B12N2(t)ω0N1(t))N1(t)s0S1(t)β11I1(t)S1(t)+γ1I1(t),dI1(t)dt=β11I1(t)S1(t)(s0+γ1)I1(t),dS2(t)dt=(b2r2N2(t)K2+B21N1(t))N2(t)d2S2(t)2j=1β2jIj(t)S2(t)+γ2I2(t),dI2(t)dt=2j=1β2jIj(t)S2(t)[e2+γ2+d2]I2(t),Ni(t)=Si(t)+Ii(t),i=1,2. (1.2)

    In model (1.2), domestic pig population N1(t) and human population N2(t) are assumed to be divided into 2 epidemiological compartments: susceptibles (Si(t)) and infectives (Ii(t)) at time t, i=1,2. Other parameters are the same with model (1.1).

    At first, we focus on the breed-slaughter system without swine flu transmission and spatial heterogeneity.

    If I1(0)=I2(0)=0, N1(0)>0 and N2(0)>0, model (1.2) turns to a new breed-slaughter system without swine influenza transmission as model (2.1).

    {dN1(t)dt=(B12N2(t)ω0N1(t))N1(t)s0N1(t),dN2(t)dt=r2(1N2(t)K2)N2(t)+B21N1(t)N2(t),N1(0)>0,N2(0)>0, (2.1)

    Similar to the competition system in [4], breed-slaughter system also has abundant dynamic results. For the positive equilibrium point

    E=(N1,N2)=(r2(s0B12K2)B12B21K2ω0r2,K2(s0B21ω0r2)B12B21K2ω0r2)

    of model (2.1), we have three cases:

    (a). If B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}, the positive equilibrium point E of model (2.1) is stable (Figure 2(a)).

    Figure 1.  Swine flu transmission route from pig to human.
    Figure 2.  Phase diagram of E.

    (b). If B12B21>ω0r2K2 and s0>max{ω0r2B21,B12K2}, the positive equilibrium point E of model (2.1) is unstable (Figure 2(b)).

    (c). Other than the condition as (a) or (b), the positive equilibrium point E of model (2.1) does not exist.

    In order to reflect the effect of interspecific interaction on swine influenza transmission during breeding process as model (1.2), we suppose that B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2} to guarantee the existence and the stability of the boundary equilibrium point

    E3=(r2(s0B12K2)B12B21K2ω0r2,0,K2(s0B21ω0r2)B12B21K2ω0r2,0)

    with I1(0)=I2(0)=0 in model (1.2).

    After calculation, we summarize that there are at most 6 equilibrium points in R4+ of the system (1.2): E0=(0,0,0,0), E1=(0,0,K2,0), E2=(0,0,¯S2,¯I2), E3=(N1,0,N2,0), E4=(N1,0,S2,I2), E5=(S1,I1,S2,I2), where ¯S2=e2+γ2+d2β22, ¯I2=β22K2(e2+γ2+d2)β22, N1=N1=r2(s0B12K2)B12B21K2ω0r2, N2=K2(s0B21ω0r2)B12B21K2ω0r2, S2=e2+γ2+d2β22, I2=β22K2(1+s0B21B12B21K2B12B21K2ω0r2)(e2+γ2+d2)β22. The exact expression of E5 is unknown. However, under certain conditions as in Theorem 2, we can obtain its existence by persistence theory [5,6,7].

    If there is no domestic pigs participation, namely N1(0)=S1(0)=I1(0)=0, The persistence and the stability of boundary equilibrium E2=(0,0,¯S2,¯I2) has been proved in [8]. Similarly, we define R0=β22K1b2+e2+γ2. And then, we can get the following lemma.

    Lemma 1. If N1(0)=S1(0)=I1(0)=0 and I2(0)>0, {0}×{0}×R2+ is a invariant set of system (1.2). The trivial equilibrium point E0 in model (1.2) is unstable, and we have following two cases:

    (a) If R01, the disease-free equilibrium point E1 of model (1.2) is stable;

    (b) If R0>1, model (1.2) has a unique equilibrium point E2 in the interior of {0}×{0}×R2+, which is stable, and E1 is unstable.

    Furthermore, we consider the transmission process of human influenza with domestic pigs participating, but not infected from them. Namely I1(0)=0, I2(0)>0 and Ni(0)>0, i=1,2. The persistence and the stability of boundary equilibrium E4=(N1,0,S2,I2) is similar to Lemma 1. Taking E3 as the original point by coordinate translation, we can get the following lemma by the persistence theory [5,9,10], when B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}.

    According to the definition of basic reproduction number in a single population as [5,11,12], we define R1=β1N1s0+γ1 as the basic reproduction number of swine flu transmission in demotic pig population and R2=β22N2e2+γ2+d2 as the basic reproduction number of swine flu transmission in human population.

    Lemma 2. If N1(0)=S1(0)>0, I1(0)=0 and I2(0)>0, R+×{0}×R2+ is a invariant set of system (1.2). The trivial equilibrium point E0 and the boundary equilibrium point E1, E2 in model (1.2) are unstable when B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}, and we have following two cases:

    (a) If R21, the disease-free equilibrium point E3 of model (1.2) is stable;

    (b) If R2>1, model (1.2) has a unique equilibrium point E4 in the interior of R+×{0}×R2+, which is stable, and E3 is unstable.

    Next we focus on the discussion about the existence and the stability of the positive equilibrium point E5=(S1,I1,S2,I2). At first, we define Rs=max{R1,R2}. Then, we get the theorem as the following.

    Theorem 1. If Ni(0)>0 and Ii(0)>0, i=1,2, R4+ is a invariant set of system (1.2). The trivial equilibrium point E0 and the boundary equilibrium point E1, E2 in model (1.2) are unstable when B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}, and we have following three cases:

    (a) If Rs1, the disease-free equilibrium point E3 of model (1.2) is stable;

    (b) If Rs>1, R1<R2 and R11, model (1.2) has a unique equilibrium point E4 except for E0, E1, E2 and E3, which is stable, and E3 is unstable;

    (c) If Rs>1 and R1R2 (or R2>R1>1) model (1.2) has a unique equilibrium point E5 in the interior of R4+, which is stable, and E3 and E4 are unstable.

    Proof. If Rs1, E4 and E5 do not exist. Similar to the results of Lemma 2 (a), the disease-free equilibrium point E3 of model (1.2) is stable.

    Then we consider the results of system (1.2) when Rs>1 and B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}. At first, we define

    D={(S1,I1,S2,I2)|0IiSi+IiNi,i=1,2},
    D1={(S1,I1,S2,I2)|I1=0 or I2=0 ,0Si+IiNi,i=1,2},
    D2=DD1,˜D2={(S1,I1,S2,I2)|0<IiSi+IiNi,i=1,2}.

    D2 and ˜D2 are forward invariant.

    Let Ω consists of equilibria E0, E1, E2, E3 and E4. These equilibria cannot be chained to each other in D1. By analyzing the flow in neighborhood of each equilibrium, it is easy to see that Ω is isolated in D and D1 is a uniform strong repeller for ˜D2.

    If x(t)=(S1(t),I1(t),S2(t),I2(t)) stays close to E2, we have two cases: if I1(0)=I2(0)=0, then I1(t)=I2(t)=0; if I1(0)>0 or I2(0)>0, then I2(t)>0. Therefore, E2 is isolated in D. Similarly, we can prove that E0, E1 and E3 are isolated in D.

    For E4 and E5, we have two cases: (A). R1<R2 and R11; (B). R1R2 or R2>R1>1.

    (A). R1<R2 and R11

    If R1<R2 and R11, E5 do not exist. Similar to the results of Lemma 2 (b), the boundary equilibrium point E4 of model (1.2) is stable.

    (B). R1R2 or R2>R1>1

    If x(t)=(S1(t),I1(t),S2(t),I2(t)) stays close to E4, we have two cases: if I1(0)=0, then I1(t)=0; if I1(0)>0, then I1(t)>0. Since (S1(t),I1(t),S2(t),I2(t)) satisfying system (1.2) has no invariant subset other than E4 in its neighborhood. E4 is isolated in D and a uniform weak repeller for ˜D2. Therefore, we can prove that E0, E1, E2, E3 and E4 are isolated in D.

    Using Proposition 4.3 in [5], we can prove that D1 is a uniform weak repeller for ˜D2; and using Theorem 4.5 in [5], we can prove that D1 is a uniform strong repeller for ˜D2.

    Then we get that there exists an ϵ>0 such that

    liminftmin{I1(t),I2(t)}>ϵ,

    with Ni(0)>0 and Ii(0)>0, i=1,2.

    Therefore, if B12B21<ω0r2K2, s0<min{ω0r2B21,B12K2} and R1R2 (R2>R1>1), there exists at least one internal equilibrium of system (1.2) [9,10,13].

    Next, we use Theorem 2 in [11] to discuss the basic reproduction number of system (1.2).

    The Jacobian matrix of (I1,I2) is

    J=(β11S1(s0+γ1)0β21S2β22S2(e2+γ2+d2)),

    Let J=FV, F be the rate of appearance of new infections in compartment I, V be the rate of transfer of individuals out of compartment I. Then, we get

    F=(β11S10β21S2β22S2),
    V= diag(s0+γ1e2+γ2+d2).

    We call FV1 be the next generation matrix for the model (1.2) and set Rs=ρ(FV1|E3), where ρ(A) denotes the spectral radius of a matrix A.

    Then we get

    Rs=max{β11N1s0+γ1,β22N2e2+γ2+d2}.

    Finally, using Theorem 2 in [11], we can prove Theorem 1.

    The basic reproduction number is an important threshold value in the research of the epidemic mathematical model, which determines the disease to break out or not. However, it is not sufficient to discuss the breed-slaughter model with interspecific interaction. The main purpose of this paper is to investigate invasion process of infected domestic animal into human habitat. And we construct a propagating terrace linking human habitat E1 to animal-human coexistent habitat E3, then to swine flu natural foci E4 (or E5), which is divided by certain spreading speeds. The propagating terrace can describe the spatio-temporal continuous change of the transmission of swine flu.

    Based on the heterogeneity of the population structure and the temporal and spatial continuity of the mammal movement, the population's spatial factor is considered in the spread of swine flu. If the swine flu host populations are distributed differently in space, the diffusion term may change their local population structure, thus change the swine flu epidemic. In order to describe the population invasion process, we set the initial value is zero in the area x(,x0)(x0,). The area of (x0,x0) is the original habitat of N, and N will invade to the area of x(,x0)(x0,) at the spreading speed s [14].

    The definition of spreading speed of a single population is the positive value s satisfied with the conditions as follows,

    limt+{sup|x|>ctN(x,t)}=0,c>s

    and

    limt+inf{inf|x|<ctN(x,t)}>0,c<s,

    in the model [4.1]

    {N(x,t)t=D2N(x,t)x2+rN(x,t)(1N(x,t)K),xR,t>0,N(x,0)=N0>0,x[x0,x0],N(x,0)=0,x(,x0)(x0,). (4.1)

    The biological description of spreading speed s has been shown in the third figure of Figure 3. The value of s approximates the inverse of the slope of the color lines. It is easy to see that the co-effect of diffusion and reproduction leads to the population territory expansion, in which the local diffusion rate D guarantees the population spatial invasion to new areas and the reproduction rate r guarantees its development on occupied areas. The spreading speed of a single population in the model [4.1] is expressed by s:=2Dr by [14]. However, it is not enough to study the swine flu with more than one host species [15,16,17,18,19,20]. We redefine the spreading speeds at the human-animal interface, as shown below.

    s1:=2D1(B12K2s0),
    s2:=max{2D1(β11N1s0γ1),2D2(β22N2e2γ2d2)}.
    Figure 3.  Effect of r and D on the local diffusion of a single population.

    Due to the participation of two populations, some notations need to be redefined. The notations s and x0 are replaced by si, xi, with i=1,2, corresponding to the two swine flu host populations.

    Then we construct a propagating terrace linking human habitat E1 to animal-human coexistent habitat E3, then to swine flu natural foci E4 (or E5), which is divided by certain spreading speeds. The propagating terrace can describe the spatio-temporal continuous change of the transmission of swine flu, which can be show in Theorem 2.

    Theorem 2. For system (1.1), if B12B21<ω0r2K2, B21N1<r2 and s0<min{ω0r2B21,B12K2}, the initial conditions satisfy that 0<S1(x,0)<N1, x[x1,x1]; S1(x,0)=0, x(,x1)(x1,), for some x1>0; 0<I1(x,0)<N1, x[x2,x2]; I1(x,0)=0, x(,x2)(x2,), for some x2>0; S2(x,0)=K2, I2(x,0)=0, xR.

    We set

    s1:=2D1(B12K2s0),s2:=max{2D1(β11N1s0γ1),2D2(β22N2e2γ2d2)}.

    Suppose that s1>s2, x1>x2, then there are three cases about the invasion process as following:

    (a) Rs1,

    limt+sup|x|>ct{|S1(x,t)|+|I1(x,t)|+|S2(x,t)K2|+|I2(x,t)|}=0,  c>s1,
    limt+sup|x|<ct{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  c<s1.

    The system (1.1) forms a propagating terrace, linking E1 to E3.

    (b) If Rs>1, R1<R2 and R11,

    limt+sup|x|>ct{|S1(x,t)|+|I1(x,t)|+|S2(x,t)K2|+|I2(x,t)|}=0,  c>s1,
    limt+supc2t<|x|<c1t{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  s2<c2<c1<s1,
    limt+sup|x|<ct{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)S2|+|I2(x,t)I2|}=0,  c<s2.

    The system (1.1) forms a propagating terrace, linking E1 to E3, then to E4.

    (c) If Rs>1 and R1R2 (or R2>R1>1),

    limt+sup|x|>ct{|S1(x,t)|+|I1(x,t)|+|S2(x,t)K2|+|I2(x,t)|}=0,  c>s1,
    limt+supc2t<|x|<c1t{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  s2<c2<c1<s1,
    limt+sup|x|<ct{|S1(x,t)S1|+|I1(x,t)I1|+|S2(x,t)S2|+|I2(x,t)I2|}=0,  c<s2.

    The system (1.1) forms a propagating terrace, linking E1 to E3, then to E5.

    Proof. The epidemic of swine flu originates in the interaction between humans and domestic animals in the breeding process, so the breaking out of swine flu would lag behind this process. Therefore, we first confirm the propagating terrace linking E1 and E3.

    The breed-slaughter system without swine flu transmission can be transferred to model (4.2).

    {N1(x,t)t=D12N1(x,t)t2+(B12N2(x,t)ω0N1(x,t))N1(x,t)s0N1(x,t),N2(x,t)t=D22N2(x,t)t2+r2(1N2(x,t)K2)N2(t)+B21N1(x,t)N2(x,t). (4.2)

    Let (N1,N2) be a solution to system (4.2) with the initial condition 0<N1(x,0)<N1, x[x1,x1]; N1(x,0)=0, x(,x1)(x1,), for some x1>0; N2(x,0)=K2, xR.

    If B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}, we claim that (N1(x,t),N2(x,t))Σ, xR,t[0,), where

    Σ:={(N1,N2)[0,N1]×[0,N2]:B12N2(x,t)ω0N1(x,t)s00,r2(1N2(x,t)K2)+B21N1(x,t)0}.

    By the strong maximum principle, N10 for t>0. Then we get

    N2(x,t)tD22N2(x,t)t2+r2(1N2(x,t)K2)N2(x,t).

    By a comparison, N2X, where X is the solution to

    {X(x,t)t=D22X(x,t)t2+r2(1X(x,t)K2)X(x,t),X(x,0)=N2(x,0). (4.3)

    Then we get the result

    limt+infN2(x,t)limt+infX(x,t)=K2.

    Set u:=N1 and v:=N2K2. Then N2(x,t)t can be rewritten as

    v(x,t)t=D22v(x,t)t2r2v(x,t)K2(v(x,t)+K2)+B21u(x,t)(v(x,t)+K2).

    Due to u=N1[0,N1] and v=N2K20 then

    v(x,t)tD22v(x,t)t2(r2B21N1)v(x,t)+B21K2u(x,t).

    By the strong maximum principle, if follows that vY in R×[0,), where Y is the solution to

    {Y(x,t)t=D22Y(x,t)t2(r2B21N1)Y(x,t)+B21K2u(x,t),X(x,0)=0,xR. (4.4)

    Then we have

    Y(x,t)=B21K2t0{e(r2B21N1)(ts)Re(xy)2/[4(ts)]u(y,s)dy}ds.

    Given ϵ>0, we choose δ>0 small enough such that 2D1(B12K2s0+B12δ)<s1+ϵ.

    For this δ, we claim that there is τ1 such that Y(x,t)<δ+Mu(x,t), xR, tτ, for some positive constant M. Then it follows that N1 satisfies

    N1(x,t)tD12N1(x,t)t2+(B12K1s0+B12δ(B12M+ω0)N1(x,t))N1(x,t).

    Therefore, according to the comparison principle and the definition of spreading speed [14,15,16,19,21], for any c(2D1(B12K2s0+B12δ),s1+ϵ), it follows that limt+sup|x|>ctN1(x,t)=0, and then limt+sup|x|>ctN2(x,t)=K2.

    Because of the arbitrariness of ϵ, we get

    limt+sup|x|>ct{|N1(x,t)|+|N2(x,t)K2|}=0,c>s1.

    Thus, if the swine flu does not break out, namely Rs1, for system (1.1),

    limt+sup|x|>ct{|S1(x,t)|+|I1(x,t)|+|S2(x,t)K2|+|I2(x,t)|}=0,  c>s1.

    Then we set U:=N1N1 and V:=N2N2. Similar to the proof before, we can get

    limt+sup|x|<ct{|N1(x,t)N1|+|N2(x,t)N2|}=0,  c<s1.

    If Rs1, for system (1.1),

    limt+sup|x|<ct{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  c<s1.

    Next we consider the propagating terrace linking E3 to (E4 or E5). Let (S1,I1,S2,I2) be a solution to system (1.1) with the initial condition S1(x,0)=N1, S2(x,0)=N2, I2(x,0)=0, xR. I1(x,0)>0, x[x2,x2]; I1(x,0)=0, x(,x2)(x2,), for some x2>0.

    If B12B21<ω0r2K2 and s0<min{ω0r2B21,B12K2}, we claim that (S1(x,t)+I1(x,t),S2(x,t)+I2(x,t))Σ, xR,t[0,).

    For the spreading speed when Rs>1, comparison principle and strong maximum principle are no longer applicable due to the complexity of system (1.1). However, we can calculate the minimum wave speed from largest eigenvalue of its linearized system at E3 as [22] to link E3 and E4 (or E5).

    For the following eigenvalue problem

    1λAληλ=cηλ,

    where

    Aλ=diag(Diλ2)+J|E3.

    J is the jacobian matrix,

    J=(B12N22ω0N1s0β11I1β11S1+γ1B12N10β11I1β11S1(s0+γ1)00B12N2β21S2r2(12N2K2)+B21N1(β21I1+β22I2)β22S2+γ20β21S2β21I1+β22I2β22S2(e2+γ2+d2)).

    For λ0, the eigenvalues of the matrix

    Aλ=(D1λ2ω0N1β11N1+γ1B12N100D1λ2+β11N1(s0+γ1)00B12N2β21N2D2λ2r2N2K2β22N2+γ20β21N20D2λ2+β22N2(e2+γ2+d2)).

    are D1λ2+β11N1(s1+γ1), D2λ2+β22N2(e2+γ2+d2) and other two impossible results, which cannot define positive wave speed.

    Thus, the minimum wave speed can be defined as follows, which can be divided the propagating terrace, linking E3 to E4 (or E5).

    s2=max{infλ>0D1λ2+β11N1(s0+γ1)λ,infλ>0D2λ2+β22N2(e2+γ2+d2)λ}=max{2D1(β11N1s0γ1),2D2(β22N2e2γ2d2)}.

    If Rs>1, there are two cases: (A). R1<R2 and R11; (B). R1R2 or R2>R1>1.

    (A). If R1<R2 and R11, then E5 does not exist. s2=2D2(β22N2e2γ2d2), then we get

    limt+sup|x|>c2t+x2{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  c>s2,
    limt+sup|x|<ct+x2{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)S2|+|I2(x,t)I2|}=0,  c<s2.

    Combining the results before, linking E1 to E3, then

    limt+sup|x|>ct+x1{|S1(x,t)|+|I1(x,t)|+|S2(x,t)K2|+|I2(x,t)|}=0,  c>s1,
    limt+supc2t+x2<|x|<c1t+x1{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  s2<c2<c1<s1,
    limt+sup|x|<ct+x2{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)S2|+|I2(x,t)I2|}=0,  c<s2.

    The system (1.1) forms a propagating terrace, linking E1 to E3, then to E4.

    (B). If R1R2 or R2>R1>1, set s2=max{2D1(β11N1s0γ1),2D2(β22N2e2γ2d2)}. then we get

    limt+sup|x|>ct+x1{|S1(x,t)|+|I1(x,t)|+|S2(x,t)K2|+|I2(x,t)|}=0,  c>s1,
    limt+supc2t+x2<|x|<c1t+x1{|S1(x,t)N1|+|I1(x,t)|+|S2(x,t)N2|+|I2(x,t)|}=0,  s2<c2<c1<s1,
    limt+sup|x|<ct+x2{|S1(x,t)S1|+|I1(x,t)I1|+|S2(x,t)S2|+|I2(x,t)I2|}=0,  c<s2.

    The system (1.1) forms a propagating terrace, linking E1 to E3, then to E5.

    If s1>s2, x1>x2 and Rs>1, R1>R2>1, then in Figure 4, the blue area represents the original habitat area of humans at the population size of E1. After domesticating pigs, the red part will be shared with the two species at E3. While after swine flu transmitting between domestic pigs and humans, the internal red part will be shared again with two populations at E5 with swine flu transmission. It is a biological description of propagating terrace of humans with swine flu transmission, which is the local spacial variation of the population.

    Figure 4.  If Rs>1, R1>R2>1, the propagating terrace from E1 to E3, then to E5. (a): The simulation of N2; (b): Contour line of N2.

    If s1>s2,x1>x2 and Rs1, then in Figure 5, the blue area represents the original habitat area of humans at the population size of E1. After domesticating pigs, the red part will be shared with the two species at E3. Because Rs1, there is no swine flu transmission during the breed and slaughter process. Then the propagating terrace links unstable equilibrium E1 and stable equilibrium E2.

    Figure 5.  If Rs1, the propagating terrace from E1 to E3. (a): The simulation of N2; (b): Contour line of N2.

    We establish a new swine flu mathematical model to reflect the dynamic process of swine flu transmission with interspecific action between domestic pigs and humans, in which the roles of different species will no longer be at the same level. Domestic pigs cannot survive independently without human beings, but human beings can still survive well without the supply of pork. By our new swine flu model, we find that the human-animal interface has promoted the cross-species transmission of swine flu and resulted in the prevalence of flu in humans. In addition, the threshold values of population development and disease transmission are also discussed in order to provide a scientific basis for future health decision makers in swine flu prevention and control. We propose the zoonotic basic reproduction number Rs, which is more applicable to the study of swine flu transmission. Then, it is analyzed that the spreading speed of different species forming propagating terraces is influenced by the intrinsic growth rate r and diffusion rate D.

    In this paper, the equilibrium points of the model are calculated and we analyze the existence of the equilibrium points by the persistence theory. Then we discuss their stability by the basic reproduction number. In addition, after redefining the spreading speed, we divide the propagating terrace with two populations, which is an unprecedented task. We concern with the invasion process of infected domestic animals into the habitat of humans. Under certain conditions as in Theorem 2, we construct a propagating terrace linking human habitat to animal-human coexistent habitat, then to swine flu natural foci, which is divided by spreading speeds.

    This work is supported by the National Natural Science Foundation of China, 11771044.

    The authors declared that they have no conflicts of interest to this work.

    [1] Cosnes J, Gower-Rousseau C, Seksik P, et al. (2011) Epidemiology and natural history of inflammatory bowel diseases. Gastroenterol 140: 1785–1794. doi: 10.1053/j.gastro.2011.01.055
    [2] Shanahan F, Bernstein CN (2009) The evolving epidemiology of inflammatory bowel disease. Curr Opin Gastroenterol 25: 301–305. doi: 10.1097/MOG.0b013e32832b12ef
    [3] Economou M, Pappas G (2008) New global map of Crohn's disease: Genetic, environmental, and socioeconomic correlations. Inflamm Bowel Dis 4: 709–720.
    [4] Mulder DJ, Noble AJ, Justinich CJ, et al. (2014) A tale of two diseases: the history of inflammatory bowel disease. J Crohns Colitis 8: 341–348. doi: 10.1016/j.crohns.2013.09.009
    [5] Hanauer SB (2006) Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 12: S3–S9.
    [6] Dubinsky M (2008) Special issues in pediatric inflammatory bowel disease. World J Gastroenterol 14: 413–420. doi: 10.3748/wjg.14.413
    [7] Diefenbach KA, Breuer CK (2006) Pediatric inflammatory bowel disease. World J Gastroenterol 12: 3204–3212. doi: 10.3748/wjg.v12.i20.3204
    [8] Ekbom A, Helmick C, Zack M, et al. (1991) The epidemiology of inflammatory bowel disease: a large, population-based study in Sweden. Gastroenterol 100: 350–358. doi: 10.1016/0016-5085(91)90202-V
    [9] CROHN BB, Rosenberg H (1925) The sigmoidoscopic picture of chronic ulcerative colitis (non-specific). Am J Med Sci 170: 220–227. doi: 10.1097/00000441-192508010-00006
    [10] Rutter MD, Saunders BP, Wilkinson KH, et al. (2006) Thirty-year analysis of a colonoscopic surveillance program for neoplasia in ulcerative colitis. Gastroenterol 130: 1030–1038. doi: 10.1053/j.gastro.2005.12.035
    [11] Beaugerie L, Svrcek M, Seksik P, et al. (2013) Risk of colorectal high-grade dysplasia and cancer in a prospective observational cohort of patients with inflammatory bowel disease. Gastroenterol 145: 166–175. doi: 10.1053/j.gastro.2013.03.044
    [12] Eaden J, Abrams K, Mayberry J (2001) The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 48: 526–535. doi: 10.1136/gut.48.4.526
    [13] Canavan C, Abrams K, Mayberry J (2006) Meta-analysis: colorectal and small bowel cancer risk in patients with Crohn's disease. Aliment Pharmacol Ther 23: 1097–1104. doi: 10.1111/j.1365-2036.2006.02854.x
    [14] Itzkowitz SH, Yio X (2004) Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol 287: G7–G17.
    [15] Kornfeld D, Ekbom A, Ihre T, et al. (1997) Is there an excess risk for colorectal cancer in patients with ulcerative colitis and concomitant primary sclerosing cholangitis? A population based study. Gut 41: 522–525.
    [16] Matula S, Croog V, Itzkowitz S, et al. (2005) Chemoprevention of colorectal neoplasia in ulcerative colitis: the effect of 6-mercaptopurine. Clin Gastroenterol Hepatol 3: 1015–1021. doi: 10.1016/S1542-3565(05)00738-X
    [17] Terdiman JP, Steinbuch M, Blumentals WA, et al. (2007) 5-Aminosalicylic acid therapy and the risk of colorectal cancer among patients with inflammatory bowel disease. Inflamm Bowel Dis 13: 367–371. doi: 10.1002/ibd.20074
    [18] Kiesslich R, Goetz M, Lammersdorf K, et al. (2007) Chromoscopy-guided endomicroscopy increases the diagnostic yield of intraepithelial neoplasia in ulcerative colitis. Gastroenterol 132: 874–882. doi: 10.1053/j.gastro.2007.01.048
    [19] Schneider MR, Hoeflich A, Fischer JR, et al. (2000) Interleukin-6 stimulates clonogenic growth of primary and metastatic human colon carcinoma cells. Cancer Lett 151: 31–38. doi: 10.1016/S0304-3835(99)00401-2
    [20] Sakamoto K, Maeda S, Hikiba Y, et al. (2009) Constitutive NF-κB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 15: 2248–2258. doi: 10.1158/1078-0432.CCR-08-1383
    [21] Kang KA, Zhang R, Kim GY, et al. (2012) Epigenetic changes induced by oxidative stress in colorectal cancer cells: methylation of tumor suppressor RUNX3. Tumor Biol 33: 403–412. doi: 10.1007/s13277-012-0322-6
    [22] Ning Y, Manegold PC, Hong YK, et al. (2011) Interleukin-8 is associated with proliferation, migration, angiogenesis and chemosensitivity in vitro and in vivo in colon cancer cell line models. Int J Cancer 128: 2038–2049. doi: 10.1002/ijc.25562
    [23] Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142: 3113–3125. doi: 10.1242/dev.118570
    [24] Van Limbergen J, Geddes K, Henderson P, et al. (2013) Paneth cell marker CD24 in NOD2 knockout organoids and in inflammatory bowel disease (IBD). Gut:gutjnl-2013-305077.
    [25] van de Wetering M, Francies HE, Francis JM, et al. (2015) Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161: 933–945. doi: 10.1016/j.cell.2015.03.053
    [26] Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18: 246–254. doi: 10.1038/ncb3312
    [27] Dharmani P, Leung P, Chadee K (2011) Tumor necrosis factor-α and Muc2 mucin play major roles in disease onset and progression in dextran sodium sulphate-induced colitis. PLoS One 6: e25058. doi: 10.1371/journal.pone.0025058
    [28] Heazlewood CK, Cook MC, Eri R, et al. (2008) Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med 5: e54. doi: 10.1371/journal.pmed.0050054
    [29] Half E, Bercovich D, Rozen P (2009) Familial adenomatous polyposis. Orphanet J Rare Dis 4: 22. doi: 10.1186/1750-1172-4-22
    [30] Fodde R, Smits R (2001) Disease model: familial adenomatous polyposis. Trends Mol Med 7: 369–373. doi: 10.1016/S1471-4914(01)02050-0
    [31] Quesada CF, Kimata H, Mori M, et al. (1998) Piroxicam and acarbose as chemopreventive agents for spontaneous intestinal adenomas in APC gene 1309 knockout mice. JPN J Cancer Res 89: 392–396. doi: 10.1111/j.1349-7006.1998.tb00576.x
    [32] Corpet DE, Pierre F (2003) Point: From animal models to prevention of colon cancer. Systematic review of chemoprevention in min mice and choice of the model system. Cancer Epidemiol Biomarkers Prev 12: 391–400.
    [33] Aoki K, Tamai Y, Horiike S, et al. (2003) Colonic polyposis caused by mTOR-mediated chromosomal instability in Apc+/Δ716 Cdx2+/− compound mutant mice. Nat Genet 35: 323–330. doi: 10.1038/ng1265
    [34] Heyer J, Yang K, Lipkin M, et al. (1999) Mouse models for colorectal cancer. Oncogene 18: 5325–5333. doi: 10.1038/sj.onc.1203036
    [35] Velcich A, Yang W, Heyer J, et al. (2002) Colorectal cancer in mice genetically deficient in the mucin Muc2. Science 295: 1726–1729. doi: 10.1126/science.1069094
    [36] Van der Sluis M, De Koning BA, De Bruijn AC, et al. (2006) Muc2-deficient mice spontaneously develop colitis, indicating that MUC2 is critical for colonic protection. Gastroenterol 131: 117–129. doi: 10.1053/j.gastro.2006.04.020
    [37] Zhu Y, Richardson JA, Parada LF, et al. (1998) Smad3 mutant mice develop metastatic colorectal cancer. Cell 94: 703–714. doi: 10.1016/S0092-8674(00)81730-4
    [38] Yang X, Letterio JJ, Lechleider RJ, et al. (1999) Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO J 18: 1280–1291. doi: 10.1093/emboj/18.5.1280
    [39] Perše M, Cerar A (2012) Dextran sodium sulphate colitis mouse model: traps and tricks. Biomed Res Int 2012.
    [40] Delker DA, McKnight SJ, Rosenberg DW (1998) The role of alcohol dehydrogenase in the metabolism of the colon carcinogen methylazoxymethanol. Toxicol Sci 45: 66–71. doi: 10.1093/toxsci/45.1.66
    [41] Haase P, Cowen D, Knowles J (1973) Histogenesis of colonic tumours in mice induced by dimethyl hydrazine. J Pathol 109: Px.
    [42] Neufert C, Becker C, Neurath MF (2007) An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc 2: 1998–2004. doi: 10.1038/nprot.2007.279
    [43] Tanaka T, Kohno H, Suzuki R, et al. (2003) A novel inflammation-related mouse colon carcinogenesis model induced by azoxymethane and dextran sodium sulfate. Cancer Sci 94: 965–973. doi: 10.1111/j.1349-7006.2003.tb01386.x
    [44] De Robertis M, Massi E, Poeta ML, et al. (2011) The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog 10: 9. doi: 10.4103/1477-3163.78279
    [45] Reddy BS, Ohmori T (1981) Effect of intestinal microflora and dietary fat on 3, 2'-dimethyl-4-aminobiphenyl-induced colon carcinogenesis in F344 rats. Cancer Res 41: 1363–1367.
    [46] Hasegawa R, Sano M, Tamano S, et al. (1993) Dose-dependence of 2-amino-1-methy1-6-phen-ylimidazo [4, 5-b]-pyridine (PhIP) carcinogenicity in rats. Carcinogenesis 14: 2553–2557. doi: 10.1093/carcin/14.12.2553
    [47] Wanibuchi H, Salim EI, Morimura K, et al. (2005) Lack of large intestinal carcinogenicity of 2-amino-1-methyl-6-phenylimidazo [4, 5-b] pyridine at low doses in rats initiated with azoxymethane. Int J Cancer 115: 870–878. doi: 10.1002/ijc.20960
    [48] Kobaek-Larsen M, Thorup I, Diederichsen A, et al. (2000) Review of colorectal cancer and its metastases in rodent models: comparative aspects with those in humans. Comp Med 50: 16–26.
    [49] Narisawa T, Magadia NE, Weisburger JH, et al. (1974) Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of N-Methyl-N' nitro-N-nitrosoguanidine in Rats. J Natl Cancer Inst 53: 1093–1097. doi: 10.1093/jnci/53.4.1093
    [50] Einerhand AW, Renes IB, Makkink MK, et al. (2002) Role of mucins in inflammatory bowel disease: important lessons from experimental models. Eur J GastroenterolHepatol 14: 757–765. doi: 10.1097/00042737-200207000-00008
    [51] Randall-Demllo S, Fernando R, Brain T, et al. (2016) Characterisation of colonic dysplasia-like epithelial atypia in murine colitis. World J Gastroenterol 22: 8334–8348. doi: 10.3748/wjg.v22.i37.8334
    [52] Gorrini C, Harris IS, Mak TW (2013) Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov 12: 931–947. doi: 10.1038/nrd4002
    [53] Jackson AL, Loeb LA (2001) The contribution of endogenous sources of DNA damage to the multiple mutations in cancer. Mut Res Fund Mol Mech Mutagen 477: 7–21. doi: 10.1016/S0027-5107(01)00091-4
    [54] Kawanishi S, Hiraku Y, Pinlaor S, et al. (2006) Oxidative and nitrative DNA damage in animals and patients with inflammatory diseases in relation to inflammation-related carcinogenesis. Biol Chem 387: 365–372.
    [55] Tüzün A, Erdil A, İnal V, et al. (2002) Oxidative stress and antioxidant capacity in patients with inflammatory bowel disease. Clin Biochem 35: 569–572. doi: 10.1016/S0009-9120(02)00361-2
    [56] Nair J, Gansauge F, Beger H, et al. (2006) Increased etheno-DNA adducts in affected tissues of patients suffering from Crohn's disease, ulcerative colitis, and chronic pancreatitis. Antioxid Redox Signal 8: 1003–1010. doi: 10.1089/ars.2006.8.1003
    [57] Vong LB, Yoshitomi T, Matsui H, et al. (2015) Development of an oral nanotherapeutics using redox nanoparticles for treatment of colitis-associated colon cancer. Biomaterials 55: 54–63. doi: 10.1016/j.biomaterials.2015.03.037
    [58] Solomon H, Brosh R, Buganim Y, et al. (2010) Inactivation of the p53 tumor suppressor gene and activation of the Ras oncogene: cooperative events in tumorigenesis. Discov Med 9: 448–454.
    [59] Huang H, Wang H, Lloyd RS, et al. (2008) Conformational interconversion of the trans-4-hydroxynonenal-derived (6S, 8R, 11S) 1, N 2-deoxyguanosine adduct when mismatched with deoxyadenosine in DNA. Chem Res Toxicol 22: 187–200.
    [60] Barrett CW, Ning W, Chen X, et al. (2013) Tumor suppressor function of the plasma glutathione peroxidase gpx3 in colitis-associated carcinoma. Cancer Res 73: 1245–1255. doi: 10.1158/0008-5472.CAN-12-3150
    [61] Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12: 801–817. doi: 10.1038/nrc3399
    [62] Khor TO, Huang MT, Prawan A, et al. (2008) Increased susceptibility of Nrf2 knockout mice to colitis-associated colorectal cancer. Cancer Prev Res 1: 187–191. doi: 10.1158/1940-6207.CAPR-08-0028
    [63] Meira LB, Bugni JM, Green SL, et al. (2008) DNA damage induced by chronic inflammation contributes to colon carcinogenesis in mice. J Clin Invest 118: 2516–2525.
    [64] Sohn JJ, Schetter AJ, Yfantis HG, et al. (2012) Macrophages, nitric oxide and microRNAs are associated with DNA damage response pathway and senescence in inflammatory bowel disease. PLoS One 7: e44156. doi: 10.1371/journal.pone.0044156
    [65] Kohonen-Corish MR, Daniel JJ, te Riele H, et al. (2002) Susceptibility of Msh2-deficient mice to inflammation-associated colorectal tumors. Cancer Res 62: 2092–2097.
    [66] Fleisher AS, Esteller M, Harpaz N, et al. (2000) Microsatellite instability in inflammatory bowel disease-associated neoplastic lesions is associated with hypermethylation and diminished expression of the DNA mismatch repair gene, hMLH1. Cancer Res 60: 4864–4868.
    [67] Redston MS, Papadopoulos N, Caldas C, et al. (1995) Common occurrence of APC and K-ras gene mutations in the spectrum of colitis-associated neoplasias. Gastroenterol 108: 383–392. doi: 10.1016/0016-5085(95)90064-0
    [68] Burmer GC, Rabinovitch PS, Haggitt RC, et al. (1992) Neoplastic progression in ulcerative colitis: histology, DNA content, and loss of a p53 allele. Gastroenterol 103: 1602–1610. doi: 10.1016/0016-5085(92)91184-6
    [69] Yashiro M (2015) Molecular alterations of colorectal cancer with inflammatory bowel disease. Dig Dis Sci 60: 2251–2263. doi: 10.1007/s10620-015-3646-4
    [70] Mikami T, Yoshida T, Numata Y, et al. (2007) Low frequency of promoter methylation of O6-Methylguanine DNA methyltransferase and hMLH1 in ulcerative colitis-associated tumors. Am J Clin Pathol 127: 366–373. doi: 10.1309/RFETXN6387KLQ1LD
    [71] Foran E, Garrity-Park MM, Mureau C, et al. (2010) Upregulation of DNA methyltransferase-mediated gene silencing, anchorage-independent growth, and migration of colon cancer cells by interleukin-6. Mol Cancer Res 8: 471–481. doi: 10.1158/1541-7786.MCR-09-0496
    [72] Hartnett L, Egan LJ (2012) Inflammation, DNA methylation and colitis-associated cancer. Carcinogenesis bgs006.
    [73] Nakazawa T, Kondo T, Ma D, et al. (2012) Global histone modification of histone H3 in colorectal cancer and its precursor lesions. Hum Pathol 43: 834–842. doi: 10.1016/j.humpath.2011.07.009
    [74] Li Q, Chen H (2012) Silencing of Wnt5a during colon cancer metastasis involves histone modifications. Epigenetics 7: 551–558. doi: 10.4161/epi.20050
    [75] Binder H, Steiner L, Przybilla J, et al. (2013) Transcriptional regulation by histone modifications: towards a theory of chromatin re-organization during stem cell differentiation. Phys Biol 10: 026006. doi: 10.1088/1478-3975/10/2/026006
    [76] Bardhan K, Liu K (2013) Epigenetics and colorectal cancer pathogenesis. Cancers 5: 676–713. doi: 10.3390/cancers5020676
    [77] Klose RJ, Zhang Y (2007) Regulation of histone methylation by demethylimination and demethylation. Nat Rev Mol Cell Biol 8: 307–318. doi: 10.1038/nrm2143
    [78] Wong JJL, Hawkins NJ, Ward RL (2007) Colorectal cancer: a model for epigenetic tumorigenesis. Gut 56: 140–148. doi: 10.1136/gut.2005.088799
    [79] Portela A, Esteller M (2010) Epigenetic modifications and human disease. Nat Biotechnol 28: 1057–1068. doi: 10.1038/nbt.1685
    [80] Glauben R, Batra A, Fedke I, et al. (2006) Histone hyperacetylation is associated with amelioration of experimental colitis in mice. J Immunol 176: 5015–5022. doi: 10.4049/jimmunol.176.8.5015
    [81] Glauben R, Batra A, Stroh T, et al. (2008) Histone deacetylases: novel targets for prevention of colitis-associated cancer in mice. Gut 57: 613–622. doi: 10.1136/gut.2007.134650
    [82] Griffiths-Jones S, Grocock RJ, Van Dongen S, et al. (2006) miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res 34: D140–D144. doi: 10.1093/nar/gkj112
    [83] Wu F, Zikusoka M, Trindade A, et al. (2008) MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2α. Gastroenterol 135: 1624–1635. doi: 10.1053/j.gastro.2008.07.068
    [84] Olaru AV, Selaru FM, Mori Y, et al. (2011) Dynamic changes in the expression of MicroRNA-31 during inflammatory bowel disease-associated neoplastic transformation. Inflamm Bowel Dis 17: 221–231. doi: 10.1002/ibd.21359
    [85] Shi C, Yang Y, Xia Y, et al. (2015) Novel evidence for an oncogenic role of microRNA-21 in colitis-associated colorectal cancer. Gut 308–455.
    [86] Svrcek M, El-Murr N, Wanherdrick K, et al. (2013) Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. Carcinogenesis bgs408.
    [87] Polytarchou C, Hommes DW, Palumbo T, et al. (2015) MicroRNA214 is associated with progression of ulcerative colitis, and inhibition reduces development of colitis and colitis-associated cancer in mice. Gastroenterol 149: 981–992. doi: 10.1053/j.gastro.2015.05.057
    [88] Cristóbal I, Manso R, Gónzález-Alonso P, et al. (2015) Clinical value of miR-26b discriminating ulcerative colitis-associated colorectal cancer in the subgroup of patients with metastatic disease. Inflamm Bowel Dis 21: E24–E25.
    [89] Ludwig K, Fassan M, Mescoli C, et al. (2013) PDCD4/miR-21 dysregulation in inflammatory bowel disease-associated carcinogenesis. Virchows Arch 462: 57–63. doi: 10.1007/s00428-012-1345-5
    [90] Yang L, Belaguli N, Berger DH (2009) MicroRNA and colorectal cancer. World J Surg 33: 638–646. doi: 10.1007/s00268-008-9865-5
    [91] Kanaan Z, Rai SN, Eichenberger MR, et al. (2012) Differential MicroRNA expression tracks neoplastic progression in inflammatory bowel disease-associated colorectal cancer. Hum Mutat 33: 551–560. doi: 10.1002/humu.22021
    [92] Feng R, Chen X, Yu Y, et al. (2010) miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 298: 50–63. doi: 10.1016/j.canlet.2010.06.004
    [93] Fasseu M, Tréton X, Guichard C, et al. (2010) Identification of restricted subsets of mature microRNA abnormally expressed in inactive colonic mucosa of patients with inflammatory bowel disease. PloS One 5: e13160. doi: 10.1371/journal.pone.0013160
    [94] Wang W, Li X, Zheng D, et al. (2015) Dynamic changes and functions of macrophages and M1/M2 subpopulations during ulcerative colitis-associated carcinogenesis in an AOM/DSS mouse model. Mol Med Rep 11: 2397–2406.
    [95] Francescone R, Hou V, Grivennikov SI (2015) Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis 21: 409–418. doi: 10.1097/MIB.0000000000000236
    [96] Sarra M, Pallone F, MacDonald TT, et al. (2010) IL-23/IL-17 axis in IBD. Inflamm Bowel Dis 16: 1808–1813. doi: 10.1002/ibd.21248
    [97] Reinecker HC, Steffen M, Witthoeft T, et al. (1993) Enhand secretion of tumour necrosis factor-alpha, IL-6, and IL-1β by isolated lamina ropria monouclear cells from patients with ulcretive cilitis and Crohn's disease. Clin Exp Immunol 94: 174–181.
    [98] Banks C, Bateman A, Payne R, et al. (2003) Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn's disease. J Pathol 199: 28–35.
    [99] Wiercinska-Drapalo A, Flisiak R, Jaroszewicz J, et al. (2005) Plasma interleukin-18 reflects severity of ulcerative colitis. World J Gastroenterol 11: 605–608. doi: 10.3748/wjg.v11.i4.605
    [100] Bisping G, Lügering N, Lütke-Brintrup S, et al. (2001) Patients with inflammatory bowel disease (IBD) reveal increased induction capacity of intracellular interferon-gamma (IFN-γ) in peripheral CD8+ lymphocytes co-cultured with intestinal epithelial cells. Clin Exp Immunol 123: 15–22. doi: 10.1046/j.1365-2249.2001.01443.x
    [101] Hyun YS, Han DS, Lee AR, et al. (2012) Role of IL-17A in the development of colitis-associated cancer. Carcinogenesis bgs106.
    [102] Onizawa M, Nagaishi T, Kanai T, et al. (2009) Signaling pathway via TNF-α/NF-κB in intestinal epithelial cells may be directly involved in colitis-associated carcinogenesis. Am J Physiol Gastrointest Liver Physiol 296: G850–G859. doi: 10.1152/ajpgi.00071.2008
    [103] Matsumoto S, Hara T, Mitsuyama K, et al. (2010) Essential roles of IL-6 trans-signaling in colonic epithelial cells, induced by the IL-6/soluble–IL-6 receptor derived from lamina propria macrophages, on the development of colitis-associated premalignant cancer in a murine model. J Immunol 184: 1543–1551. doi: 10.4049/jimmunol.0801217
    [104] Atreya R, Mudter J, Finotto S, et al. (2000) Blockade of interleukin 6 trans signaling suppresses T-cell resistance against apoptosis in chronic intestinal inflammation: evidence in crohn disease and experimental colitis in vivo. Nat Med 6: 583–588. doi: 10.1038/75068
    [105] Popivanova BK, Kitamura K, Wu Y, et al. (2008) Blocking TNF-α in mice reduces colorectal carcinogenesis associated with chronic colitis. J Clin Invest 118: 560–570.
    [106] Fukata M, Chen A, Vamadevan AS, et al. (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterol 133: 1869–1869. doi: 10.1053/j.gastro.2007.09.008
    [107] Garrett WS, Punit S, Gallini CA, et al. (2009) Colitis-associated colorectal cancer driven by T-bet deficiency in dendritic cells. Cancer Cell 16: 208–219. doi: 10.1016/j.ccr.2009.07.015
    [108] Allen IC, TeKippe EM, Woodford RMT, et al. (2010) The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med 207: 1045–1056. doi: 10.1084/jem.20100050
    [109] Allen IC, Wilson JE, Schneider M, et al. (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-κB signaling. Immunity 36: 742–754. doi: 10.1016/j.immuni.2012.03.012
    [110] Chen GY, Liu M, Wang F, et al. (2011) A functional role for Nlrp6 in intestinal inflammation and tumorigenesis. J Immunol 186: 7187–7194. doi: 10.4049/jimmunol.1100412
    [111] Eckmann L, Greten T (2004) IKKbeta links inflam. mation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296.
    [112] Cooks T, Pateras IS, Tarcic O, et al. (2013) Mutant p53 prolongs NF-κB activation and promotes chronic inflammation and inflammation-associated colorectal cancer. Cancer Cell 23: 634–646. doi: 10.1016/j.ccr.2013.03.022
    [113] Grivennikov S, Karin E, Terzic J, et al. (2009) IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell 15: 103–113. doi: 10.1016/j.ccr.2009.01.001
    [114] Bollrath J, Phesse TJ, von Burstin VA, et al. (2009) gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell 15: 91–102. doi: 10.1016/j.ccr.2009.01.002
    [115] Ghosh S, Karin M (2002) Missing pieces in the NF-κB puzzle. Cell 109: S81–S96. doi: 10.1016/S0092-8674(02)00703-1
    [116] Karin M (2006) Nuclear factor-κB in cancer development and progression. Nature 441: 431–436. doi: 10.1038/nature04870
    [117] Greten FR, Eckmann L, Greten TF, et al. (2004) IKKβ links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118: 285–296. doi: 10.1016/j.cell.2004.07.013
    [118] Rose-John S (2012) IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. Int J Biol Sci 8: 1237–1247. doi: 10.7150/ijbs.4989
    [119] Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a leading role for STAT3. Nat Rev Cancer 9: 798–809. doi: 10.1038/nrc2734
    [120] Pickert G, Neufert C, Leppkes M, et al. (2009) STAT3 links IL-22 signaling in intestinal epithelial cells to mucosal wound healing. J Exp Med 206: 1465–1472. doi: 10.1084/jem.20082683
    [121] Putoczki TL, Thiem S, Loving A, et al. (2013) Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 24: 257–271. doi: 10.1016/j.ccr.2013.06.017
    [122] Chichlowski M, Sharp JM, Vanderford DA, et al. (2008) Helicobacter typhlonius and Helicobacter rodentium differentially affect the severity of colon inflammation and inflammation-associated neoplasia in IL10-deficient mice. Comp Med 58: 534–541.
    [123] Uronis JM, Mühlbauer M, Herfarth HH, et al. (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PloS One 4: e6026. doi: 10.1371/journal.pone.0006026
    [124] O'mahony L, Feeney M, O'halloran S, et al. (2001) Probiotic impact on microbial flora, inflammation and tumour development in IL-10 knockout mice. Aliment Pharmacol Ther 15: 1219–1225. doi: 10.1046/j.1365-2036.2001.01027.x
    [125] Tözün N, Vardareli E (2016) Gut microbiome and gastrointestinal cancer: les liaisons dangereuses. J Clin Gastroenterol 50: S191–S196. doi: 10.1097/MCG.0000000000000714
    [126] Yamamoto M, Matsumoto S (2016) Gut microbiota and colorectal cancer. Genes and Environ 38: 1–7.
    [127] Abreu MT (2010) Toll-like receptor signalling in the intestinal epithelium: how bacterial recognition shapes intestinal function. Nat Rev Immunol 10: 131–144. doi: 10.1038/nri2707
    [128] Grivennikov SI (2013) Inflammation and colorectal cancer: colitis-associated neoplasia, In: Seminars in immunopathology, Springer-Verlag, 229–244.
    [129] Lowe EL, Crother TR, Rabizadeh S, et al. (2010) Toll-like receptor 2 signaling protects mice from tumor development in a mouse model of colitis-induced cancer. PloS One 5: e13027. doi: 10.1371/journal.pone.0013027
    [130] Fukata M, Chen A, Vamadevan AS, et al. (2007) Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterol 133: 1869–1869. doi: 10.1053/j.gastro.2007.09.008
    [131] Araki T, Toiyama Y, Okita Y, et al. (2016) Surgical treatment for ulcerative colitis-associated cancer or dysplasia, In: Colitis-associated cancer, Springer-Verlag, 109–130.
    [132] Nio K, Higashi D, Kumagai H, et al. (2016) Efficacy and safety analysis of chemotherapy for advanced colitis-associated colorectal cancer in Japan. Anticancer Drugs 27: 457–463. doi: 10.1097/CAD.0000000000000338
    [133] Impellizzeri D, Esposito E, Mazzon E, et al. (2011) Oleuropein aglycone, an olive oil compound, ameliorates development of arthritis caused by injection of collagen type II in mice. J Pharmacol Exp Ther 339: 859–869. doi: 10.1124/jpet.111.182808
    [134] Giner E, Recio MC, Ríos JL, et al. (2013) Oleuropein protects against dextran sodium sulfate-induced chronic colitis in mice. J Nat Prod 76: 1113–1120. doi: 10.1021/np400175b
    [135] Acquaviva R, Di Giacomo C, Sorrenti V, et al. (2012) Antiproliferative effect of oleuropein in prostate cell lines. Int J Oncol 41: 31.
    [136] Elamin MH, Daghestani MH, Omer SA, et al. (2013) Olive oil oleuropein has anti-breast cancer properties with higher efficiency on ER-negative cells. Food Chem Toxicol 53: 310–316. doi: 10.1016/j.fct.2012.12.009
    [137] Giner E, Recio MC, Ríos JL, et al. (2016) Chemopreventive effect of oleuropein in colitis-associated colorectal cancer in c57bl/6 mice. Mol Nutr Food Res 60: 242–255. doi: 10.1002/mnfr.201500605
    [138] Zhang M, Viennois E, Prasad M, et al. (2016) Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101: 321–340. doi: 10.1016/j.biomaterials.2016.06.018
    [139] Lin L, Sun Y, Wang D, et al. (2015) Celastrol ameliorates ulcerative colitis-related colorectal cancer in mice via suppressing inflammatory responses and epithelial-mesenchymal transition. Front Pharmacol 6.
    [140] Shaker ME, Ashamallah SA, Houssen ME (2014) Celastrol ameliorates murine colitis via modulating oxidative stress, inflammatory cytokines and intestinal homeostasis. Chem Biol Interact 210: 26–33. doi: 10.1016/j.cbi.2013.12.007
    [141] Fung KY, Cosgrove L, Lockett T, et al. (2012) A review of the potential mechanisms for the lowering of colorectal oncogenesis by butyrate. Br J Nutr 108: 820–831. doi: 10.1017/S0007114512001948
    [142] Hu Y, Le Leu RK, Christophersen CT, et al. (2016) Manipulation of the gut microbiota using resistant starch is associated with protection against colitis-associated colorectal cancer in rats. Carcinogenesis 37: 366–375. doi: 10.1093/carcin/bgw019
    [143] Kong ZL, Kao NJ, Hu JY, et al. (2016) Fucoxanthin-rich brown algae extract decreases inflammation and attenuates colitis-associated colon cancer in mice. J Food Nutr Res 4: 137–147.
    [144] Pandurangan AK, Saadatdoust Z, Hamzah H, et al. (2015) Dietary cocoa protects against colitis-associated cancer by activating the Nrf2/Keap1 pathway. Biofactors 41: 1–14. doi: 10.1002/biof.1195
    [145] Wu WT, Tsai YT, Chen HL (2016) Konjac glucomannan and inulin oligosaccharide attenuated the progression of colitic-associated colon carcinogenesis and modulated immune response in mice. FASEB J 30: 1174.
    [146] Periasamy S, Liu CT, Wu WH, et al. (2015) Dietary Ziziphus jujuba fruit influence on aberrant crypt formation and blood cells in colitis-associated colorectal cancer in mice. Asian Pac J Cancer Prev:16: 7561–7566.
    [147] Viennois E, Xiao B, Ayyadurai S, et al. (2014) Micheliolide, a new sesquiterpene lactone that inhibits intestinal inflammation and colitis-associated cancer. Lab Invest 94: 950–965. doi: 10.1038/labinvest.2014.89
    [148] Kunchari Kalaimathi S, Sudhandiran G (2016) Fisetin ameolirates the azoxymethane and dextran sodium sulfate induced colitis associated colorectal cancer. Int J Pharm Clin Res 8: 551–560.
    [149] Yasui Y, Hosokawa M, Mikami N, et al. (2011) Dietary astaxanthin inhibits colitis and colitis-associated colon carcinogenesis in mice via modulation of the inflammatory cytokines. Chem Biol Interact 193: 79–87. doi: 10.1016/j.cbi.2011.05.006
    [150] Yang X, Zhang F, Wang Y, et al. (2013) Oroxylin A inhibits colitis-associated carcinogenesis through modulating the IL-6/STAT3 signaling pathway. Inflamm Bowel Dis 19: 1990–2000.
    [151] Kannengiesser K, Maaser C, Heidemann J, et al. (2008) Melanocortin-derived tripeptide KPV has anti-inflammatory potential in murine models of inflammatory bowel disease. Inflamm Bowel Dis 14: 324–331. doi: 10.1002/ibd.20334
    [152] Viennois E, Ingersoll SA, Ayyadurai S, et al. (2016) Critical role of PepT1 in promoting colitis-associated cancer and therapeutic benefits of the anti-inflammatory PepT1-mediated tripeptide KPV in a murine model. CMGH Cell Mol Gastroenterol Hepatol 2: 340–357. doi: 10.1016/j.jcmgh.2016.01.006
    [153] Seraj MJ, Umemoto A, Kajikawa A, et al. (1997) Effects of dietary bile acids on formation of azoxymethane-induced aberrant crypt foci in F344 rats. Cancer Lett 115: 97–103. doi: 10.1016/S0304-3835(97)04719-8
    [154] Tung BY, Emond MJ, Haggitt RC, et al. (2001) Ursodiol use is associated with lower prevalence of colonic neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Ann Intern Med 134: 89–95. doi: 10.7326/0003-4819-134-2-200101160-00008
    [155] Xie L, Jiang FC, Zhang LM, et al. (2016) Targeting of MyD88 homodimerization by novel synthetic inhibitor TJ-M2010-5 in preventing colitis-associated colorectal cancer. J Natl Cancer Inst 108: djv364. doi: 10.1093/jnci/djv364
    [156] Amini-Khoei H, Momeny M, Abdollahi A, et al. (2016) Tropisetron suppresses colitis-associated cancer in a mouse model in the remission stage. Int Immunopharmacol 36: 9–16. doi: 10.1016/j.intimp.2016.04.014
    [157] Drechsler S, Bruntsch U, Eggert J, et al. (1997) Comparison of three tropisetron-containing antiemetic regimens in the prophylaxis of acute and delayed chemotherapy-induced emesis and nausea. Support Care Cancer 5: 387–395. doi: 10.1007/s005200050097
    [158] Koh SJ, Kim JM, Kim I-K, et al. (2011) Fluoxetine inhibits NF-κB signaling in intestinal epithelial cells and ameliorates experimental colitis and colitis-associated colon cancer in mice. Am J Physiol Gastrointest Liver Physiol 301: G9–G19. doi: 10.1152/ajpgi.00267.2010
    [159] Tanaka T, Kochi T, Shirakami Y, et al. (2016) Cimetidine and clobenpropit attenuate inflammation-associated colorectal carcinogenesis in male ICR mice. Cancers 8: 25. doi: 10.3390/cancers8020025
    [160] Masini E, Fabbroni V, Giannini L, et al. (2005) Histamine and histidine decarboxylase up-regulation in colorectal cancer: correlation with tumor stage. Inflamm Res 54: S80–S81. doi: 10.1007/s00011-004-0437-3
    [161] Miyamoto S, Epifano F, Curini M, et al. (2008) A novel prodrug of 4'-geranyloxy-ferulic acid suppresses colitis-related colon carcinogenesis in mice. Nutr Cancer 60: 675–684. doi: 10.1080/01635580802008286
    [162] Yao J, Xie J, Xie B, et al. (2016) Therapeutic effect of hydroxychloroquine on colorectal carcinogenesis in experimental murine colitis. Biochem Pharmacol 115: 51–63. doi: 10.1016/j.bcp.2016.06.004
    [163] Dai Y, Jiao H, Teng G, et al. (2014) Embelin reduces colitis-associated tumorigenesis through limiting IL-6/STAT3 signaling. Mol Cancer Ther 13: 1206–1216. doi: 10.1158/1535-7163.MCT-13-0378
    [164] Liang J, Nagahashi M, Kim EY, et al. (2013) Sphingosine-1-phosphate links persistent STAT3 activation, chronic intestinal inflammation, and development of colitis-associated cancer. Cancer Cell 23: 107–120. doi: 10.1016/j.ccr.2012.11.013
    [165] Kawamori T, Kaneshiro T, Okumura M, et al. (2009) Role for sphingosine kinase 1 in colon carcinogenesis. FASEB J 23: 405–414.
    [166] Snider AJ, Kawamori T, Bradshaw SG, et al. (2009) A role for sphingosine kinase 1 in dextran sulfate sodium-induced colitis. FASEB J 23: 143–152. doi: 10.1096/fj.08-118109
    [167] Wang D, DuBois RN (2010) The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene 29: 781–788. doi: 10.1038/onc.2009.421
    [168] Kohno H, Suzuki R, Sugie S, et al. (2005) Suppression of colitis-related mouse colon carcinogenesis by a COX-2 inhibitor and PPAR ligands. BMC Cancer 5: 1. doi: 10.1186/1471-2407-5-1
    [169] Setia S, Nehru B, Sanyal SN (2014) The PI3K/Akt pathway in colitis associated colon cancer and its chemoprevention with celecoxib, a Cox-2 selective inhibitor. Biomed Pharmacother 68: 721–727. doi: 10.1016/j.biopha.2014.07.006
    [170] Glauben R, Sonnenberg E, Zeitz M, et al. (2009) HDAC inhibitors in models of inflammation-related tumorigenesis. Cancer Lett 280: 154–159. doi: 10.1016/j.canlet.2008.11.019
    [171] Wei TT, Lin YT, Tseng RY, et al. (2016) Prevention of colitis and colitis-associated colorectal cancer by a novel polypharmacological Histone deacetylase inhibitor. Am Assoc Cancer Res 22: 4158–4169.
    [172] Reinhard A, Bressenot A, Dassonneville R, et al. (2015) Photodynamic therapy relieves colitis and prevents colitis-associated carcinogenesis in mice. Inflamm Bowel Dis 21: 985–995. doi: 10.1097/MIB.0000000000000354
    [173] Zhang D, Mi M, Jiang F, et al. (2015) Apple polysaccharide reduces NF-kb mediated colitis-associated colon carcinogenesis. Nutr Cancer 67: 177–190. doi: 10.1080/01635581.2015.965336
    [174] Yang Y, Cai X, Yang J, et al. (2014) Chemoprevention of dietary digitoflavone on colitis-associated colon tumorigenesis through inducing Nrf2 signaling pathway and inhibition of inflammation. Mol Cancer 13: 48. doi: 10.1186/1476-4598-13-48
    [175] Tian Y, Wang K, Wang Z, et al. (2013) Chemopreventive effect of dietary glutamine on colitis-associated colon tumorigenesis in mice. Carcinogenesis bgt088.
    [176] Tian Y, Wang K, Fan Y, et al. (2016) Chemopreventive effect of dietary glutamineon colitis-associated colorectal cancer is associated with modulation of the DEPTOR/mTOR signaling pathway. Nutrients 8: 261. doi: 10.3390/nu8050261
  • This article has been cited by:

    1. Erdal Bas, Ramazan Ozarslan, Resat Yilmazer, Spectral structure and solution of fractional hydrogen atom difference equations, 2020, 5, 2473-6988, 1359, 10.3934/math.2020093
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(10527) PDF downloads(1625) Cited by(3)

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog