Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Lignin biodegradation and industrial implications

  • Lignocellulose, which comprises the cell walls of plants, is the Earth’s most abundant renewable source of convertible biomass. However, in order to access the fermentable sugars of the cellulose and hemicellulose fraction, the extremely recalcitrant lignin heteropolymer must be hydrolyzed and removed—usually by harsh, costly thermochemical pretreatments. Biological processes for depolymerizing and metabolizing lignin present an opportunity to improve the overall economics of the lignocellulosic biorefinery by facilitating pretreatment, improving downstream cellulosic fermentations or even producing a valuable effluent stream of aromatic compounds for creating value-added products. In the following review we discuss background on lignin, the enzymology of lignin degradation, and characterized catabolic pathways for metabolizing the by-products of lignin degradation. To conclude we survey advances in approaches to identify novel lignin degrading phenotypes and applications of these phenotypes in the lignocellulosic bioprocess.

    Citation: Adam B Fisher, Stephen S Fong. Lignin biodegradation and industrial implications[J]. AIMS Bioengineering, 2014, 1(2): 92-112. doi: 10.3934/bioeng.2014.2.92

    Related Papers:

    [1] Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang . A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, 2021, 29(3): 2375-2389. doi: 10.3934/era.2020120
    [2] Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072
    [3] Leilei Wei, Xiaojing Wei, Bo Tang . Numerical analysis of variable-order fractional KdV-Burgers-Kuramoto equation. Electronic Research Archive, 2022, 30(4): 1263-1281. doi: 10.3934/era.2022066
    [4] Guanrong Li, Yanping Chen, Yunqing Huang . A hybridized weak Galerkin finite element scheme for general second-order elliptic problems. Electronic Research Archive, 2020, 28(2): 821-836. doi: 10.3934/era.2020042
    [5] Victor Ginting . An adjoint-based a posteriori analysis of numerical approximation of Richards equation. Electronic Research Archive, 2021, 29(5): 3405-3427. doi: 10.3934/era.2021045
    [6] Jun Pan, Yuelong Tang . Two-grid $ H^1 $-Galerkin mixed finite elements combined with $ L1 $ scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365
    [7] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
    [8] Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang . A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28(4): 1487-1501. doi: 10.3934/era.2020078
    [9] Suayip Toprakseven, Seza Dinibutun . A weak Galerkin finite element method for parabolic singularly perturbed convection-diffusion equations on layer-adapted meshes. Electronic Research Archive, 2024, 32(8): 5033-5066. doi: 10.3934/era.2024232
    [10] Bin Wang, Lin Mu . Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29(1): 1881-1895. doi: 10.3934/era.2020096
  • Lignocellulose, which comprises the cell walls of plants, is the Earth’s most abundant renewable source of convertible biomass. However, in order to access the fermentable sugars of the cellulose and hemicellulose fraction, the extremely recalcitrant lignin heteropolymer must be hydrolyzed and removed—usually by harsh, costly thermochemical pretreatments. Biological processes for depolymerizing and metabolizing lignin present an opportunity to improve the overall economics of the lignocellulosic biorefinery by facilitating pretreatment, improving downstream cellulosic fermentations or even producing a valuable effluent stream of aromatic compounds for creating value-added products. In the following review we discuss background on lignin, the enzymology of lignin degradation, and characterized catabolic pathways for metabolizing the by-products of lignin degradation. To conclude we survey advances in approaches to identify novel lignin degrading phenotypes and applications of these phenotypes in the lignocellulosic bioprocess.


    For simplicity, we consider Poisson equation with a Dirichlet boundary condition as our model problem.

    $ Δu=f,inΩ, $ (1)
    $ u=g,onΩ, $ (2)

    where $ \Omega $ is a bounded polygonal domain in $ \mathbb{R}^2 $.

    Using integration by parts, we can get the variational form: find $ u \in H^1(\Omega) $ satisfying $ u = g\; \text{on}\; \partial\Omega $ and

    $ (u,v)=(f,v),vH10(Ω). $ (3)

    Various finite element methods have been introduced to solve the Poisson equations (1)-(2), such as the Galerkin finite element methods (FEMs)[2, 3], the mixed FEMs [15] and the finite volume methods (FVMs) [6], etc. The FVMs emphasis on the local conservation property and discretize equations by asking the solution satisfying the flux conservation on a dual mesh consisting of control volumes. The mixed FEMs is another category method that based on the variable $ u $ and a flux variable usually written as $ p $.

    The classical conforming finite element method obtains numerical approximate results by constructing a finite-dimensional subspace of $ H_0^1(\Omega) $. The finite element scheme has the same form with the variational form (3): find $ u_h \in V_h\subset H^1(\Omega) $ satisfying $ u_h = I_hg\; \text{on}\; \partial\Omega $ and

    $ (uh,vh)=(f,vh),vhV0h, $ (4)

    where $ V_h^0 $ is a subspace of $ V_h $ that satisfying $ v_h = 0 $ on $ \partial\Omega $ and $ I_h $ is the kth order Lagrange interpolation operator. The FE method is a popular and easy-to-implement numerical scheme, however, it is less flexible in constructing elements and generating meshes. These limitations are mainly due to the strong continuity requirements of functions in $ V_h $. One solution to circumvent these limitations is using discontinuous approximations. Since the 1970th, many new finite element methods with discontinuous approximations have been developed, including the early proposed DG methods [1], local discontinuous Galerkin (LDG) methods [8], interior penalty discontinuous Galerkin (IPDG) methods [9], and the recently developed hybridizable discontinuous Galerkin (HDG) methods [7], mimetic finite differences method [10], virtual element (VE) method [4], weak Galerkin (WG) method [19, 20] and references therein.

    One obvious disadvantage of discontinuous finite element methods is their rather complex formulations which are often necessary to ensure connections of discontinuous solutions across element boundaries. For example, the IPDG methods add parameter depending interior penalty terms. Besides additional programming complexity, one often has difficulties in finding optimal values for the penalty parameters and corresponding efficient solvers. Most recently, Zhang and Ye [21] developed a discontinuous finite element method that has an ultra simple weak formulation on triangular/tetrahedal meshes. The corresponding numerical scheme can be written as: find $ u_h \in \tilde{V}_h $ satisfying $ u_h = I_hg\; \text{on}\; \partial\Omega $ and

    $ (wuh,wvh)=(f,vh),vhV0h, $ (5)

    where $ \tilde{V}_h $ is the DG finite element space and $ \nabla_w $ is the weak gradient operator. The notion of weak gradient was first introduced by Wang and Ye in the weak Galerkin (WG) methods [19, 20]. The WG methods allow the use of totally discontinuous functions and provides stable numerical schemes that are parameter-independent and free of locking [17] in some applications. Another key feature in the WG methods is it can be used for arbitrary polygonal meshes. The WG finite element method has been rapidly developed and applied to other problems, including the Stokes and Navier-Stokes equations [11, 18], the biharmonic [14, 13] and elasticity equations [12, 17], div-curl systems and the Maxwell's equations and parabolic problem [23], etc. The introduction of the weak gradient operator in the conforming DG methods makes the scheme (5) maintain the simple formulation of conforming finite element method while have the flexibility of using discontinuous approximations. Hence, the programming complexity of this conforming DG scheme is significantly reduced. Furthermore, the scheme results in a simple symmetric and positive definite system.

    Following the work in [21, 22], we propose a new conforming DG finite element method on rectangular partitions in this work. It can be obtained from the conforming formulation simply by replacing $ \nabla $ by $ \nabla_w $ and enforcing the boundary condition strongly. The simplicity of the conforming DG formulation will ease the complexity for implementation of DG methods. We note that the conforming DG method in [21] is based on triangular/tetrahedal meshes. Then in [22], the method is extended to work on general polytopal meshes by raising the degree of polynomials used to compute weak gradient.

    In this paper, we keep the same finite element space as DG method, replace the boundary function with the average of the inner function, and use the weak gradient arising from local Raviart-Thomas (RT) elements [5] to approximate the classic gradient. Moreover, the derivation process in this paper is based on rectangular RT elements [16]. Error estimates of optimal order are established for the corresponding conforming DG approximation in both a discrete $ H^1 $ norm and the $ L^2 $ norm. Numerical verifications have been performed on different kinds of quadrangle finite element space. In particular, super-convergence phenomenon have been observed for $ Q_0 $ elements.

    The rest of this paper is organized as follows: In Section 2, we shall present the conforming DG finite element scheme for the Poisson equation on rectangular partitions. Section 3 is devoted to a discussion of the stability and solvability of the new method. In Section 4, we shall prepare ourselves for error estimates by deriving some identities. Error estimates of optimal order in $ H^1 $ and $ L^2 $ norm are established in Section 5. In Section 6, we present some numerical results to illustrate the theory derived in earlier sections. Finally in section 7, we conclude our major contributions in this article.

    Throughout this paper, we adopt the standard definition of Sobolev space $ H^s(\Omega) $. For any given open bounded domain $ K \subseteq \Omega $, $ (\cdot, \cdot)_{s,K}, \|\cdot\|_{s,K} $, and $ |\cdot|_{s,K} $ are used to denote the inner product, norm and semi-norm, respectively. The space $ H^0(K) $ coincides with $ L^2(K) $, and the subscripts $ K $ in the inner product, norm, and semi-norm can be dropped in the case of $ K = \Omega $. In particular, the function space $ H^1_0(\Omega) $ is defined as

    $ H10(Ω)={vH1(Ω):v|Ω=0}, $

    and the space $ H(div, \Omega) $ is defined as the set of vector-valued functions $ \boldsymbol{q} $, which together with their divergence are square integrable, i.e.

    $ H(div,Ω)={q[L2(Ω)]d:qL2(Ω)}. $

    Assume that the domain $ \Omega $ is of polygonal type and is partitioned into non-overlapping rectangles $ \mathcal{T}_h = \{T\} $. For each $ T\in \mathcal{T}_h $, denote by $ T^0 $ its interior and $ \partial T $ its boundary. Denote by $ \mathcal{E}_h = \{e\} $ the set of all edges in $ \mathcal{T}_h $, and $ \mathcal{E}_h^0 = \mathcal{E}_h\setminus \partial\Omega $ the set of all interior edges in $ \mathcal{T}_h $. For each $ T\in\mathcal{T}_h $ and $ e\in\mathcal{E}_h $, denote by $ h_T $ and $ h_e $ the diameter of $ T $ and $ e $, respectively. $ h = \max_{T\in \mathcal{T}_h}h_T $ is the meshsize of $ \mathcal{T}_h $.

    For any interior edge $ e\in\mathcal{E}^0_h $, let $ T_1 $ and $ T_2 $ be two rectangles sharing $ e $, we define the average $ \{\cdot\} $ and the jump $ [\![ \cdot]\! ] $ on $ e $ for a scalar-valued function $ v $ by

    $ {v}=12(v|T1+v|T2),[[v]]=v|T1n1+v|T2n2, $ (6)

    where $ v|_{\partial T_{i}},i = 1,2 $ is the trace of $ v $ on $ \partial T_i $, $ \boldsymbol{n</italic>}_1 $ and $ \boldsymbol{n</italic>}_2 $ are the two unit outward normal vectors on $ e $, associated with $ T_1 $ and $ T_2 $, respectively. If $ e $ is a boundary edge, we define

    $ {v}=v|eand[[v]]=v|en. $ (7)

    We define a discontinuous finite element space

    $ Vh={vL2(Ω):v|TQk(T),TTh}, $ (8)

    and its subspace

    $ V0h={vVh:v=0onΩ}, $ (9)

    where $ Q_k(T), \;k \geq 1 $ denotes the set of polynomials with regard to quadrilateral elements. The weak gradient for a scalar-valued function $ v\in V_h $ is defined by the following definition

    Definition 2.1. For a given $ T \in \mathcal{T}_h $ and a function $ v\in V_h $, the discrete weak gradient $ \nabla_d v \in RT_k(T) $ on $ T $ is defined as the unique polynomial such that

    $ (dv,q)T:=(v,q)T+{v},qnT,qRTk(T), $ (10)

    where $ \boldsymbol{n} $ is the unit outward normal on $ \partial T $, $ RT_k(T) = [Q_k(T)]^2+\bf{x}Q_k(T) $, and $ \{v\} $ is defined in (6) and (7).

    The weak gradient operator $ \nabla_{d} $ as defined in (10) is a local operator computed at each element. It can be extended to any function $ v \in V_h $ by taking weak gradient locally on each element T. More precisely, the weak gradient of any $ v \in V_h $ is defined element-by-element as follows:

    $ (dv)|T=d(v|T). $

    We introduce the following bilinear form:

    $ a(v,w)=(dv,dw), $

    the conforming DG algorithm to solve the problems (1) - (2) is given by

    Conforming DG algorithm 1. Find $ u_h\in V_h $ satisfying $ u_h = I_hg \; \mathit{\text{on}} \; \partial \Omega $ and

    $ a(uh,vh)=(f,vh),vhV0h, $ (11)

    where $ I_h $ is the kth order Lagrange interpolation.

    We will prove the existence and uniqueness of the solution of equation (11). Firstly, we present the following two useful inequalities to derive the forthcoming analysis.

    Lemma 3.1 (trace inequality). Let $ T $ be an element of the finite element partition $ \mathcal{T}_h $, and $ e $ is an edge or face which is part of $ \partial T $. For any function $ \varphi\in H^1(T) $, the following trace inequality holds true (see [20] for details):

    $ φ2eC(h1Tφ2T+hTφ2T), $ (12)

    where $ C $ is a constant independent of $ h $.

    Lemma 3.2 (inverse inequality). Let $ \mathcal{T}_h $ be a finite element partition of $ \Omega $ that is shape regualr. Assume that $ \mathcal{T}_h $ satisfies all the assumptions A1-A4 in [20]. Then, for any piecewise polynomial function $ \varphi $ of degree $ n $ on $ \mathcal{T}_h $, there exists a constant $ C = C(n) $ such that

    $ φTC(n)h1TφT,TTh. $ (13)

    Then, we define the following semi-norms in the discontinuous finite element space $ V_h $

    $ |||v|||2=a(v,v)=TThdv2T, $ (14)
    $ v21,h=TThv2T+eE0hh1e[[v]]2e. $ (15)

    We have the equivalence between the semi-norms $ |\!|\!| v |\!|\!| $ and $ \|v\|_{1,h} $, and it is proved in the following lemma.

    Lemma 3.3. For any $ v\in V_h $, the following equivalence holds true

    $ C1v1,h|||v|||C2v1,h, $ (16)

    where $ C_1 $ and $ C_2 $ are two constants independent of $ h $.

    Proof. It follows from the definition of $ \nabla_d v $, integration by parts, the trace inequality, and the inverse inequality that

    $ dv2T1=(dv,dv)T1=(v,dv)T1+{v}n,dvT1=(v,dv)T1(v{v})n,dvT1vT1dvT1+(v{v})nT1dvT1dvT1(vT1+h12T1(v{v})nT1). $ (17)

    For any $ e\subset\partial T_1 $, $ e = \partial T_1\cap\partial T_2 $, we have

    $ (v{v})|en1=v|T1n112(v|T1+v|T2)n1=12(v|T1n1+v|T2n2)=12[[v]]e. $

    Then we can get

    $ (v{v})n2T112eT1[[v]]2e. $ (18)

    Substituting (18) into (17) gives

    $ dv2T1C2dvT1(vT1+eT1h12e[[v]]e), $

    this completes the proof of the right-hand of (16).

    To prove the left-hand of (16), we consider the subspace of $ RT_k(T) $ for any $ T\in\mathcal{T}_h $

    $ D(k,T):={qRTk(T):qn=0onT}. $

    Note that $ D(k,T) $ is a dual space of $ [Q_{k-1}(T)]^2 $ [13]. Thus, for any $ \nabla v\in[Q_{k-1}(T)]^2 $, we have

    $ vT=supqD(k,T)(v,q)TqT. $ (19)

    Using the integration by parts, Cauchy-Schwarz inequality, the definition of $ D(k,T) $ and $ \nabla_d v $, we get

    $ (v,q)T=(v,q)T+v,qnT=(dv,q)T{v},qnT=(dv,q)TdvTqT, $

    where we have used the fact that $ \boldsymbol{q</italic>}\cdot \boldsymbol{n}|_{\partial T} = 0 $ in the definition of $ D(k,T) $. Combining the above result with (19), one has

    $ vTdvT. $ (20)

    We define the space $ D_e(k,T) $ as the set of all $ \boldsymbol{q</italic>} \in RT_k(T) $ such that all degrees of freedom, except those for $ \boldsymbol{q</italic>} \cdot\boldsymbol{n}|_e $, vanish. Note that $ D_e(k,T) $ is a dual space of $ [Q_k(e)]^2 $ [13]. Thus, we know

    $ [[v]]e=supqDe(k,T)[[v]],qneqne. $ (21)

    Following the integration by parts and the definition of $ \nabla_d $, we can derive that

    $ (dv,q)T=(v,q)Tv,qne+{v},qne. $

    Together with (20), we obtain

    $ |[[v]],qne|=2|(dv,q)T(v,q)T|2|(dv,q)T|+2|(v,q)T|C(dvTqT+vTqT)CdvTqT. $

    Substituting the above inequality into (21), by the scaling argument [13], for such $ \boldsymbol{q} \in D_e(k,T) $, we have $ \|\boldsymbol{q}\|_T \leq h^{\frac{1}{2}}\|\boldsymbol{q}\cdot\boldsymbol{n}\|_e $, then

    $ [[v]]eCdvTqTqneCh12dvT. $ (22)

    Combining (20) and (22) gives a proof of the left-hand of (16).

    Lemma 3.4. The semi-norm $ |\!|\!| \cdot |\!|\!| $ defined in (14) is a norm in $ V_h^0 $.

    Proof. We shall only verify the positivity property for $ |\!|\!| \cdot |\!|\!| $. To this end, assume $ |\!|\!| v |\!|\!| = 0 $ for some $ v\in V_h^0 $. By Lemma 3.3, it follows that $ \| v \|_{1,h} = 0 $ for all $ T\in\mathcal{T}_h $, which means that $ \nabla v = {\mathit{\boldsymbol{0}}} $ for all elements $ T\in\mathcal{T}_h $ and $ [\![ v]\! ] = 0 $ for all edges $ e\in\mathcal{E}_h^0 $. We can derive from $ \nabla v = {\mathit{\boldsymbol{0}}} $ for all $ T\in\mathcal{T}_h $ that $ v $ is a constant in each $ T $. $ [\![ v]\! ] = 0 $ on each $ e\in\mathcal{E}_h^0 $ implies $ v $ is a continuous function. This two conclusions and $ v = 0 $ on $ \partial \Omega $ show that $ v = 0 $, which completes the proof of the lemma.

    The above two lemmas imply the well posedness of the scheme (11). We prove the existence and uniqueness of solution of the conforming DG method in Theorem 3.1.

    Theorem 3.1. The conforming DG scheme (11) has and only has one solution.

    Proof. To prove the scheme (11) is uniquely solvable, it suffices to verify that the homogeneous equation has zero as its unique solution. To this end, let $ u_h\in V_h $ be the solution of the numerical scheme 11 with homogeneous data $ f = {0} $, $ {g} = 0 $. Letting $ v_h = u_h $, we obtain

    $ a(uh,uh)=0, $

    which leads to $ u_h = 0 $ by using Lemma 3.4. This completes the proof of the theorem.

    In this section, we will derive an error equation which will be used for the error estimates. For any $ \boldsymbol{q</italic>}\in H(div, \Omega) $, we assume that there exist an interpolation operator $ \Pi_h $ satisfying $ \Pi_h\boldsymbol{q}\in H(div, \Omega)\cap RT_k(T) $ on each element $ T\in\mathcal{T}_h $ and

    $ (q,v)T=(Πhq,v)T,vQk(T). $ (23)

    For any $ w\in H^{1+k}(\Omega) $ with $ k\geq 1 $, from Lemma 7.3 in [20], we have the estimate of $ \Pi_h $ as follows.

    $ Πh(w)wChkw1+k. $ (24)

    Moreover, it is easy to verify the following property holds true.

    Lemma 4.1. For any $ \boldsymbol{q}\in H(div, \Omega) $,

    $ TTh(q,v)T=TTh(Πhq,dv)T,vV0h. $ (25)

    Proof. $ \Pi_h\boldsymbol{q}\in H(div, \Omega) $ implies that $ \Pi_h\boldsymbol{q} $ is continuous across each interior edge. Since $ v\in V_h^0 $, we know that $ \{v\} = v = 0 $ on $ \partial \Omega $. Then

    $ TTh{v},ΠhqnT=0. $ (26)

    By the definition of $ \Pi_h $ and $ \nabla_d $ and the equation (26), we have

    $ TTh(q,v)T=TTh(Πhq,v)T=TTh(Πhq,v)T+TTh{v},ΠhqnT=TTh(Πhq,dv)T. $

    This completes the proof of the lemma.

    Before establishing the error equation, we define a continuous finite element subspace of $ V_h $ as follows

    $ ˜Vh={vH1(Ω):v|TQk(T),TTh}. $ (27)

    so as a subspace of $ \tilde{V}_h $

    $ ˜V0h:={v˜Vh:v|Ω=0}. $ (28)

    Lemma 4.2. For any $ v\in\tilde{V}_h $, we have

    $ dv=v. $

    Proof. By the definition of $ \nabla_d $ and integration by parts, for any $ \boldsymbol{q</italic>}\in RT_k(T) $, we have

    $ (dv,q)T=(v,q)T+{v},qnT=(v,q)T+v,qnT=(v,q)T, $

    which gives

    $ (dvv,q)T=0,qRTk(T). $

    Letting $ \boldsymbol{q} $ be $ \nabla_d v-\nabla v $ in the above equation yields $ \|\nabla_d v-\nabla v\| = 0 $, which completes the proof of the lemma.

    Let $ e_h = I_h u - u_h $, where $ I_h $ is the kth order Lagrange interpolation, $ u\in H^{k+1}(\Omega) $ with $ k \geq 1 $ is the exact solution of the Poisson equations (1) - (2), and $ u_h\in V_h $ is the numerical solution of the scheme (11). The following estimate of the Lagrange interpolation operator $ I_h $ holds true.

    $ IhuuChk+1uk+1, $ (29)
    $ IhuuChkuk+1. $ (30)

    It is obvious that $ e_h\in V_h^0 $ and $ I_h u\in\tilde{V}_h $. We have the following lemma:

    Lemma 4.3. Denote $ e_h = I_h u - u_h $ the error of conforming DG method arising from (11). For any $ v_h\in V_h^0 $, we have

    $ a(eh,vh)=lu(vh), $ (31)

    where

    $ lu(vh)=TTh(IhuΠhu,dvh). $ (32)

    Proof. Since $ I_h u\in\tilde{V}_h $, we have $ \nabla_d I_h u = \nabla I_h u $. Using the property (25), we can derive

    $ TTh(dIhu,dvh)T=TTh(Ihu,dvh)T=TTh(IhuΠhu+Πhu,dvh)T=TTh(IhuΠhu,dvh)T+TTh(Πhu,dvh)T=lu(vh)TTh(u,vh)T=lu(vh)+(f,vh). $

    By the definition of the scheme (11), we have

    $ TTh(dIhuduh,dvh)T=lu(vh). $

    This completes the proof of the lemma.

    The goal of this section is to derive the error estimates in $ H^1 $ and $ L^2 $ norms for the conforming DG solution $ u_h $.

    Theorem 5.1. Let $ u\in H^{k+1}(\Omega) $ with $ k \geq 1 $ be the exact solution of the Poisson equation (1) - (2), and $ u_h\in V_h $ be the numerical solution of the scheme (11). Let $ e_h = I_h u - u_h $, there exists a constant C independent of $ h $ such that

    $ |||eh|||Chk|u|k+1. $ (33)

    Proof. Letting $ v_h = e_h $ in (31), and by the definition of $ |\!|\!|\cdot|\!|\!| $, we have

    $ |||eh|||2=lu(eh). $ (34)

    From the Cauchy-Schwarz inequality, the triangle inequality, the definition of $ |\!|\!|\cdot|\!|\!| $, (24), and (30), we arrive at

    $ lu(vh)=TTh(IhuΠh(u),dvh)TTThIhuΠh(u)TdvhT(TThIhuΠh(u)2T)12(TThdvh2T)12=(TThIhuu+uΠh(u)2T)12|||vh|||(TThIhuu2T+uΠh(u)2T)12|||vh|||Chk|u|k+1|||vh|||. $

    Then, we have

    $ lu(eh)Chk|u|k+1|||eh|||. $ (35)

    Substituting (35) to (34), we obtain

    $ |||eh|||2Chk|u|k+1|||eh|||, $

    which completes the proof of the lemma.

    It is obvious that $ \tilde{V}_h^0\subset V_h^0 $. Let $ \tilde{u}_h\in\tilde{V}_h $ be the finite element solution for the problem (1)-(2) which satisfies $ \tilde{u}_h = I_hg $ on $ \partial\Omega $ and

    $ (˜uh,v)=(f,v),v˜V0h. $ (36)

    For any $ v\in\tilde{V}_h^0\subset\tilde{V}_h $, we have $ \nabla_d v = \nabla v $, i.e.

    $ (duh˜uh,v)=0,v˜V0h. $ (37)

    In the rest of this section, we derive an optimal order error estimate for the conforming DG approximation (11) in $ L^2 $ norm by adopting the duality argument. To this end, we consider the following dual problem that seeks $ \Phi\in H_0^1(\Omega) $ satisfying

    $ (Φ)=uh˜uh,inΩ. $ (38)

    Assume that the dual problem satisfies $ H^2 $-regularity, which means the following priori estimate holds true

    $ Φ2Cuh˜uh. $ (39)

    In the following of this paper, we note $ \varepsilon_h = u_h-\tilde{u}_h $ for simplicity.

    Theorem 5.2. Assume $ u\in H^{k+1}(\Omega) $ with $ k \geq 1 $ is the exact solution of the Poisson equation (1) - (2), and $ u_h\in V_h $ is the numerical solution obtained with the scheme (11). Furthermore, assume that (39) holds true. Then, there exists a constant C independent of $ h $ such that

    $ uuhChk+1|u|k+1. $ (40)

    Proof. First, we shall derive the optimal order for $ \varepsilon_h $ in $ L^2 $ norm. Consider the corresponding conforming DG scheme defined in (11) and let $ \Phi_h\in V_h^0 $ be the solution satisfying

    $ a(Φh,v)=(εh,v),vV0h. $ (41)

    Since $ I_h\Phi\in\tilde{V}_h $, it follows from (37) that

    $ (duh˜uh,IhΦ)=0,dIhΦ=IhΦ, $

    which gives

    $ (duh˜uh,dIhΦ)=0. $ (42)

    Setting $ v = \varepsilon_h $ in (41), then by the definition of $ \varepsilon_h $ and (42), we have

    $ εh2=a(Φh,εh)=TTh(dΦh,dεh)T=TTh(d(ΦhIhΦ),duh˜uh)T|||ΦhIhΦ|||(|||uhIhu|||+(Ihu˜uh)). $

    Then, by the Cauchy-Schwarz inequality, (33) and (39), we obtain

    $ εh2Ch|Φ|2hk|u|k+1Chk+1|u|k+1εh, $

    which gives

    $ εhChk+1|u|k+1. $ (43)

    Combining the error estimate of finite element solution, the triangle inequality and (43) yields (40), which completes the proof of the theorem.

    In this section, we shall present some numerical results for the conforming discontinuous Galerkin method analyzed in the previous sections.

    We solve the following Poisson equation on the unit square domain $ \Omega = (0,1)\times (0,1) $,

    $ Δu=2π2sin(πx)sin(πy)in Ω $ (44)
    $ u=0on Ω. $ (45)

    The exact solution of the above problem is $ u = \sin(\pi x)\sin(\pi y) $. Uniform square grids as shown in Figure 1 are used for computation.

    Figure 1.  The first three grids used in the computation.

    We first use the $ P_k $ conforming discontinuous Galerkin spaces (8) to compute the test case (44)-(45), where $ P_k $ denotes the set of polynomials of 2 variables of degree less than or equal to k. The weak gradient is computed locally using rectangular $ RT_k $ polynomials. The errors and the order of convergence of the conforming DG approximations are listed in Table 1. Optimal order of convergence is achieved in every case, which is consistent with our theory. In particular, a superconvergence of order $ \mathcal{O}(h^2) $ was observed in the discrete $ H^1 $ norm for $ P_0 $ elements. Furthermore, the results obtained with $ P_0 $ elements seems to be slightly better than that obtained with $ P_1 $ elements.

    Table 1.  Error profiles and convergence rates for test case (44)-(45) obtained with uniform grids and $ P_k $ conforming DG spaces.
    level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
    by $ P_0 $ conforming discontinuous Galerkin elements
    6 0.1996E-02 1.97 0.8887E-02 1.98 1024
    7 0.5013E-03 1.99 0.2228E-02 2.00 4096
    8 0.1255E-03 2.00 0.5574E-03 2.00 16384
    by $ P_1 $ conforming discontinuous Galerkin elements
    6 0.2427E-02 1.97 0.1027E+00 1.02 3072
    7 0.6100E-03 1.99 0.5105E-01 1.01 12288
    8 0.1527E-03 2.00 0.2546E-01 1.00 49152
    by $ P_2 $ conforming discontinuous Galerkin elements
    5 0.1533E-03 3.00 0.2042E-01 2.03 1536
    6 0.1915E-04 3.00 0.5061E-02 2.01 6144
    7 0.2394E-05 3.00 0.1260E-02 2.01 24576
    by $ P_3 $ conforming discontinuous Galerkin elements
    5 0.7959E-05 4.00 0.1965E-02 3.00 2560
    6 0.4971E-06 4.00 0.2451E-03 3.00 10240
    7 0.3140E-07 3.98 0.3059E-04 3.00 40960
    by $ P_4 $ conforming discontinuous Galerkin elements
    4 0.1055E-04 4.97 0.1421E-02 4.05 960
    5 0.3314E-06 4.99 0.8735E-04 4.02 3840
    6 0.1057E-07 4.97 0.5417E-05 4.01 15360
    by $ P_5 $ conforming discontinuous Galerkin elements
    2 0.2835E-02 6.24 0.1450E+00 5.49 84
    3 0.4532E-04 5.97 0.4718E-02 4.94 336
    4 0.7115E-06 5.99 0.1478E-03 5.00 1344

     | Show Table
    DownLoad: CSV

    The same test case is also computed using the $ Q_k $ conforming DG finite element space, where $ Q_k $ denotes the set of polynomials of 2 variables defined on $ \Omega $, and for each variable, the degree of the variable is at most k. Table 2 illustrates the numerical performance of the corresponding conforming DG scheme. It can be seen from numerical computing that, in this case, the results obtained with the $ Q_1 $ element are more accurate than those obtained with $ Q_0( = P_0) $ elements (see Table 1). All numerical results converge at the corresponding optimal order, which is consistent with the theory.

    Table 2.  Error profiles and convergence rates for test case (44)-(45) obtained with uniform grids and $ Q_k $ conforming DG spaces.
    level $ \|u_h- Q_hu\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
    by $ Q_1 $ conforming discontinuous Galerkin elements
    6 0.4006E-03 1.99 0.2389E-02 1.99 4096
    7 0.1003E-03 2.00 0.5982E-03 2.00 16384
    8 0.2510E-04 2.00 0.1496E-03 2.00 65536
    by $ Q_2 $ conforming discontinuous Galerkin elements
    6 0.2360E-04 2.99 0.3186E-02 1.99 9216
    7 0.2953E-05 3.00 0.7976E-03 2.00 36864
    8 0.3692E-06 3.00 0.1995E-03 2.00 147456
    by $ Q_3 $ conforming discontinuous Galerkin elements
    5 0.1413E-04 4.08 0.1650E-02 2.97 4096
    6 0.8676E-06 4.03 0.2072E-03 2.99 16384
    7 0.5398E-07 4.01 0.2593E-04 3.00 65536
    by $ Q_4 $ conforming discontinuous Galerkin elements
    3 0.2226E-02 4.59 0.5414E-01 3.52 400
    4 0.9610E-04 4.53 0.3723E-02 3.86 1600
    5 0.3279E-05 4.87 0.2392E-03 3.96 6400

     | Show Table
    DownLoad: CSV

    To test the superconvergence of $ P_0 $ DG element, we solve the following 2nd order elliptic equation on the unit square domain $ \Omega = (0,1)\times (0,1) $,

    $ Δu+u=fin Ωu=0on Ω, $

    where $ f $ is chosen so that the exact solution is not symmetric,

    $ u=(xx2)(yy3). $ (46)

    Uniform square grids as shown in Figure 1 are used for numerical computation. The numerical results are listed in Table 3. Surprising, for this problem, the $ H^1 $-like norm of error superconverges at 1.5 order, and the $ L^2 $ error has one order of superconvergence. But we do not yet know if such a superconvergence exists in general.

    Table 3.  Error profiles and convergence rates for test case (46) obtained with uniform grids and $ P_0 $ conforming DG spaces.
    level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
    by $ P_0 $ conforming discontinuous Galerkin elements
    3 0.8265E-02 1.06 0.4577E-01 1.14 16
    4 0.2772E-02 1.58 0.1732E-01 1.40 64
    5 0.7965E-03 1.80 0.6331E-02 1.45 256
    6 0.2142E-03 1.90 0.2290E-02 1.47 1024
    7 0.5564E-04 1.94 0.8213E-03 1.48 4096
    8 0.1419E-04 1.97 0.2928E-03 1.49 16384

     | Show Table
    DownLoad: CSV

    To test further the superconvergence of $ P_0 $ DG element, we solve the following 2nd order elliptic equations on the unit square domain $ \Omega = (0,1)\times (0,1) $,

    $ (au)=fin Ωu=0on Ω, $

    where $ a = 1+x+y $ and $ f $ is chosen so that the exact solution is not symmetric,

    $ u=(xx3)(y2y3). $ (47)

    Uniform square grids as shown in Figure 1 are used for computation. The numerical results are listed in Table 4. Surprising, again, the $ H^1 $-like norm of error superconverges at 1.5 order, and the $ L^2 $ error has one order of superconvergence for this problem.

    Table 4.  Error profiles and convergence rates for test case (47) obtained with uniform grids and $ P_0 $ conforming DG spaces.
    level $ \|u_h- Q_h u\|_0 $ rate $ {|\!|\!|} u_h- Q_h u{|\!|\!|} $ rate $ \#Dof $
    by $ P_0 $ conforming discontinuous Galerkin elements
    3 0.4929E-02 0.97 0.5371E-01 0.80 16
    4 0.1917E-02 1.36 0.2401E-01 1.16 64
    5 0.6004E-03 1.67 0.9407E-02 1.35 256
    6 0.1682E-03 1.84 0.3507E-02 1.42 1024
    7 0.4457E-04 1.92 0.1275E-02 1.46 4096
    8 0.1148E-04 1.96 0.4576E-03 1.48 16384

     | Show Table
    DownLoad: CSV

    In this paper, we establish a new numerical approximation scheme based on the rectangular partition to solve second order elliptic equation. We derived the numerical scheme and then proved the optimal order of convergence of the error estimates in $ L^2 $ and $ H^1 $ norms of the conforming DG method. Numerical experiments are then present to verify the theoretical analysis, and all numerical results converging at the corresponding optimal order. Comparing with existing numerical methods, the confoming DG method has the following two characteristics: 1. The formulation is relatively simple. The stabilizer $ s(\cdot\; , \; \cdot) $ is no longer needed, and the boundary function $ u_b $ is omitted, which is replaced by the average of internal function $ u_0 $; 2. The projection operator $ Q_h $ used in the traditional WG method is replaced by the Lagrange interpolation operator $ I_h $, which makes the theoretical analysis much easier. As can be seen from the numerical examples in Section 6, this method reduces the programming complexity while ensuring the optimal order of convergence.

    [1] U.S. Department of Energy (2011) U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.
    [2] Nonhebel S (2005) Renewable energy and food supply: Will there be enough land? Renew Sust Energ Rev 9: 191-201. doi: 10.1016/j.rser.2004.02.003
    [3] Faaij APC (2006) Bio-energy in europe: Changing technology choices. Energ Policy 34: 322-342. doi: 10.1016/j.enpol.2004.03.026
    [4] Lane J (2014) Beta renewables: Biofuels digest's 2014 5-minute guide. Available from: http://www.biofuelsdigest.com/bdigest/2014/02/24/beta-renewables-biofuels-digests-2014-5-min ute-guide/.
    [5] Himmel ME, Ding S, Johnson DK, et al. (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315: 804-807. doi: 10.1126/science.1137016
    [6] Ragauskas AJ, Beckham GT, Biddy MJ, et al. (2014) Lignin valorization: Improving lignin processing in the biorefinery. Science 344: 1246843-1246843. doi: 10.1126/science.1246843
    [7] Foyle T, Jennings L, Mulcahy P (2007) Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol 98:3026-3036. doi: 10.1016/j.biortech.2006.10.013
    [8] Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology 2: 164-177. doi: 10.1111/j.1751-7915.2008.00078.x
    [9] Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: 21-28. doi: 10.1515/hfsg.1991.45.s1.21
    [10] Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157: 174-209. doi: 10.1007/s12010-008-8279-z
    [11] Parthasarathi R, Romero RA, Redondo A, et al. (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2: 2660-2666. doi: 10.1021/jz201201q
    [12] Ralph J, Lundquist K, Brunow G, et al. (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Rev 3: 29-60. doi: 10.1023/B:PHYT.0000047809.65444.a4
    [13] Ralph J, Akiyama T, Kim H, et al. (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281: 8843-8853. doi: 10.1074/jbc.M511598200
    [14] Zeng Y, Himmel ME, Ding SY (2012) Coherent raman microscopy analysis of plant cell walls. Methods Mol Biol 908: 49-60.
    [15] Tetard L, Passian A, Jung S, et al. (2012) Development of new methods in scanning probe microscopy for lignocellulosic biomass characterization. Ind Biotechnology 8: 245-249. doi: 10.1089/ind.2012.0017
    [16] Du X, Gellerstedt G, Li J (2013) Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: An example using spruce wood. Plant J 74: 328-338. doi: 10.1111/tpj.12124
    [17] Chylla RA, Van Acker R, Kim H, et al. (2013) Plant cell wall profiling by fast maximum likelihood reconstruction (FMLR) and region-of-interest (ROI) segmentation of solution-state 2D 1H-13C NMR spectra. Biotechnol Biofuels 6: 45. doi: 10.1186/1754-6834-6-45
    [18] Holtman KM, Chang H, Jameel H, et al. (2003) Elucidation of lignin structure through degradative methods: Comparison of modified DFRC and thioacidolysis. J Agric Food Chem 51:3535-3540. doi: 10.1021/jf0340411
    [19] Sykes R, Yung M, Novaes E, et al. (2009) High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. Methods Mol Biol 581:169-183. doi: 10.1007/978-1-60761-214-8_12
    [20] Pingali SV, Urban VS, Heller WT, et al. (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11: 2329-2335. doi: 10.1021/bm100455h
    [21] Morreel K, Dima O, Kim H, et al. (2010) Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol 153: 1464-1478. doi: 10.1104/pp.110.156489
    [22] Balakshin M, Capanema E, Gracz H, et al. (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233: 1097-1110. doi: 10.1007/s00425-011-1359-2
    [23] Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759-761. doi: 10.1038/nbt1316
    [24] Liu CJ, Cai Y, Zhang X, et al. (2014) Tailoring lignin biosynthesis for efficient and sustainable biofuel production. Plant Biotechnol J 12(9):1154-1162.
    [25] Franke R, Hemm MR, Denault JW, et al. (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30: 47-59. doi: 10.1046/j.1365-313X.2002.01267.x
    [26] Ziebell A, Gracom K, Katahira R, et al. (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 285: 38961-38968. doi: 10.1074/jbc.M110.137315
    [27] Reddy MSS, Chen F, Shadle G, et al. (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). P Natl Acad Sci 102:16573-16578. doi: 10.1073/pnas.0505749102
    [28] Vanholme R, Storme V, Vanholme B, et al. (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24: 3506-3529. doi: 10.1105/tpc.112.102574
    [29] Van Acker R, Vanholme R, Storme V, et al. (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology Biofuels 6: 46. doi: 10.1186/1754-6834-6-46
    [30] Li L, Zhou Y, Cheng X, et al. (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. P Natl Acad Sci 100: 4939-4944. doi: 10.1073/pnas.0831166100
    [31] Shen H, He X, Poovaiah CR, et al. (2012) Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 193: 121-136. doi: 10.1111/j.1469-8137.2011.03922.x
    [32] Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29:371-380. doi: 10.1046/j.1365-313X.2002.01221.x
    [33] Zhang K, Bhuiya MW, Pazo JR, et al. (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell24: 3135-3152. doi: 10.1105/tpc.112.101287
    [34] Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24: 336-343. doi: 10.1016/j.copbio.2012.11.004
    [35] Chapple C, Ladisch M, Meilan R (2007) Loosening lignin's grip on biofuel production. Nat Biotechnol 25: 746-748. doi: 10.1038/nbt0707-746
    [36] Porth I, Klapste J, Skyba O, et al. (2013) Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol 197: 777-790. doi: 10.1111/nph.12014
    [37] Wang H, Avci U, Nakashima J, et al. (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107: 22338-22343. doi: 10.1073/pnas.1016436107
    [38] Marriott PE, Sibout R, Lapierre C, et al. (2014) Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Proc Natl Acad Sci 111: 14601-14606. doi: 10.1073/pnas.1414020111
    [39] Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82: 1-28. doi: 10.1016/B978-0-12-407679-2.00001-6
    [40] Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1-7.
    [41] Bugg TD, Ahmad M, Hardiman EM, et al. (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22: 394-400. doi: 10.1016/j.copbio.2010.10.009
    [42] Boyle CD, Kropp BR, Reid ID (1992) Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58: 3217-3224.
    [43] Leonowicz A, Matuszewska A, Luterek J, et al. (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27: 175-185. doi: 10.1006/fgbi.1999.1150
    [44] Gilbertson RL (1980) Wood-rotting fungi of north america. Mycologia 72: 1-49. doi: 10.2307/3759417
    [45] Martinez D, Larrondo LF, Putnam N, et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22: 695-700. doi: 10.1038/nbt967
    [46] Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81: 2280-2284. doi: 10.1073/pnas.81.8.2280
    [47] Miki K, Renganathan V, Gold MH (1986) Mechanism of ß-aryl ether dimeric lignin model compound oxidation by lignin peroxidase by Phanerochaete chrysosporium. Biochemistry (N Y) 25: 4790-4796. doi: 10.1021/bi00365a011
    [48] Gold MH, Kuwahara M, Chiu AA, et al. (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234: 353-362. doi: 10.1016/0003-9861(84)90280-7
    [49] Martinez MJ, Böckle B, Camarero S, et al. (1996) MnP isoenzymes produced by two Pleurotus species in liquid culture and during wheat-straw solid-state fermentation. Am Chem Soc 655:183-196.
    [50] Paszczyński A, Huynh V, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37-41. doi: 10.1111/j.1574-6968.1985.tb00831.x
    [51] Kuan IC, Johnson KA, Tien M (1993) Kinetic analysis of manganese peroxidase. the reaction with manganese complexes. J Biol Chem 268: 20064-20070.
    [52] Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176: 269-275. doi: 10.1016/0006-291X(91)90919-X
    [53] Pérez-Boadaa M, Ruiz-Dueñasa FJ, Pogni R, et al. (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385-402. doi: 10.1016/j.jmb.2005.09.047
    [54] Martinez AT, Speranza M, Ruiz-Duenas FJ, et al. (2005) Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195-204.
    [55] Kishi K, Wariishi H, Marquez L, et al. (1994) Mechanism of manganese peroxidase compound II reduction. effect of organic acid chelators and pH. Biochemistry (N Y) 33: 8694-8701.
    [56] Bugg TDH, Ahmad M, Hardiman EM, et al. (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28: 1883-1896. doi: 10.1039/c1np00042j
    [57] Khindaria A, Yamazaki I, Aust SD (1995) Veratryl alcohol oxidation by lignin peroxidase. Biochemistry (N Y) 34: 16860-16869. doi: 10.1021/bi00051a037
    [58] Khindaria A, Yamazaki I, Aust SD (1996) Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry (N Y) 35: 6418-6424. doi: 10.1021/bi9601666
    [59] Candeias LP, Harvey PJ (1995) Lifetime and reactivity of the veratryl alcohol radical cation. implications for lignin peroxidase catalysis. J Biol Chem 270: 16745-16748.
    [60] Sugano Y, Muramatsu R, Ichiyanagi A, et al. (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. J Biol Chem 282: 36652-36658. doi: 10.1074/jbc.M706996200
    [61] Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66: 1387-1403. doi: 10.1007/s00018-008-8651-8
    [62] Liers C, Bobeth C, Pecyna M, et al. (2009) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85: 1869-1879.
    [63] Guillén F, Martínez AT, Martínez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603-611. doi: 10.1111/j.1432-1033.1992.tb17326.x
    [64] Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169: 2195-2201.
    [65] Guillén F, Martí nez MJ, Muñoz C, et al. (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339: 190-199. doi: 10.1006/abbi.1996.9834
    [66] Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140: 19-26. doi: 10.1099/13500872-140-1-19
    [67] Dwivedi UN, Singh P, Pandey VP, et al. (2011) Structure-function relationship among bacterial, fungal and plant laccases. J Molec Catal B 68: 117-128. doi: 10.1016/j.molcatb.2010.11.002
    [68] Claus H (2004) Laccases: Structure, reactions, distribution. Micron 35: 93-96. doi: 10.1016/j.micron.2003.10.029
    [69] Shleev S, Persson P, Shumakovich G, et al. (2006) Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme Microb Technol 39: 841-847. doi: 10.1016/j.enzmictec.2006.01.010
    [70] Barreca AM, Fabbrini M, Galli C, et al. (2003) Laccase/mediated oxidation of a lignin model for improved delignification procedures. J Molec Catal B 26: 105-110. doi: 10.1016/j.molcatb.2003.08.001
    [71] Li K, Xu F, Eriksson KE (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65: 2654-2660.
    [72] Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett 267: 99-102. doi: 10.1016/0014-5793(90)80298-W
    [73] Bourbonnais R, Paice M (1992) Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2´-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 36: 823-827.
    [74] Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic ß-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99-110. doi: 10.1016/0003-9861(88)90172-5
    [75] Kawai S, Nakagawa M, Ohashi H (2002) Degradation mechanisms of a nonphenolic ß-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microb Technol 30: 482-489. doi: 10.1016/S0141-0229(01)00523-3
    [76] Camarero S, García O, Vidal T, et al. (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35: 113-120. doi: 10.1016/j.enzmictec.2003.10.019
    [77] Eggert C, Temp U, Eriksson KL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407: 89-92. doi: 10.1016/S0014-5793(97)00301-3
    [78] Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13: 119-130. doi: 10.1016/0168-1656(90)90098-V
    [79] Ahmad M, Taylor CR, Pink D, et al. (2010) Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders. Mol Bio Sys 6: 815-821.
    [80] Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microbiol 35: 1041-1045.
    [81] Crawford DL, Pometto AL, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45: 898-904.
    [82] Spiker J, Crawford D, Thiel E (1992) Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7A. Appl Microbiol Biotechnol 37: 518-523.
    [83] Kirby R (2006) Actinomycetes and lignin degradation. Adv Appl Microbiol 58: 125-168.
    [84] Adav SS, Ng CS, Arulmani M, et al. (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res 9: 3016-3024. doi: 10.1021/pr901174z
    [85] Trigo C, Ball AS (1994) Production of extracellular enzymes during the solubilisation of straw by Thermomonospora fusca BD25. Appl Microbiol Biotechnol 41: 366-372. doi: 10.1007/BF00221233
    [86] Ahmad M, Roberts JN, Hardiman EM, et al. (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry (N Y) 50: 5096-5107. doi: 10.1021/bi101892z
    [87] Chen C, Chang H, Kirk TK (1982) Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Holzforschung 36: 3-9. doi: 10.1515/hfsg.1982.36.1.3
    [88] Chen C, Chang H, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3: 35-57. doi: 10.1080/02773818308085150
    [89] Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotech Bioch 71: 1-15. doi: 10.1271/bbb.60437
    [90] Masai E, Ichimura A, Sato Y, et al. (2003) Roles of the enantioselective glutathione S-transferases in cleavage of ß-aryl ether. J Bacteriol 185: 1768-1775. doi: 10.1128/JB.185.6.1768-1775.2003
    [91] Pieper DH (2004) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol67: 170-191.
    [92] Kishi K, Habu N, Samejima M, et al. (1991) Purification and some properties of the enzyme catalyzing the Cγ-elimination of a diarylpropane-type lignin model from Pseudomonas paucimobilis TMY1009. Agric Biol Chem 55: 1319-1323. doi: 10.1271/bbb1961.55.1319
    [93] Nakatsubo F, Kirk TK, Shimada M, et al. (1981) Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporium. Arch Microbiol 128: 416-420. doi: 10.1007/BF00405924
    [94] Williamson G, Kroon P, Faulds C (1998) Hairy plant polysaccharides: A close shave with microbial esterases. Microbiology 144: 2011-2023. doi: 10.1099/00221287-144-8-2011
    [95] Bugg TDH (2003) Dioxygenase enzymes: Catalytic mechanisms and chemical models. Tetrahedron 59: 7075-7101. doi: 10.1016/S0040-4020(03)00944-X
    [96] Masai E, Shinohara S, Hara H, et al. (1999) Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181: 55-62.
    [97] Harwood CS, Parales RE (1996) The ß-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50: 553-590. doi: 10.1146/annurev.micro.50.1.553
    [98] Singh R, Grigg JC, Qin W, et al. (2013) Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chemical Biology 8: 700-706. doi: 10.1021/cb300608x
    [99] Taylor CR, Hardiman EM, Ahmad M, et al. (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113: 521-530. doi: 10.1111/j.1365-2672.2012.05352.x
    [100] Warnecke F, Luginbühl P, Ivanova N, et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. doi: 10.1038/nature06269
    [101] Shi W, Syrenne R, Sun J, et al. (2010) Molecular approaches to study the insect gut symbiotic microbiota at the "omics" age. Insect Science 17: 199-219. doi: 10.1111/j.1744-7917.2010.01340.x
    [102] Boucias DG, Cai Y, Sun Y, et al. (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22: 1836-1853. doi: 10.1111/mec.12230
    [103] Hess M, Sczyrba A, Egan R, et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463-467. doi: 10.1126/science.1200387
    [104] Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3: 470-478. doi: 10.1038/nrmicro1160
    [105] Strachan CR, Singh R, VanInsberghe D, et al. (2014) Metagenomic scaffolds enable combinatorial lignin transformation. P Natl Acad Sci 111: 10143-10148. doi: 10.1073/pnas.1401631111
    [106] Floudas D, Binder M, Riley R, et al. (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715-1719. doi: 10.1126/science.1221748
    [107] Bianchetti CM, Harmann CH, Takasuka TE, et al. (2013) Fusion of dioxygenase and lignin-binding domains in a novel secreted enzyme from cellulolytic Streptomyces sp. SirexAA-E. J Biol Chem 288: 18574-18587. doi: 10.1074/jbc.M113.475848
    [108] Majumdar S, Lukk T, Solbiati JO, et al. (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry (N Y) 53: 4047-4058. doi: 10.1021/bi500285t
    [109] Parton W, Silver WL, Burke IC, et al. (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315: 361-364. doi: 10.1126/science.1134853
    [110] Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301-328.
    [111] de Boer W, Folman LB, Summerbell RC, et al. (2005) Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795-811. doi: 10.1016/j.femsre.2004.11.005
    [112] DeAngelis KM, Fortney JL, Borglin S, et al. (2012) Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia. MBio 3: e00249-11.
    [113] DeAngelis KM, D'Haeseleer P, Chivian D, et al. (2011) Complete genome sequence of Enterobacter lignolyticus SCF1. Standards Genomic Sci 5: 69-85. doi: 10.4056/sigs.2104875
    [114] DeAngelis KM, Sharma D, Varney R, et al. (2013) Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 4: 280.
    [115] Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. BioEnergy Res 5:1043-1066. doi: 10.1007/s12155-012-9208-0
    [116] Trajano HL, Engle NL, Foston M, et al. (2013) The fate of lignin during hydrothermal pretreatment. Biotechnology Biofuels 6: 110. doi: 10.1186/1754-6834-6-110
    [117] Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82: 815-827. doi: 10.1007/s00253-009-1883-1
    [118] Kim J, Shin E, Eom I, et al. (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102: 9020-9025. doi: 10.1016/j.biortech.2011.07.081
    [119] Berlin A, Balakshin M, Gilkes N, et al. (2006) Inhibition of cellulase, xylanase and ß-glucosidase activities by softwood lignin preparations. J Biotechnol 125: 198-209. doi: 10.1016/j.jbiotec.2006.02.021
    [120] Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology Biofuels 6: 16. doi: 10.1186/1754-6834-6-16
    [121] Rumbold K, van Buijsen HJ, Overkamp KM, et al. (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microbial Cell Factories 8: 64. doi: 10.1186/1475-2859-8-64
    [122] Quijano G, Couvert A, Amrane A (2010) Ionic liquids: Applications and future trends in bioreactor technology. Bioresour Technol 101: 8923-8930. doi: 10.1016/j.biortech.2010.06.161
    [123] Khudyakov JI, D'haeseleer P, Borglin SE, et al. (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. P Natl Acad Sci 109: E2173-E2182. doi: 10.1073/pnas.1112750109
    [124] Frederix M, Hütter K, Leu J, et al. (2014) Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS One 9: e101115. doi: 10.1371/journal.pone.0101115
    [125] Ruegg TL, Kim E, Simmons BA, et al. (2014) An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun 5: 1-7
    [126] Singer SW, Reddy AP, Gladden JM, et al. (2011) Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 110: 1023-1031. doi: 10.1111/j.1365-2672.2011.04959.x
    [127] Reddy AP, Simmons CW, Claypool J, et al. (2012) Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 113: 1362-1370. doi: 10.1111/jam.12002
    [128] Gladden JM, Allgaier M, Miller CS, et al. (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77: 5804-5812. doi: 10.1128/AEM.00032-11
    [129] Chandel AK, Gonçalves BC, Strap JL, et al. (2013) Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol 1-13.
    [130] Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447-1457. doi: 10.1016/j.biotechadv.2012.03.003
    [131] Salvachúa D, Prieto A, López-Abelairas M, et al. (2011) Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresour Technol 102: 7500-7506. doi: 10.1016/j.biortech.2011.05.027
    [132] Yang SJ, Kataeva I, Hamilton-Brehm SD, et al. (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl Environ Microbiol 75: 4762-4769. doi: 10.1128/AEM.00236-09
    [133] Basen M, Rhaesa AM, Kataeva I, et al. (2014) Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol 152: 384-392. doi: 10.1016/j.biortech.2013.11.024
    [134] Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 139: 272-279. doi: 10.1016/j.biortech.2013.04.005
    [135] Cao G, Zhao L, Wang A, et al. (2014) Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology Biofuels 7: 82. doi: 10.1186/1754-6834-7-82
    [136] Chung D, Cha M, Guss AM, et al. (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. P Natl Acad Sci 111: 8931-8936. doi: 10.1073/pnas.1402210111
    [137] Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13: 570-577. doi: 10.1016/j.ymben.2011.06.007
    [138] Coconi-Linares N, Magaña-Ortíz D, Guzmán-Ortiz DA, et al. (2014) High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98: 9283-9284. doi: 10.1007/s00253-014-6105-9
    [139] Zakzeski J, Bruijnincx PCA, Jongerius AL, et al. (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110: 3552-3599. doi: 10.1021/cr900354u
  • This article has been cited by:

    1. Xiu Ye, Shangyou Zhang, A weak divergence CDG method for the biharmonic equation on triangular and tetrahedral meshes, 2022, 178, 01689274, 155, 10.1016/j.apnum.2022.03.017
    2. Jun Zhou, Da Xu, Wenlin Qiu, Leijie Qiao, An accurate, robust, and efficient weak Galerkin finite element scheme with graded meshes for the time-fractional quasi-linear diffusion equation, 2022, 124, 08981221, 188, 10.1016/j.camwa.2022.08.022
    3. Xiu Ye, Shangyou Zhang, A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes, 2021, 93, 0271-2091, 1913, 10.1002/fld.4959
    4. Xiu Ye, Shangyou Zhang, Constructing a CDG Finite Element with Order Two Superconvergence on Rectangular Meshes, 2023, 2096-6385, 10.1007/s42967-023-00330-5
    5. Yan Yang, Xiu Ye, Shangyou Zhang, A pressure-robust stabilizer-free WG finite element method for the Stokes equations on simplicial grids, 2024, 32, 2688-1594, 3413, 10.3934/era.2024158
    6. Xiu Ye, Shangyou Zhang, A superconvergent CDG finite element for the Poisson equation on polytopal meshes, 2023, 0044-2267, 10.1002/zamm.202300521
    7. Xiu Ye, Shangyou Zhang, Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and Tetrahedral Meshes, 2024, 2096-6385, 10.1007/s42967-024-00444-4
    8. Xiu Ye, Shangyou Zhang, Order two superconvergence of the CDG finite elements for non-self adjoint and indefinite elliptic equations, 2024, 50, 1019-7168, 10.1007/s10444-023-10100-9
    9. Fuchang Huo, Weilong Mo, Yulin Zhang, A locking-free conforming discontinuous Galerkin finite element method for linear elasticity problems, 2025, 465, 03770427, 116582, 10.1016/j.cam.2025.116582
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(15825) PDF downloads(2332) Cited by(60)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog