Citation: Didier Pinault. N-Methyl D-Aspartate Receptor Antagonists Amplify Network Baseline Gamma Frequency (30–80 Hz) Oscillations: Noise and Signal[J]. AIMS Neuroscience, 2014, 1(2): 169-182. doi: 10.3934/Neuroscience.2014.2.169
[1] | Miao Fu, Yuqin Zhang . Results on monochromatic vertex disconnection of graphs. AIMS Mathematics, 2023, 8(6): 13219-13240. doi: 10.3934/math.2023668 |
[2] | Fan Wu, Xinhui An, Baoyindureng Wu . Sombor indices of cacti. AIMS Mathematics, 2023, 8(1): 1550-1565. doi: 10.3934/math.2023078 |
[3] | Yinkui Li, Jiaqing Wu, Xiaoxiao Qin, Liqun Wei . Characterization of $ Q $ graph by the burning number. AIMS Mathematics, 2024, 9(2): 4281-4293. doi: 10.3934/math.2024211 |
[4] | A. El-Mesady, Y. S. Hamed, M. S. Mohamed, H. Shabana . Partially balanced network designs and graph codes generation. AIMS Mathematics, 2022, 7(2): 2393-2412. doi: 10.3934/math.2022135 |
[5] | Yixin Zhang, Yanbo Zhang, Hexuan Zhi . A proof of a conjecture on matching-path connected size Ramsey number. AIMS Mathematics, 2023, 8(4): 8027-8033. doi: 10.3934/math.2023406 |
[6] | Haicheng Ma, Xiaojie You, Shuli Li . The singularity of two kinds of tricyclic graphs. AIMS Mathematics, 2023, 8(4): 8949-8963. doi: 10.3934/math.2023448 |
[7] | Yuan Zhang, Haiying Wang . Some new results on sum index and difference index. AIMS Mathematics, 2023, 8(11): 26444-26458. doi: 10.3934/math.20231350 |
[8] | Syafrizal Sy, Rinovia Simanjuntak, Tamaro Nadeak, Kiki Ariyanti Sugeng, Tulus Tulus . Distance antimagic labeling of circulant graphs. AIMS Mathematics, 2024, 9(8): 21177-21188. doi: 10.3934/math.20241028 |
[9] | Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni . On the first general Zagreb eccentricity index. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032 |
[10] | Sakander Hayat, Bagus Imanda, Asad Khan, Mohammed J. F. Alenazi . Three infinite families of Hamilton-connected convex polytopes and their detour index. AIMS Mathematics, 2025, 10(5): 12343-12387. doi: 10.3934/math.2025559 |
G. Caginalp proposed in [3] and [4] two phase-field system, namely,
$\dfrac{\partial u}{\partial t}-\Delta u+f(u)=T, $ | (1.1) |
$\dfrac{\partial T}{\partial t}-\Delta T=-\dfrac{\partial u}{\partial t}, $ | (1.2) |
called nonconserved system, and
$\dfrac{\partial u}{\partial t}+\Delta^{2} u-\Delta f(u)=-\Delta T, $ | (1.3) |
$\dfrac{\partial T}{\partial t}-\Delta T=-\dfrac{\partial u}{\partial t}, $ | (1.4) |
called concerved system (in the sense that, when endowed with Neumann boundary conditions, the spacial average of u is conserved). In this context, u is the order parameter, T is the relative temperature (defined as $ T=\tilde{T}-T_E$, where $\tilde{T}$ is the absolute temperature and $T_E$ is the equilibrium melting temperature) and $f$ is the derivative of a double-well potential $F$ (a typical choice is $F (s)=\frac{1}{4}(s^{2}-1)^{2}$, hence the usual cubic nonlinear term $f (s)=s^{3}-s$). Furthermore, we have set all physical parameters equal to one. These systems have been introduced to model phase transition phenomena, such as melting-solidication phenomena, and have been much studied from a mathematical point of view. We refer the reader to, e.g., [3,4,5,8,9,10,12,13,14,15,16,18,19,21,22,23,25].
Both systems are based on the (total Ginzburg-Landau) free energy
$\Psi_{GL}=\int_{\Omega}(\dfrac{1}{2}\vert\nabla u\vert^{2}+F(u)-uT-\frac{1}{2}T^{2})\mathrm{d}x, $ | (1.5) |
where $\Omega$ is the domain occupied by the system (we assume here that it is a bounded and regular domain of $\mathbb{R}^{3}$, with boundary $\Gamma$), and the enthalpy
$H=u+T.$ | (1.6) |
As far as the evolution equations for the order parameter are concerned, one postulates the relaxation dynamics (with relaxation parameter set equal to one)
$\dfrac{\partial u}{\partial u}=-\dfrac{D\Psi_{GL}}{Du}, $ | (1.7) |
for the nonconserved model, and
$\dfrac{\partial u}{\partial u}=\Delta\dfrac{D\Psi_{GL}}{Du}, $ | (1.8) |
for the conserved one, where $\dfrac{D}{Du}$ denotes a variational derivative with respect to u, which yields (1.1) and (1.3), respectively. Then, we have the energy equation
$\dfrac{\partial H}{\partial t}=-\mbox {divq}, $ | (1.9) |
where q is the heat flux. Assuming finally the usual Fourier law for heat conduction,
$q=-\nabla T, $ | (1.10) |
we obtain (1.2).
In (1.5), the term $\vert\nabla u\vert^{2}$ models short-ranged interactions. It is however interesting to note that such a term is obtained by truncation of higher-order ones; it can also be seen as a first-order approximation of a nonlocal term accounting for long-ranged interactions [11].
G. Caginalp and Esenturk recently proposed in [6] (see also [20]) higher-order phase-field models in order to account for anisotropic interfaces (see also [7] for other approaches which, however, do not provide an explicit way to compute the anisotropy). More precisely, these autors proposed the following modified (total) free energy
$\Psi_{HOGL}=\int_{\Omega}(\dfrac{1}{2}\sum_{i=1}^{k}\sum_{\vert\beta\vert=i}a_{\beta}\vert\mathcal{D}^{\beta} u\vert^{2}+F(u)-uT-\frac{1}{2}T^{2})\mathrm{d}x, \quad k\in\mathbb{N}, $ | (1.11) |
where, for $\beta=(k_{1}, k_{2}, k_{3})\in (\mathbb{N}\cup\lbrace 0\rbrace)^{3}$,
$ \vert\beta\vert=k_{1}+k_{2}+k_{3} $ |
and, for $\beta\neq (0, 0, 0)$,
$ \mathcal{D}^{\beta}=\dfrac{\partial^{\vert\beta\vert}}{\partial x_{1}^{k_{1}}\partial x_{2}^{k_{2}}\partial x_{3}^{k_{3}}} $ |
(we agree that $\mathcal{D}^{(0, 0, 0)}v=v)$.
A. Miranville studied in [17] the corresponding nonconserved higher-order phase-field system.
As far as the conserved case is concerned, the above generalized free energy yields, procceding as above, the following evolution equation for the order parameter u:
$\dfrac{\partial u}{\partial t}-\Delta\sum_{i=1}^{k}(-1)^{i}\sum_{\vert\beta\vert=i}a_{\beta}\mathcal{D}^{2\beta}u-\Delta f(u)=-\Delta(\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}), $ | (1.12) |
In particular, for k = 1 (anisotropic conserved Caginalp phase-field), we have an equation of the form
$ \dfrac{\partial u}{\partial t}+\Delta\sum_{i=1}^{3}a_i\dfrac{\partial^{2} u}{\partial x_i^{2}}-\Delta f(u)=-\Delta(\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}) $ |
and, for k = 2 (fourth-order anisotropic conserved Caginalp phase-field system), we have an equation of the form
$ \dfrac{\partial u}{\partial t}-\Delta\sum_{i, j=1}^{3}a_{ij}\dfrac{\partial^{4} u}{\partial x_i^{2}\partial x_j^{2}}+\Delta\sum_{i=1}^{3}b_i\dfrac{\partial^{2} u}{\partial x_i^{2}}-\Delta f(u)=-\Delta(\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}). $ |
L. Cherfils A. Miranville and S. Peng have studied in [8] the corresponding higher-order isotropic equation (without the coupling with the temperature), namely, the equation
$ \dfrac{\partial u}{\partial t}-\Delta P(-\Delta )u-\Delta f(u)=0, $ |
where
$ P(s)=\sum_{i=1}^{k}a_is^{i}, \quad a_k>0, \quad k\geqslant 1, $ |
endowed with the Dirichlet/Navier boundary conditions
$ u=\Delta u=...=\Delta^{k}u=0\quad on\quad \Gamma. $ |
Our aim in this paper is to study the model consisting of the higher-order anisotropic equation (1.12) and the temperature equation
$\dfrac{\partial^{2} \alpha}{\partial t^{2}}-\Delta\dfrac{\partial^{2} \alpha}{\partial t^{2}}-\Delta\dfrac{\partial \alpha}{\partial t}-\Delta \alpha=-\dfrac{\partial u}{\partial t}.$ | (1.13) |
In particular, we obtain the existence and uniqueness of solutions.
We consider the following initial and boundary value problem, for $k\in\mathbb{N}$, $k\geqslant 2$ (the case k = 1 can be treated as in the original conserved system; see, e.g., [23]):
$\dfrac{\partial u}{\partial t}-\Delta\sum_{i=1}^{k}(-1)^{i}\sum_{\vert\beta\vert=i}a_{\beta}\mathcal{D}^{2\beta}u-\Delta f(u)=-\Delta(\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}), $ | (2.1) |
$\dfrac{\partial^{2} \alpha}{\partial t^{2}}-\Delta\dfrac{\partial^{2} \alpha}{\partial t^{2}}-\Delta\dfrac{\partial \alpha}{\partial t}-\Delta \alpha=-\dfrac{\partial u}{\partial t}, $ | (2.2) |
$\mathcal{D^{\beta}}u=\alpha=0\quad on \quad\Gamma, \quad \vert\beta\vert\leqslant k, $ | (2.3) |
$u|_{t=0}=u_{0}, \quad \alpha|_{t=0}=\alpha_{0}, \quad \dfrac{\partial \alpha}{\partial t}|_{t=0}=\alpha_{1}.$ | (2.4) |
We assume that
$a_{\beta} > 0, \quad \vert\beta\vert=k, $ | (2.5) |
and we introduce the elliptic operator $A_{k}$ defined by
$\langle A_{k}v, w\rangle_{H^{-k}(\Omega), H_{0}^{k}(\Omega)}=\sum_{\vert\beta\vert=k}a_{\beta}((\mathcal{D^{\beta}}v, \mathcal{D^{\beta}}w)), $ | (2.6) |
where $ H^{-k}(\Omega)$ is the topological dual of $ H_{0}^{k}(\Omega)$. Furthermore, ((., .)) denotes the usual $L^{2}$-scalar product, with associated norm $\|.\|$. More generally, we denote by $\|.\|_{X}$ the norm on the Banach space X; we also set $\|.\|_{-1}=\|(-\Delta)^{-\frac{1}{2}}.\|$, where $(-\Delta)^{-1}$ denotes the inverse minus Laplace operator associated with Dirichlet boudary conditions. We can note that
$ (v, w)\in H_{0}^{k}(\Omega)^{2}\mapsto\sum_{\vert\beta\vert=k}a_{\beta}((\mathcal{D^{\beta}}v, \mathcal{D^{\beta}}w)) $ |
is bilinear, symmetric, continuous and coercive, so that
$ A_{k}:H_{0}^{k}(\Omega)\rightarrow H^{-k}(\Omega) $ |
is indeed well defined. It then follows from elliptic regularity results for linear elliptic operators of order 2k (see [1] and [2]) that $A_{k}$ is a strictly positive, selfadjoint and unbounded linear operator with compact inverse, with domain
$ D(A_{k})=H^{2k}(\Omega)\cap H_{0}^{k}(\Omega), $ |
where, for $v\in D (A_{k})$,
$ A_{k}v=(-1)^{k}\sum_{\vert\beta\vert=k}a_{\beta}\mathcal{D}^{2\beta}v. $ |
We further note that $D (A_{k}^{\frac{1}{2}})=H_{0}^{k}(\Omega)$ and, for $(v, w)\in D (A_{k}^{\frac{1}{2}})^{2}$,
$ ((A_{k}^{\frac{1}{2}}v, A_{k}^{\frac{1}{2}}w))=\sum_{\vert\beta\vert=k}a_{\beta}((\mathcal{D^{\beta}}v, \mathcal{D^{\beta}}w)). $ |
We finally note that (see, e.g., [24]) $\|A_{k}.\|$ (resp., $\|A_{k}^{\frac{1}{2}}.\|$) is equivalent to the usual $H^{2k}$-norm (resp., $H^{k}$-norm) on $D (A_{k})$ (resp., $D (A_{k}^{\frac{1}{2}})$).
Similarly, we can define the linear operator $\bar{A_{k}}=-\Delta A_{k}$
$ \bar{A}_{k}:H_{0}^{k+1}(\Omega)\rightarrow H^{-k-1}(\Omega) $ |
which is a strictly positive, selfadjoint and unbounded linear operator with compact inverse, with domain
$ D(\bar{A}_{k})=H^{2k+2}(\Omega)\cap H_{0}^{k+1}(\Omega), $ |
where, for $v\in D (\bar{A}_{k})$,
$ \bar{A}_{k}v=(-1)^{k+1}\Delta\sum_{\vert\beta\vert=k}a_{\beta}\mathcal{D}^{2\beta}v. $ |
Furthermore, $D (\bar{A}_{k}^{\frac{1}{2}})=H_{0}^{k+1}(\Omega)$ and, for $(v, w)\in D (\bar{A}_{k}^{\frac{1}{2}})$,
$ ((\bar{A}_{k}^{\frac{1}{2}}v, \bar{A}_{k}^{\frac{1}{2}}w))=\sum_{\vert\beta\vert=k}a_{\beta}((\nabla\mathcal{D^{\beta}}v, \nabla\mathcal{D^{\beta}}w)). $ |
Besides $\|\bar{A}_{k}.\|$ (resp., $\|\bar{A}_{k}^{\frac{1}{2}}.\|$) is equivalent to the usual $H^{2k+2}$-norm (resp., $H^{k+1}$-norm) on $D (\bar{A}_{k})$ (resp., $D (\bar{A}_{k}^{\frac{1}{2}})$).
We finally consider the operator $\tilde{A}_{k}=(-\Delta)^{-1}A_{k}$, where
$ \tilde{A}_{k}:H_{0}^{k-1}(\Omega)\rightarrow H^{-k+1}(\Omega); $ |
note that, as $-\Delta$ and $A_{k}$ commute, then the same holds for $(-\Delta)^{-1}$ and $A_{k}$, so that $\tilde{A}_{k}=A_{k}(-\Delta)^{-1}.$
We have the (see [17])
Lemme 2.1. The operator $\tilde{A}_{k}$ is a strictly positive, selfadjoint and unbounded linear operator with compact inverse, with domain
$ D(\tilde{A}_{k})=H^{2k-2}(\Omega)\cap H_{0}^{k-1}(\Omega), $ |
where, for $v\in D (\tilde{A}_{k})$
$\tilde{A}_{k}v=(-1)^{k}\sum_{\vert\beta\vert=k}a_{\beta}\mathcal{D}^{2\beta}(-\Delta)^{-1}v. $ |
Furthermore, $D (\tilde{A}_{k}^{\frac{1}{2}})=H_{0}^{k-1}(\Omega)$ and, for $(v, w)\in D (\tilde{A}_{k}^{\frac{1}{2}})$,
$ ((\tilde{A}_{k}^{\frac{1}{2}}v, \tilde{A}_{k}^{\frac{1}{2}}w))=\sum_{\vert\beta\vert=k}a_{\beta}((\mathcal{D^{\beta}}(-\Delta)^{-\frac{1}{2}}v, \mathcal{D^{\beta}}(-\Delta)^{-\frac{1}{2}}w)). $ |
Besides $\|\tilde{A}_{k}.\|$ (resp., $\|\tilde{A}_{k}^{\frac{1}{2}}.\|$) is equivalent to the usual $H^{2k-2}$-norm (resp., $H^{k-1}$-norm) on $D (\tilde{A}_{k})$ (resp., $D (\tilde{A}_{k}^{\frac{1}{2}})$).
Proof. We first note that $\tilde{A}_{k}$ clearly is linear and unbounded. Then, since $(-\Delta)^{-1}$ and $A_{k}$ commute, it easily follows that $\tilde{A}_{k}$ is selfadjoint.
Next, the domain of $\tilde{A}_{k}$ is defined by
$ D(\tilde{A}_{k})=\lbrace v\in H_{0}^{k-1}(\Omega), \tilde{A}_{k}v\in L^{2}(\Omega)\rbrace. $ |
Noting that $\tilde{A}_{k}v=f, f\in L^{2}(\Omega), v\in D (\tilde{A}_{k})$, is equivalent to $A_{k}v=-\Delta f$, where $-\Delta f\in H^{2}(\Omega)'$, it follows from the elliptic regularity results of [1] and [2] that $v\in H^{2k-2}(\Omega)$, so that $D (\tilde{A}_{k})=H^{2k-2}(\Omega)\cap H_{0}^{k-1}(\Omega)$.
Noting then that $\tilde{A}_{k}^{-1}$ maps $L^{2}(\Omega)$ onto $H^{2k-2}(\Omega)$ and recalling that $k\geqslant 2$, we deduce that $\tilde{A}_{k}$ has compact inverse.
We now note that, considering the spectral properties of $-\Delta$ and $A_{k}$ (see, e.g., [24]) and recalling that these two operators commute, $-\Delta$ and $A_{k}$ have a spectral basis formed of common eigenvectors. This yields that, $\forall s_{1}, s_{2}\in \mathbb{R}$, $(-\Delta)^{s_{1}}$ and $A_{k}^{s_{2}}$ commute.
Having this, we see that $\tilde{A}_{k}^{\frac{1}{2}}=(-\Delta)^{-\frac{1}{2}}A_{k}^{\frac{1}{2}}$, so that $D (\tilde{A}_{k}^{\frac{1}{2}})=H_{0}^{k-1}(\Omega)$, and for $(v, w)\in D (\tilde{A}_{k}^{\frac{1}{2}})^{2}$,
$ ((\tilde{A}_{k}^{\frac{1}{2}}v, \tilde{A}_{k}^{\frac{1}{2}}w))=\sum_{\vert\beta\vert=k}a_{\beta}((\mathcal{D^{\beta}}(-\Delta)^{-\frac{1}{2}}v, \mathcal{D^{\beta}}(-\Delta)^{-\frac{1}{2}}w)). $ |
Finally, as far as the equivalences of norms are concerned, we can note that, for instance, the norm $\|\tilde{A}_{k}^{\frac{1}{2}}.\|$ is equivalent to the norm $\|(-\Delta)^{-\frac{1}{2}}.\|_{H^{k}(\Omega)}$ and, thus, to the norm $\|(-\Delta)^{\frac{k-1}{2}}.\|_{.}$
Having this, we rewrite (2.1) as
$\dfrac{\partial u}{\partial t}-\Delta A_{k}u-\Delta B_{k}u-\Delta f(u)=-\Delta(\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}), $ | (2.7) |
where
$ B_{k}v=\sum_{i=1}^{k-1}(-1)^{i}\sum_{\vert\beta\vert=i}a_{\beta}\mathcal{D}^{2\beta}v. $ |
As far as the nonlinear term f is concerned, we assume that
$f\in C^{2}(\mathbb{R}), \quad f(0)=0, $ | (2.8) |
$f'\geqslant -c_{0}, \quad c_{0}\geqslant 0, $ | (2.9) |
$f(s)s\geqslant c_{1}F(s)-c_{2}\geqslant-c_{3}, \quad c_{1} >0, \quad c_{2}, \quad c_{3}\geqslant 0, \quad s\in \mathbb{R}, $ | (2.10) |
$F(s)\geqslant c_{4}s^{4}-c_{5}, \quad c_{4} >0, \quad c_{5}\geqslant 0, \quad s\in \mathbb{R}, $ | (2.11) |
where $F (s)=\int_{0}^{s}f (\tau)\mathrm{d}\tau$. In particular, the usual cubic nonlinear term $f (s)= s^{3}-s$ satisfies these assumptions.
Throughout the paper, the same letters c, c' and c" denote (generally positive) constants which may vary from line to line. Similary, the same letter Q denotes (positive) monotone increasing (with respect to each argument) and continuous functions which may vary from line to line.
We multiply (2.7) by $(-\Delta)^{-1}\dfrac{\partial u}{\partial t}$ and (2.2) by $\dfrac{\partial \alpha}{\partial t}-\Delta \dfrac{\partial \alpha}{\partial t}$, sum the two resulting equalities and integrate over $\Omega$ and by parts. This gives
$ddt(‖A12ku‖2+B12k[u]+2∫ΩF(u)dx+‖∇α‖2+‖Δα‖2+‖∂α∂t−Δ∂α∂t‖2)+2‖∂u∂t‖2−1+2‖∇∂α∂t‖2+2‖Δ∂α∂t‖2=0$ | (3.1) |
(note indeed that $\|\dfrac{\partial \alpha}{\partial t}\|^{2}+2\|\nabla\dfrac{\partial \alpha}{\partial t}\|^{2}+\|\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}=\|\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}$), where
$B_{k}^{\frac{1}{2}}\left[u\right]=\sum_{i=1}^{k-1}\sum_{\vert\beta\vert=i}a_{\beta}\|\mathcal{D^{\beta}}u\|^{2}$ | (3.2) |
(note that $B_{k}^{\frac{1}{2}}\left[u\right]$ is not necessarily nonnegative). We can note that, owing to the interpolation inequality
$B_{k}^{\frac{1}{2}}\left[u\right]=\sum_{i=1}^{k-1}\sum_{\vert\beta\vert=i}a_{\beta}\|\mathcal{D^{\beta}}u\|^{2}$ | (3.3) |
$\|(-\Delta)^{\frac{i}{2}}v\|\leqslant c(i)\|(-\Delta)^{\frac{m}{2}}v\|^{\frac{i}{m}}\|v\|^{1-\frac{i}{m}}, $ |
there holds
$ v\in H^{m}(\Omega), \quad i\in\lbrace1, ..., {m-1}\rbrace, \quad m\in\mathbb{N}, \quad m\geqslant 2, $ | (3.4) |
This yields, employing (2.11),
$\vert B_{k}^{\frac{1}{2}}\left[u\right]\vert\leqslant \dfrac{1}{2}\|A_{k}^{\frac{1}{2}}u\|^{2}+c\|u\|^{2}.$ |
whence
$ \|A_{k}^{\frac{1}{2}}u\|^{2}+B_{k}^{\frac{1}{2}}\left[u\right]+2\int_{\Omega}F(u)\mathrm{d}x\geqslant\frac{1}{2}\|A_{k}^{\frac{1}{2}}u\|^{2}+\int_{\Omega}F(u)\mathrm{d}x+c\|u\|_{L^{4}(\Omega)}^{4}-c'\|u\|^{2}-c", $ | (3.5) |
nothing that, owing to Young's inequality,
$\|A_{k}^{\frac{1}{2}}u\|^{2}+B_{k}^{\frac{1}{2}}\left[u\right]+2\int_{\Omega}F(u)\mathrm{d}x\geqslant c(\|u\|_{H^{k}(\Omega)}^{2}+\int_{\Omega}F(u)\mathrm{d}x)-c', \quad c > 0, $ | (3.6) |
We then multiply (2.7) by $(-\Delta)^{-1}u$ and have, owing to (2.10) and the interpolation inequality (3.3),
$\|u\|^{2}\leqslant\epsilon\|u\|_{L^{4}(\Omega)}^{4}+c(\epsilon), \quad\forall\epsilon > 0. $ |
hence, proceeding as above and employing, in particular, (2.11)
$ \dfrac{d}{dt}\|u\|_{-1}^{2}+c(\|u\|_{H^{k}(\Omega)}^{2}+\int_{\Omega}F(u)\mathrm{d}x)\leqslant c'(\|u\|^{2}+\|\dfrac{\partial \alpha}{\partial t}\|^{2}+\|\Delta\dfrac{\partial \alpha}{\partial t}\|^{2})+c", $ | (3.7) |
Summing (3.1) and $\delta_1$ times (3.7), where $\delta_1>0$ is small enough, we obtain a differential inegality of the form
$\dfrac{d}{dt}\|u\|_{-1}^{2}+c(\|u\|_{H^{k}(\Omega)}^{2}+\int_{\Omega}F(u)\mathrm{d}x)\leqslant c'(\|\dfrac{\partial \alpha}{\partial t}\|^{2}+\|\Delta\dfrac{\partial \alpha}{\partial t}\|^{2})+c'', \quad c>0.$ | (3.8) |
where
$\dfrac{d}{dt}E_1+c(\|u\|_{H^{k}(\Omega)}^{2}+\int_{\Omega}F(u)\mathrm{d}x+\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+\|\dfrac{\partial \alpha}{\partial t }\|_{H^{2}(\Omega)}^{2})\leqslant c', \quad c>0, $ |
satisfies, owing to (3.5)
$ E_1=\|A_{k}^{\frac{1}{2}}u\|^{2}+B_{k}^{\frac{1}{2}}\left[u\right]+2\int_{\Omega}F(u)\mathrm{d}x+\|\nabla \alpha\|^{2}+\|\Delta \alpha\|^{2}+\|\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}+\delta_1\|u\|_{-1}^{2} $ | (3.9) |
Multiplying $(2.2)$ by $-\Delta\alpha$, we then obtain
$E_{1}\geqslant c(\|u\|_{H^{k}(\Omega)}^{2}+\int_{\Omega}F(u)\mathrm{d}x+\|\alpha\|_{H^{2}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|_{H^{2}(\Omega)}^{2})-c', \quad c > 0.$ |
which yields, employing the interpolation inequality
$ \dfrac{d}{dt}(\|\Delta\alpha\|^{2}-2((\dfrac{\partial\alpha} {\partial t}, \Delta\alpha))+2((\Delta\dfrac{\partial\alpha} {\partial t}, \Delta\alpha)))+\|\Delta\alpha\|^{2}\leqslant \|\dfrac{\partial u}{\partial t}\|^{2}+\|\nabla\dfrac{\partial\alpha}{\partial t}\|^{2}+\|\Delta\dfrac{\partial\alpha}{\partial t}\|^{2}, $ | (3.10) |
the differential inequality, with $0 < \epsilon < < 1$ is small enough
$\|v\|^{2}\leqslant c\|v\|_{-1}\|v\|_{H^{1}(\Omega)}, \quad v\in H_{0}^{1}(\Omega), $ | (3.11) |
We now differentiate (2.7) with respect to time to find, owing to (2.2),
$ddt(‖Δα‖2−2((∂α∂t,Δα))+2((Δ∂α∂t,Δα)))+c‖α‖2H2(Ω)≤c′(‖∂u∂t‖2−1+ϵ‖∂u∂t‖2H1(Ω)+‖∂α∂t‖2H2(Ω)),c>0.$ | (3.12) |
together with the boundary condition
$\dfrac{\partial }{\partial t}\dfrac{\partial u}{\partial t}-\Delta A_{k}\dfrac{\partial u}{\partial t}-\Delta B_{k}\dfrac{\partial u}{\partial t}-\Delta (f'(u)\dfrac{\partial u}{\partial t})=-\Delta(\Delta\dfrac{\partial \alpha}{\partial t}+\Delta\alpha-\dfrac{\partial u}{\partial t}), $ | (3.13) |
We multiply (3.11) by $(-\Delta)^{-1}\dfrac{\partial u}{\partial t}$ and obtain, owing to (2.9) and the interpolation inequality (3.3),
$\mathcal{D^{\beta}}\dfrac{\partial u}{\partial t}=0\quad on\quad \Gamma, \quad \vert\beta\vert\leqslant k.$ |
hence, owing to (3.10), the differential inequality
$ \dfrac{d}{dt}\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+c\|\dfrac{\partial u}{\partial t}\|_{H^{k}(\Omega)}^{2}\leqslant c'(\|\dfrac{\partial u}{\partial t}\|^{2}+\|\Delta\alpha\|^{2}+\|\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}), \quad c>0, $ | (3.14) |
Summing finally (3.8), $\delta_2$ times (3.11) and $\delta_3$ times (3.14), where $\delta_2, \delta_3>0$ are small enough, we find a differential inequality of the form
$\dfrac{d}{dt}\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+c\|\dfrac{\partial u}{\partial t}\|_{H^{k}(\Omega)}^{2}\leqslant c'(\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+\|\alpha\|_{H^{2}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|_{H^{2}(\Omega)}^{2}), \quad c>0.$ | (3.15) |
where
$\dfrac{dE_{2}}{dt}+c(E_2+\|\dfrac{\partial u}{\partial t}\|_{H^{k}(\Omega)}^{2})\leqslant c', \quad c>0, $ |
Owing to the continuous embedding $H^{2k+1}(\Omega)\subset C (\bar{\Omega})$, we deduce that
$ E_2=E_1+\delta_2(\|\Delta\alpha\|^{2}-2((\dfrac{\partial\alpha} {\partial t}, \Delta\alpha))+2((\Delta\dfrac{\partial\alpha} {\partial t}, \Delta\alpha)))+\delta_3\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}. $ |
and since
$ \vert\int_{\Omega}F(u_{0})\mathrm{d}x\vert\leqslant Q(\|u_{0}\|_{H^{2k+1}(\Omega)}) $ |
we see that $(-\Delta)^{-\frac{1}{2}}\dfrac{\partial u}{\partial t}(0)\in L^{2}(\Omega)$ and
$ (-\Delta)^{-\frac{1}{2}}\dfrac{\partial u}{\partial t}(0)=-(-\Delta)^{\frac{1}{2}} A_{k}u_{0}-(-\Delta)^{\frac{1}{2}} B_{k}u_{0}-(-\Delta)^{\frac{1}{2}} f(u_{0})+(-\Delta)^{\frac{1}{2}}(\alpha_{1}-\Delta\alpha_{1}), $ | (3.16) |
Furthermore $E_2$ satisfies
$\|\dfrac{\partial u}{\partial t}(0)\|_{-1}\leqslant Q(\|u_{0}\|_{H^{2k+1}(\Omega)}, \|\alpha_{1}\|_{H^{3}(\Omega)}).$ | (3.17) |
It thus follows from (3.15), (3.16), (3.17) and Growall's lemma that
$E_{2}\geqslant c(\|u\|_{H^{k}(\Omega)}^{2}+\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+\int_{\Omega}F(u)\mathrm{d}x+\|\alpha\|_{H^{2}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|_{H^{2}(\Omega)}^{2})-c', \quad c > 0.$ | (3.18) |
and
$‖u(t)‖2Hk(Ω)+‖∂u∂t(t)‖2−1+‖α(t)‖2H2(Ω)+‖∂α∂t(t)‖2H2(Ω)≤e−ctQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))+c′,c>0,t0,$ | (3.19) |
$r>0$ given.
Multiplying next (2.7) by $\tilde{A}_{k}u$, we find, owing to the interpolation inequality (3.3),
$∫t+rt‖∂u∂t‖2Hk(Ω)ds≤e−ctQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))+c′(r),c>0,t≥0,$ |
hence, since f and F are continuous and owing to (3.18),
$ \dfrac{d}{dt}\|\tilde{A}_{k}^{\frac{1}{2}}u\|^{2}+c\|u\|_{H^{2k}(\Omega)}^{2}\leqslant c'(\|u\|^{2}+\|f(u)\|^{2}+\|\dfrac{\partial \alpha}{\partial t }\|^{2}+\|\Delta \dfrac{\partial \alpha}{\partial t }\|^{2}), \quad c>0, $ | (3.20) |
Summing (3.15) and (3.22), we have a differential inequality of the form
$ddt‖˜A12ku‖2+c‖u‖2H2k(Ω)≤e−c′tQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))+c",c,c′>0,t≥0.$ | (3.21) |
where
$dE3dt+c(E3+‖u‖2H2k(Ω)+‖∂u∂t‖2Hk(Ω))≤e−c′tQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))+c",c,c′>0,t≥0,$ |
satisfies
$ E_{3}=E_{2}+\|\tilde{A}_{k}^{\frac{1}{2}}u\|^{2} $ | (3.22) |
In particular, it follows from (3.21)-(3.22) that
$E_{3}\geqslant c(\|u\|_{H^{k}(\Omega)}^{2}+\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+\int_{\Omega}F(u)\mathrm{d}x+\|\alpha\|_{H^{2}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|_{H^{2}(\Omega)}^{2})-c', \quad c > 0.$ | (3.23) |
$r >0$ given.
We now multiply (2.7) by u and obtain, employing (2.9) and the interpolation inequality (3.3)
$\int_t^{t+r}\|u\|_{H^{2k}(\Omega)}^{2}\mathrm{d}s \leqslant e^{-ct}Q(\|u_{0}\|_{H^{2k+1}(\Omega)}, \|\alpha_0\|_{H^{2}(\Omega)}, \|\alpha_1\|_{H^{3}(\Omega)})+c'(r), \quad c>0, \quad t\geqslant 0, $ |
whence, proceeding as above,
$ \dfrac{d}{dt}\|u\|^{2}+c\|u\|_{H^{k+1}(\Omega)}^{2}\leqslant c'(\|u\|_{H^{1}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|^{2}+\|\Delta \dfrac{\partial \alpha}{\partial t}\|^{2}), \quad c > 0, $ | (3.24) |
We also multiply (2.7) by $\dfrac{\partial u}{\partial t}$ and find
$\dfrac{d}{dt}\|u\|^{2}+c\|u\|_{H^{k+1}(\Omega)}^{2}\leqslant e^{-c't}Q(\|u_{0}\|_{H^{2k+1}(\Omega)}, \|\alpha_0\|_{H^{2}(\Omega)}, \|\alpha_1\|_{H^{3}(\Omega)})+c'', \quad c, c'>0.$ |
where
$ \dfrac{d}{dt}(\|\bar{A}_{k}^{\frac{1}{2}}u\|^{2}+\bar{B}_{k}^{\frac{1}{2}}\left[u\right])+c\|\dfrac{\partial u}{\partial t}\|^{2}\leqslant c'\|\Delta f(u)\|^{2}-2((\Delta\dfrac{\partial u} {\partial t}, \dfrac{\partial \alpha}{\partial t}-\Delta \dfrac{\partial \alpha}{\partial t})), $ |
Since f is of class $C^{2}$, it follows from the continuous embedding $H^{2}(\Omega)\subset C (\bar{\Omega})$ that
$ \bar{B}_{k}^{\frac{1}{2}}\left[u\right]=\sum_{i=1}^{k-1}\sum_{\vert\beta\vert=i}a_{\beta}\|\nabla\mathcal{D^{\beta}}u\|^{2}. $ |
hence, owing to (3.18),
$ \|\Delta f(u)\|^{2}\leqslant Q(\|u\|_{H^{2}(\Omega)}), $ | (3.25) |
Multiply next (2.2) by $-\Delta (\dfrac{\partial \alpha}{\partial t}-\Delta \dfrac{\partial \alpha}{\partial t})$, we have
$ddt(‖ˉA12ku‖2+ˉB12k[u])+c‖∂u∂t‖2≤e−c′tQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))−2((Δ∂u∂t,∂α∂t−Δ∂α∂t))+c″,c,c′>0.$ | (3.26) |
(note indeed that $\|\nabla\dfrac{\partial \alpha}{\partial t}\|^{2}+2\|\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}+\|\nabla\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}=\|\nabla\dfrac{\partial \alpha}{\partial t}-\nabla\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}$).
Summing (3.25) and (3.26), we obtain
$ddt(‖Δα‖2+‖∇Δα‖2+‖∇∂α∂t−∇Δ∂α∂t‖2)+c(‖Δ∂α∂t‖2+‖∇Δ∂α∂t‖2)≤2((Δ∂u∂t,∂α∂t−Δ∂α∂t)),c>0$ | (3.27) |
Summing finally (3.21), (3.24) and (3.27), we find a differential inegality of the form
$ddt(‖ˉA12ku‖2+ˉB12k[u]+‖Δα‖2+‖∇Δα‖2+‖∇∂α∂t−∇Δ∂α∂t‖2)+c(‖∂u∂t‖2+‖Δ∂α∂t‖2+‖∇Δ∂α∂t‖2)≤e−c′tQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))+c″,c,c′>0.$ | (3.28) |
where
$dE4dt+c(E3+‖u‖2Hk+1(Ω)+‖u‖2H2k(Ω)+‖∂u∂t‖2+‖∂u∂t‖2Hk(Ω)+‖∂α∂t‖2H3(Ω))≤e−c′tQ(‖u0‖H2k+1(Ω),‖α0‖H2(Ω),‖α1‖H3(Ω))+c″,c,c′>0,t≥0$ |
satisfies, owing to (2.11) and the interpolation inegality (3.3)
$ E_4=E_3+\|u\|^{2}+\|\bar{A}_{k}^{\frac{1}{2}}u\|^{2}+\bar{B}_{k}^{\frac{1}{2}}\left[u\right]+\|\Delta \alpha\|^{2}+\|\nabla\Delta \alpha\|^{2}+\|\nabla\dfrac{\partial \alpha}{\partial t }-\nabla\Delta \dfrac{\partial \alpha}{\partial t }\|^{2} $ | (3.29) |
In particular, it follows from (3.28)-(3.29) that
$E_{4}\geqslant c(\|u\|_{H^{k+1}(\Omega)}^{2}+\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+\int_{\Omega}F(u)\mathrm{d}x+\|\alpha\|_{H^{3}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|_{H^{3}(\Omega)}^{2})-c', \quad c > 0.$ | (3.30) |
and
$‖u(t)‖Hk+1(Ω)+‖α(t)‖H3(Ω)+‖∂α∂t(t)‖H3(Ω)≤e−ctQ(‖u0‖H2k+1(Ω),‖α0‖H3(Ω),‖α1‖H3(Ω))+c′,c>0,t≥0,$ | (3.31) |
$r$ given.
We finally rewrite (2.7) as an elliptic equation, for t > 0 fixed,
$∫t+rt(‖∂u∂t‖2+‖∂α∂t‖2H3(Ω))ds≤e−ctQ(‖u0‖H2k+1(Ω),‖α0‖H3(Ω),‖α1‖H3(Ω))+c′(r),c>0,t≥0,$ | (3.32) |
Multiplying (3.32) by $A_{k}u$, we obtain, owing to the interpolation inequality (3.3),
$A_{k}u=-(-\Delta)^{-1}\dfrac{\partial u}{\partial t}-B_{k}u-f(u)+\dfrac{\partial \alpha}{\partial t}-\Delta \dfrac{\partial \alpha}{\partial t}, \quad\mathcal{D^{\beta}}u=0\quad on\quad \Gamma, \quad \vert\beta\vert\leqslant k-1.$ |
hence, since f is continuous and owing to (3.18)
$ \|A_{k}u\|^{2}\leqslant c(\|u\|^{2}+\|f(u)\|^{2}+\|\dfrac{\partial u}{\partial t}\|_{-1}^{2}+\|\dfrac{\partial \alpha}{\partial t}\|^{2}+\|\Delta \dfrac{\partial \alpha}{\partial t}\|^{2}), $ | (3.33) |
We first have the following theorem.
Theorem 4.1. (i) We assume that $(u_{0}, \alpha_{0}, \alpha_{1})\in H_{0}^{k}(\Omega)\times (H^{2}(\Omega)\cap H_{0}^{1}(\Omega))\times (H^{2}(\Omega)\cap H_{0}^{1}(\Omega))$, with $\int_{\Omega}F (u_{0})\mathrm{d}x < +\infty$. Then, $(2.1)-(2.4)$ possesses at last one solution $(u, \alpha, \dfrac{\partial \alpha}{\partial t})$ such that, $\forall T > 0$, $u (0)=u_{0}$, $\alpha (0)=\alpha_{0}$, $\dfrac{\partial \alpha}{\partial t}(0)=\alpha_{1}$,
$\|u(t)\|_{H^{2k}(\Omega)}^{2}\leqslant ce^{-c't}Q(\|u_{0}\|_{H^{2k+1}(\Omega)}, \|\alpha_{0}\|_{H^{3}(\Omega)}, \|\alpha_{1}\|_{H^{3}(\Omega)})+c'', \quad c'>0\quad t\geqslant 0.$ |
$ u \in L^{\infty} (\mathbb{R^{+}}; H_{0}^{k}(\Omega))\cap L^{2}(0, T;H^{2k}(\Omega)\cap H_{0}^{k}(\Omega)), $ |
$ \dfrac{\partial u}{\partial t}\in L^{\infty} (\mathbb{R^{+}}; H^{-1}(\Omega ))\cap L^{2} (0, T; H_{0}^{k}(\Omega)), $ |
and
$ \alpha, \dfrac{\partial \alpha}{\partial t}\in L^{\infty} (\mathbb{R^{+}}; H^{2}(\Omega)\cap H_{0}^{1}(\Omega)) $ |
$ \dfrac{d}{dt}((-\Delta)^{-1}u, v))+\sum_{i=1}^{k}\sum_{\vert\beta\vert=i} a_{i}((\mathcal{D^{\beta}}u, \mathcal{D^{\beta}}v))+((f(u), v))=\dfrac{d}{dt}(((u, v)) \\ +((\nabla u, \nabla v))), \forall v\in C_c^{\infty}(\Omega), $ |
in the sense of distributions.
(ii) If we futher assume that $(u_{0}, \alpha_{0}, \alpha_{1})\in (H^{k+1}(\Omega)\cap H_{0}^{k}(\Omega))\times (H^{3}(\Omega)\cap H_{0}^{1}(\Omega))\times (H^{3}(\Omega)\cap H_{0}^{1}(\Omega))$, then, $\forall T > 0$,
$ \dfrac{d}{dt}(((\dfrac{\partial \alpha}{\partial t}, w))+((\nabla\dfrac{\partial \alpha}{\partial t}, \nabla w))+((\nabla\alpha, \nabla w)))+((\nabla\alpha, \nabla w))=-\dfrac{d}{dt}((u, w)), \forall w\in C_c^{\infty}(\Omega), $ |
$ u \in L^{\infty} (\mathbb{R^{+}}; H^{k+1}(\Omega)\cap H_{0}^{k}(\Omega))\cap L^{2} (\mathbb{R^{+}}; H^{k+1}(\Omega)\cap H_{0}^{k}(\Omega)) $ |
$ \dfrac{\partial u}{\partial t}\in L^{2} (\mathbb{R^{+}}; L^{2}(\Omega )), $ |
and
$ \alpha\in L^{\infty} (\mathbb{R^{+}}; H^{3}(\Omega)\cap H_{0}^{1}(\Omega)) $ |
The proofs of existence and regularity in (i) and (ii) follow from the a priori estimates derived in the previous section and, e.g., a standard Galerkin scheme.
We then have the following theorem.
Theorem 4.2. The system (1.1)-(1.4) possesses a unique solution with the above regularity.
proof. Let $(u^{(1)}, \alpha^{(1)}, \dfrac{\partial\alpha^{(1)}}{\partial t})$ and $(u^{(2)}, \alpha^{(2)}, \dfrac{\partial\alpha^{(2)}}{\partial t})$ be two solutions to (2.1)-(2.3) with initial data $(u_{0}^{(1)}, \alpha_{0}^{(1)}, \alpha_{1}^{(1)})$ and $(u_{0}^{(2)}, \alpha_{0}^{(2)}, \alpha_{1}^{(2)})$, respectively. We set
$ \dfrac{\partial \alpha}{\partial t}\in L^{\infty} (\mathbb{R^{+}}; H^{3}(\Omega)\cap H_{0}^{1}(\Omega))\cap L^{2} (0, T; H^{3}(\Omega)\cap H_{0}^{1}(\Omega)) $ |
and
$ (u, \alpha, \dfrac{\partial\alpha}{\partial t})=( u^{(1)}, \alpha^{(1)}, \dfrac{\partial\alpha^{(1)}}{\partial t})-( u^{(2)}, \alpha^{(2)}, \dfrac{\partial\alpha^{(2)}}{\partial t}) $ |
Then, $(u, \alpha)$ satisfies
$ ( u_{0}, \alpha_{0}, \alpha_{1})=( u_{0}^{(1)}, \alpha_{0}^{(1)}, \alpha_{1}^{(1)})-( u_{0}^{(2)}, \alpha_{0}^{(2)}, \alpha_{1}^{(2)}). $ | (4.1) |
$\dfrac{\partial u}{\partial t}-\Delta A_{k}u-\Delta B_{k}u-\Delta (f(u^{(1)})-f(u^{(2)}))=-\Delta(\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}), $ | (4.2) |
$\dfrac{\partial^{2} \alpha}{\partial t^{2}}-\Delta\dfrac{\partial^{2} \alpha}{\partial t^{2}}-\Delta\dfrac{\partial \alpha}{\partial t}-\Delta \alpha=-\dfrac{\partial u}{\partial t}, $ | (4.3) |
$\mathcal{D^{\beta}} u=\alpha=0\quad\ on \quad\ \Gamma, \quad \vert\beta\vert\leqslant k, $ | (4.4) |
Multiplying (4.1) by $(-\Delta)^{-1}u$ and integrating over $\Omega$, we obtain
$u|_{t=0}=u_{0}, \alpha|_{t=0}=\alpha_{0}, \dfrac{\partial \alpha}{\partial t}|_{t=0}=\alpha_{1}.$ |
We note that
$ \dfrac{d}{dt}\|u\|_{-1}^{2}+c\|u\|_{H^{k}(\Omega)}^{2}\leqslant c'(\|u\|^{2}+\|\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}\|^{2})-2((f(u^{(1)})-f(u^{(2)}, u)). $ |
with l defined as
$ f(u^{(1)})-f(u^{(2)})=l(t)u, $ |
Owing to (2.9), we have
$ l(t)=\int_0^{1}f'(su^{(1)}(t)+(1-s)u^{(2)}(t))\mathrm{d}s. $ |
and we obtain owing to the intepolation inequalities (3.3) and (3.10),
$ −2((f(u(1))−f(u(2),u))≤2c0‖u‖2 ≤c‖u‖2 $ | (4.5) |
Next, multiplying (4.2) by $(-\Delta)^{-1}(u+\dfrac{\partial \alpha}{\partial t}-\Delta \dfrac{\partial \alpha}{\partial t})$, we find
$\dfrac{d}{dt}\|u\|_{-1}^{2}+c\|u\|_{H^{k}(\Omega)}^{2}\leqslant c'(\|u\|_{-1}^{2}+\|\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}\|^{2}), \quad c > 0.$ | (4.6) |
Summing then $\delta_4$ times (4.5) and (4.6), where $\delta_4>0$ is small enough, we have, employing once more the interpolation inequality (3.10), a differential inequality of the form
$ddt(‖α‖2+‖∇α‖2+‖u+∂α∂t−Δ∂α∂t‖2−1)+c(‖∂α∂t‖2+‖∂α∂t‖2H1(Ω))≤c′(‖u‖2+‖α‖2).$ | (4.7) |
where
$\dfrac{dE_{5}}{dt}\leqslant cE_{5}, $ |
satisfies
$ E_{5}=\delta_4\|u\|_{-1}^{2}+\|\alpha\|^{2}+\|\nabla \alpha\|^{2}+\|u+\dfrac{\partial \alpha}{\partial t}-\Delta\dfrac{\partial \alpha}{\partial t}\|_{-1}^{2} $ | (4.8) |
It follows from (4.7)-(4.8) and Gronwall's lemma that
$E_{5}\geqslant c(\|u\|_{-1}^{2}+\|\alpha\|_{H^{1}(\Omega)}^{2}+\|\dfrac{\partial \alpha}{\partial t}-\Delta \dfrac{\partial \alpha}{\partial t}\| ^{2}), c>0.$ | (4.9) |
hence the uniquess, as well as the continuous dependence with respect to the initial data in $H^{-1}\times H^{1}\times H^{1}$-norm.
All authors declare no conflicts of interest in this paper.
[1] |
Ben-Simon E, Podlipsky I, Arieli A, et al. (2008) Never resting brain simultaneous representation of two alpha related processes in humans. PLoS One 3: e3984. doi: 10.1371/journal.pone.0003984
![]() |
[2] |
de Munck JC, Goncalves SI, Huijboom L, et al. (2007) The hemodynamic response of the alpha rhythm an EEG/fMRI study. Neuroimage 35: 1142-1151. doi: 10.1016/j.neuroimage.2007.01.022
![]() |
[3] | Moss RA, Moss J. (2014) The role of dynamic columns in explaining gamma-band synchronization and NMDA receptors in cognitive functions. AIMS Neurosci 1: 65-88. |
[4] | Cadonic C, Albensi BC. (2014) Oscillations and NMDA receptors their interplay create memories. AIMS Neurosci 1: 52-64. |
[5] | Pinotsis D, Friston K. (2014) Gamma oscillations and neural field DCMs can reveal cortical excitability and microstructure. AIMS Neurosci 1: 18-38. |
[6] |
Jasper HH. (1936) Cortical excitatory state and variability in human brain rhythms. Science 83:259-260. doi: 10.1126/science.83.2150.259
![]() |
[7] | Sheer DE. (1975) Behavior and brain electrical activity. New York and London: Plenum Press. |
[8] | Sheer DE. (1989) Sensory and cognitive 40-Hz event-related potentials behavioral correlates, brain function and clinical application Brain Dynamics. Berlin: Springer, pp 339-374. |
[9] |
Kulli J, Koch C. (1991) Does anesthesia cause loss of consciousness? Trends Neurosci 14: 6-10. doi: 10.1016/0166-2236(91)90172-Q
![]() |
[10] |
Ferri R, Cosentino FI, Elia M, et al. (2001) Relationship between Delta, Sigma, Beta, and Gamma EEG bands at REM sleep onset and REM sleep end. Clin Neurophysiol 112: 2046-2052. doi: 10.1016/S1388-2457(01)00656-3
![]() |
[11] |
Cantero JL, Atienza M, Madsen JR, et al. (2004) Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. Neuroimage 22: 1271-1280. doi: 10.1016/j.neuroimage.2004.03.014
![]() |
[12] | Baldeweg T, Spence S, Hirsch SR, et al. (1998) Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 352: 620-621. |
[13] |
Becker C, Gramann K, Muller HJ, et al. (2009) Electrophysiological correlates of flicker-induced color hallucinations. Conscious Cogn 18: 266-276. doi: 10.1016/j.concog.2008.05.001
![]() |
[14] |
Behrendt RP. (2003) Hallucinations synchronisation of thalamocortical gamma oscillations underconstrained by sensory input. Conscious Cogn 12: 413-451. doi: 10.1016/S1053-8100(03)00017-5
![]() |
[15] |
Ffytche DH. (2008) The hodology of hallucinations. Cortex 44: 1067-1083. doi: 10.1016/j.cortex.2008.04.005
![]() |
[16] |
Spencer KM, Nestor PG, Perlmutter R, et al. (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci U S A 101: 17288-17293. doi: 10.1073/pnas.0406074101
![]() |
[17] |
Bartha R, Williamson PC, Drost DJ, et al. (1997) Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatr 54: 959-965. doi: 10.1001/archpsyc.1997.01830220085012
![]() |
[18] | Theberge J, Bartha R, Drost DJ, et al. (2002) Glutamate and glutamine measured with 4. 0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatr 159:1944-1946. |
[19] |
Lutz A, Greischar LL, Rawlings NB, et al. (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 101: 16369-16373. doi: 10.1073/pnas.0407401101
![]() |
[20] | Joliot M, Ribary U, Llinas R. (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91: 11748-11751. |
[21] |
Tallon-Baudry C, Bertrand O. (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3: 151-162. doi: 10.1016/S1364-6613(99)01299-1
![]() |
[22] |
Varela F, Lachaux JP, Rodriguez E, et al. (2001) The brainweb phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229-239. doi: 10.1038/35067550
![]() |
[23] | Zhang ZG, Hu L, Hung YS, et al. (2012) Gamma-band oscillations in the primary somatosensory cortex, a direct and obligatory correlate of subjective pain intensity. J Neurosci 32: 7429-7438. |
[24] |
Buzsaki G, Chrobak JJ. (1995) Temporal structure in spatially organized neuronal ensembles a role for interneuronal networks. Curr Opin Neurobiol 5: 504-510. doi: 10.1016/0959-4388(95)80012-3
![]() |
[25] | Buzsaki G. (2006) Rhythms of the brain. Oxford University Press. |
[26] |
Engel AK, Roelfsema PR, Fries P, Brecht M, Singer W. (1997) Role of the temporal domain for response selection and perceptual binding. Cereb Cortex 7: 571-582. doi: 10.1093/cercor/7.6.571
![]() |
[27] |
Fries P. (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32: 209-224. doi: 10.1146/annurev.neuro.051508.135603
![]() |
[28] |
Gray CM, Konig P, Engel AK, et al. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337. doi: 10.1038/338334a0
![]() |
[29] |
Singer W. (1999) Time as coding space? Curr Opin Neurobiol 9: 189-194. doi: 10.1016/S0959-4388(99)80026-9
![]() |
[30] |
Mantini D, Perrucci MG, Del GC, et al. (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104: 13170-13175. doi: 10.1073/pnas.0700668104
![]() |
[31] |
Buzsaki G, Draguhn A. (2004) Neuronal oscillations in cortical networks. Science 304: 1926-1929. doi: 10.1126/science.1099745
![]() |
[32] |
Buzsaki G, Wang XJ. (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35: 203-225. doi: 10.1146/annurev-neuro-062111-150444
![]() |
[33] |
Steriade M. (2006) Grouping of brain rhythms in corticothalamic systems. Neurosci 137: 1087-1106. doi: 10.1016/j.neuroscience.2005.10.029
![]() |
[34] |
Roux F, Uhlhaas PJ. (2014) Working memory and neural oscillations alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci 18: 16-25. doi: 10.1016/j.tics.2013.10.010
![]() |
[35] |
Uhlhaas PJ, Roux F, Singer W, et al. (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci U S A 106:9866-9871. doi: 10.1073/pnas.0900390106
![]() |
[36] | Woolsey TA, Van Der Loos H. (1970) The structural organization of layer IV in the somatosensory region. (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205-242. |
[37] |
Van Der Loos H. (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2: 1-6. doi: 10.1016/0304-3940(76)90036-7
![]() |
[38] |
Yang JW, An S, Sun JJ, et al. (2013) Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb Cortex 23: 1299-1316. doi: 10.1093/cercor/bhs103
![]() |
[39] |
Minlebaev M, Colonnese M, Tsintsadze T, et al. (2011) Early gamma oscillations synchronize developing thalamus and cortex. Science 334: 226-229. doi: 10.1126/science.1210574
![]() |
[40] |
Pinault D, Deschenes M. (1992) Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo. Neurosci 51: 245-258. doi: 10.1016/0306-4522(92)90312-P
![]() |
[41] |
Pinault D. (2004) The thalamic reticular nucleus structure, function and concept. Brain Res Rev 46:1-31. doi: 10.1016/j.brainresrev.2004.04.008
![]() |
[42] | Mountcastle VB. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20: 408-434. |
[43] | Mountcastle VB. (1997) The columnar organization of the neocortex. Brain 120. ( Pt 4): 701-722. |
[44] |
Feldmeyer D, Brecht M, Helmchen F, et al. (2013) Barrel cortex function. Prog Neurobiol 103: 3-27. doi: 10.1016/j.pneurobio.2012.11.002
![]() |
[45] |
Horton JC, Adams DL. (2005) The cortical column a structure without a function. Philos Trans R Soc Lond B Biol Sci 360: 837-862. doi: 10.1098/rstb.2005.1623
![]() |
[46] |
Adler CM, Goldberg TE, Malhotra AK, et al. (1998) Effects of Ketamine on Thought Disorder, Working Memory, and Semantic Memory in Healthy Volunteers. Biological Psychiatr 43: 811-816. doi: 10.1016/S0006-3223(97)00556-8
![]() |
[47] |
Hetem LA, Danion JM, Diemunsch P, et al. (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology. (Berl) 152: 283-288. doi: 10.1007/s002130000511
![]() |
[48] | Krystal JH, Karper LP, Seibyl JP, et al. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatr 51: 199-214. |
[49] |
Newcomer JW, Farber NB, Jevtovic-Todorovic V, et al. (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106-118. doi: 10.1016/S0893-133X(98)00067-0
![]() |
[50] | Fond G, Loundou A, Rabu C, et al. (2014) Ketamine administration in depressive disorders a systematic review and meta-analysis. Psychopharmacology. (Berl). In press. |
[51] | McGirr A, Berlim MT, Bond DJ, et al. (2014) A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 1-12. |
[52] |
Zarate CA, Jr. , Singh JB, Carlson PJ, et al. (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatr 63: 856-864. doi: 10.1001/archpsyc.63.8.856
![]() |
[53] | Anticevic A, Corlett PR, Cole MW, et al. (2014) NMDA Receptor Antagonist Effects on Prefrontal Cortical Connectivity Better Model Early Than Chronic Schizophrenia. Biol Psychiatr [Epub ahead of print]. |
[54] |
Driesen NR, McCarthy G, Bhagwagar Z, et al. (2013) Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatr 18: 1199-1204. doi: 10.1038/mp.2012.194
![]() |
[55] |
Hong LE, Summerfelt A, Buchanan RW, et al. (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35:632-640. doi: 10.1038/npp.2009.168
![]() |
[56] | Pinault D. (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatr 63: 730-735. |
[57] |
Chrobak JJ, Hinman JR, Sabolek HR. (2008) Revealing past memories proactive interference and ketamine-induced memory deficits. J Neurosci 28: 4512-4520. doi: 10.1523/JNEUROSCI.0742-07.2008
![]() |
[58] |
Kocsis B. (2012) Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biol Psychiatr 71: 987-995. doi: 10.1016/j.biopsych.2011.10.002
![]() |
[59] |
Ma J, Leung LS. (2007) The supramammillo-septal-hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats. Psychopharmacology (Berl) 191: 961-974. doi: 10.1007/s00213-006-0667-x
![]() |
[60] |
Hakami T, Jones NC, Tolmacheva EA, et al. (2009) NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness. PLoS One 4: e6755. doi: 10.1371/journal.pone.0006755
![]() |
[61] |
Ehrlichman RS, Gandal MJ, Maxwell CR, et al. (2009) N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia. Neuroscience 158: 705-712. doi: 10.1016/j.neuroscience.2008.10.031
![]() |
[62] |
Hunt MJ, Raynaud B, Garcia R. (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatr 60: 1206-1214. doi: 10.1016/j.biopsych.2006.01.020
![]() |
[63] |
Kulikova SP, Tolmacheva EA, Anderson P, Gaudias J, Adams BE, Zheng T, et al. (2012) Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing. Eur J Neurosci 36: 3407-3419. doi: 10.1111/j.1460-9568.2012.08263.x
![]() |
[64] |
Molina LA, Skelin I, Gruber AJ. (2014) Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PLoS One 9: e85842. doi: 10.1371/journal.pone.0085842
![]() |
[65] |
Homayoun H, Moghaddam B. (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27: 11496-11500. doi: 10.1523/JNEUROSCI.2213-07.2007
![]() |
[66] |
Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078-1092. doi: 10.1093/cercor/10.11.1078
![]() |
[67] |
Corlett PR, Honey GD, Fletcher PC. (2007) From prediction error to psychosis ketamine as a pharmacological model of delusions. J Psychopharmacol 21: 238-252. doi: 10.1177/0269881107077716
![]() |
[68] |
Adell A, Jimenez-Sanchez L, Lopez-Gil X, et al. (2012) Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 38: 9-14. doi: 10.1093/schbul/sbr133
![]() |
[69] |
Frohlich J, Van Horn JD. (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacol 28: 287-302. doi: 10.1177/0269881113512909
![]() |
[70] |
Gunduz-Bruce H. (2009) The acute effects of NMDA antagonism from the rodent to the human brain. Brain Res Rev 60: 279-286. doi: 10.1016/j.brainresrev.2008.07.006
![]() |
[71] |
Canolty RT, Knight RT. (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506-515. doi: 10.1016/j.tics.2010.09.001
![]() |
[72] |
Kirihara K, Rissling AJ, Swerdlow NR, et al. (2012) Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol Psychiatr 71: 873-880. doi: 10.1016/j.biopsych.2012.01.016
![]() |
[73] |
Jensen O, Colgin LL. (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11: 267-269. doi: 10.1016/j.tics.2007.05.003
![]() |
[74] |
Lisman JE, Jensen O. (2013) The theta-gamma neural code. Neuron 77: 1002-1016. doi: 10.1016/j.neuron.2013.03.007
![]() |
[75] |
Palenicek T, Fujakova M, Brunovsky M, et al. (2011) Electroencephalographic spectral and coherence analysis of ketamine in rats correlation with behavioral effects and pharmacokinetics. Neuropsychobiology 63: 202-218. doi: 10.1159/000321803
![]() |
[76] |
Tsuda N, Hayashi K, Hagihira S, et al. (2007) Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of alpha-peaks on the electroencephalographic power spectrum. Acta Anaesthesiol Scand 51: 472-481. doi: 10.1111/j.1399-6576.2006.01246.x
![]() |
[77] | Caixeta FV, Cornelio AM, Scheffer-Teixeira R, et al. (2013) Ketamine alters oscillatory coupling in the hippocampus. Sci Rep 3: 2348. |
[78] |
Hiyoshi T, Kambe D, Karasawa J, et al. (2014) Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms. Neuropharmacology 85: 384-396. doi: 10.1016/j.neuropharm.2014.05.037
![]() |
[79] |
Nicolas MJ, Lopez-Azcarate J, Valencia M, et al. (2011) Ketamine-induced oscillations in the motor circuit of the rat basal ganglia. PLoS One 6: e21814. doi: 10.1371/journal.pone.0021814
![]() |
[80] |
Buzsaki G. (1991) The thalamic clock emergent network properties. Neurosci 41: 351-364. doi: 10.1016/0306-4522(91)90332-I
![]() |
[81] | Friston KJ. (2002) Dysfunctional connectivity in schizophrenia. World Psychiatr 1: 66-71. |
[82] | Melillo R, Leisman G. (2009) Autistic spectrum disorders as functional disconnection syndrome. Rev Neurosci 20: 111-131. |
[83] |
de Haan W. , Pijnenburg YA, Strijers RL, et al. (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci 10:101. doi: 10.1186/1471-2202-10-101
![]() |
[84] |
Bokde AL, Ewers M, Hampel H. (2009) Assessing neuronal networks understanding Alzheimer's disease. Prog Neurobiol 89: 125-133. doi: 10.1016/j.pneurobio.2009.06.004
![]() |
[85] |
Popescu BO, Toescu EC, Popescu LM, et al. (2009) Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 283: 99-106. doi: 10.1016/j.jns.2009.02.321
![]() |
[86] |
Herrmann CS, Demiralp T. (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116: 2719-2733. doi: 10.1016/j.clinph.2005.07.007
![]() |
[87] |
van Deursen JA, Vuurman EF, Verhey FR, et al. (2008) Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J Neural Transm 115: 1301-1311. doi: 10.1007/s00702-008-0083-y
![]() |
[88] |
Yordanova J, Banaschewski T, Kolev V, et al. (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder--evidence from event-related gamma oscillations. Clin Neurophysiol 112: 1096-1108. doi: 10.1016/S1388-2457(01)00524-7
![]() |
[89] | Spencer KM, Nestor PG, Niznikiewicz MA, et al. (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23: 7407-7411. |
[90] |
Uhlhaas PJ, Singer W. (2006) Neural synchrony in brain disorders relevance for cognitive dysfunctions and pathophysiology. Neuron 52: 155-168. doi: 10.1016/j.neuron.2006.09.020
![]() |
[91] |
Whittington MA. (2008) Can brain rhythms inform on underlying pathology in schizophrenia? Biol Psychiatr 63: 728-729. doi: 10.1016/j.biopsych.2008.02.007
![]() |
[92] | Cronenwett WJ, Csernansky J. (2010) Thalamic pathology in schizophrenia. Curr Top Behav Neurosci 4: 509-528. |
[93] |
Ferrarelli F, Peterson MJ, Sarasso S, et al. (2010) Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatr 167: 1339-1348. doi: 10.1176/appi.ajp.2010.09121731
![]() |
[94] |
Lisman JE, Pi HJ, Zhang Y, et al. (2010) A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatr 68:17-24. doi: 10.1016/j.biopsych.2010.04.007
![]() |
[95] |
Pinault D. (2011) Dysfunctional thalamus-related networks in schizophrenia. Schizophr Bull 37:238-243. doi: 10.1093/schbul/sbq165
![]() |
[96] |
Watis L, Chen SH, Chua HC, et al. (2008) Glutamatergic abnormalities of the thalamus in schizophrenia a systematic review. J Neural Transm 115: 493-511. doi: 10.1007/s00702-007-0859-5
![]() |
[97] |
Zhang Y, Su TP, Liu B, et al. (2014) Disrupted thalamo-cortical connectivity in schizophrenia a morphometric correlation analysis. Schizophr Res 153: 129-135. doi: 10.1016/j.schres.2014.01.023
![]() |
[98] |
Javitt DC. (2007) Glutamate and schizophrenia phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78: 69-108. doi: 10.1016/S0074-7742(06)78003-5
![]() |
[99] |
Moghaddam B. (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40: 881-884. doi: 10.1016/S0896-6273(03)00757-8
![]() |
[100] |
Gandal MJ, Edgar JC, Klook K, et al. (2012) Gamma synchrony towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62: 1504-1518. doi: 10.1016/j.neuropharm.2011.02.007
![]() |
[101] |
Rolls ET, Loh M, Deco G, et al. (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9: 696-709. doi: 10.1038/nrn2462
![]() |
[102] |
Winterer G, Ziller M, Dorn H, et al. (2000) Schizophrenia reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111: 837-849. doi: 10.1016/S1388-2457(99)00322-3
![]() |
[103] |
Llinas RR, Ribary U, Jeanmonod D, et al. (1999) Thalamocortical dysrhythmia A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222-15227. doi: 10.1073/pnas.96.26.15222
![]() |
[104] |
Gonzalez-Burgos G, Lewis DA. (2008) GABA neurons and the mechanisms of network oscillations implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34: 944-961. doi: 10.1093/schbul/sbn070
![]() |
[105] |
Roopun AK, Cunningham MO, Racca C, et al. (2008) Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. Schizophr Bull 34: 962-973. doi: 10.1093/schbul/sbn059
![]() |
1. | Talat Nazir, Mujahid Abbas, Safeer Hussain Khan, Fixed Point Results of Fuzzy Multivalued Graphic Contractive Mappings in Generalized Parametric Metric Spaces, 2024, 13, 2075-1680, 690, 10.3390/axioms13100690 | |
2. | Joginder Paul, Mohammad Sajid, Naveen Chandra, Umesh Chandra Gairola, Some common fixed point theorems in bipolar metric spaces and applications, 2023, 8, 2473-6988, 19004, 10.3934/math.2023969 | |
3. | Charu Batra, Renu Chugh, Mohammad Sajid, Nishu Gupta, Rajeev Kumar, Generalized viscosity approximation method for solving split generalized mixed equilibrium problem with application to compressed sensing, 2023, 9, 2473-6988, 1718, 10.3934/math.2024084 |