Citation: Didier Pinault. N-Methyl D-Aspartate Receptor Antagonists Amplify Network Baseline Gamma Frequency (30–80 Hz) Oscillations: Noise and Signal[J]. AIMS Neuroscience, 2014, 1(2): 169-182. doi: 10.3934/Neuroscience.2014.2.169
[1] | Miao Fu, Yuqin Zhang . Results on monochromatic vertex disconnection of graphs. AIMS Mathematics, 2023, 8(6): 13219-13240. doi: 10.3934/math.2023668 |
[2] | Fan Wu, Xinhui An, Baoyindureng Wu . Sombor indices of cacti. AIMS Mathematics, 2023, 8(1): 1550-1565. doi: 10.3934/math.2023078 |
[3] | Yinkui Li, Jiaqing Wu, Xiaoxiao Qin, Liqun Wei . Characterization of $ Q $ graph by the burning number. AIMS Mathematics, 2024, 9(2): 4281-4293. doi: 10.3934/math.2024211 |
[4] | A. El-Mesady, Y. S. Hamed, M. S. Mohamed, H. Shabana . Partially balanced network designs and graph codes generation. AIMS Mathematics, 2022, 7(2): 2393-2412. doi: 10.3934/math.2022135 |
[5] | Yixin Zhang, Yanbo Zhang, Hexuan Zhi . A proof of a conjecture on matching-path connected size Ramsey number. AIMS Mathematics, 2023, 8(4): 8027-8033. doi: 10.3934/math.2023406 |
[6] | Haicheng Ma, Xiaojie You, Shuli Li . The singularity of two kinds of tricyclic graphs. AIMS Mathematics, 2023, 8(4): 8949-8963. doi: 10.3934/math.2023448 |
[7] | Yuan Zhang, Haiying Wang . Some new results on sum index and difference index. AIMS Mathematics, 2023, 8(11): 26444-26458. doi: 10.3934/math.20231350 |
[8] | Syafrizal Sy, Rinovia Simanjuntak, Tamaro Nadeak, Kiki Ariyanti Sugeng, Tulus Tulus . Distance antimagic labeling of circulant graphs. AIMS Mathematics, 2024, 9(8): 21177-21188. doi: 10.3934/math.20241028 |
[9] | Muhammad Kamran Jamil, Muhammad Imran, Aisha Javed, Roslan Hasni . On the first general Zagreb eccentricity index. AIMS Mathematics, 2021, 6(1): 532-542. doi: 10.3934/math.2021032 |
[10] | Sakander Hayat, Bagus Imanda, Asad Khan, Mohammed J. F. Alenazi . Three infinite families of Hamilton-connected convex polytopes and their detour index. AIMS Mathematics, 2025, 10(5): 12343-12387. doi: 10.3934/math.2025559 |
A self-mapping $ \mathcal{F} $ on a convex, closed, and bounded subset $ K $ of a Banach space $ U $ is known as nonexpansive if $ \lVert{\mathcal{F}u -\mathcal{F}v}\rVert $ $ \leq $ $ \lVert{u-v}\rVert $, $ u, v\in U $ and need not essentially possess a fixed point. It is widely known that a point $ u \in U $ is a fixed point or an invariant point if $ \mathcal{F}u = u $. However, some researchers ensured the survival of a fixed point of nonexpansive mapping in Banach spaces utilizing suitable geometric postulates. Numerous mathematicians have extended and generalized these conclusions to consider several nonlinear mappings. One such special class of mapping is Suzuki generalized nonexpansive mapping (SGNM). Many extensions, improvements and generalizations of nonexpansive mappings are given by eminent researchers (see [8,9,10,13,15,17,19,21,22,25], and so on). On the other hand, Krasnosel'skii [16] investigated a novel iteration of approximating fixed points of nonexpansive mapping. A sequence $ \{u_i\} $ utilizing the Krasnosel'skii iteration is defined as: $ u_1 = u, u_{i+1} = (1-\alpha)u_i + \alpha \mathcal{F}u_i $, where $ \alpha \in(0, 1) $ is a real constant. This iteration is one of the iterative methods which is the extension of the celebrated Picard iteration [24], $ u_{i+1} = \mathcal{F}u_i $. The convergence rate of the Picard iteration [24] is better than the Krasnosel'skii iteration although the Picard iterative scheme is not essentially convergent for nonexpansive self-mappings. It is interesting to see that the fixed point of a self-mapping $ \mathcal{F} $ is also a fixed point of the iteration $ \mathcal{F}^n $ $ (n\in \mathbb{N}) $, of the self-mapping $ \mathcal{F} $ but the reverse implication is not feasible. Recently several authors presented extended and generalized results for better approximation of fixed points (see [1,3,11,23,26,27]).
We present convergence and common fixed point conclusions for the associated $ \alpha $-Krasnosel'skii mappings satisfying condition (E) in the current work. Also, we support these with nontrivial illustrative examples to demonstrate that our conclusions improve, generalize and extend comparable conclusions of the literature.
We symbolize $ F(\mathcal{F}) $, to be the collection of fixed points of a self-mapping $ \mathcal{F} $, that is, $ F(\mathcal{F}) $ = $ \{u\in U : \mathcal{F}u = u\} $. We begin with the discussion of convex Banach spaces, $ \alpha $-Krasnosel'skii mappings and the condition (E) (see [12,18,20,23]).
Definition 2.1. [14] A Banach space $ U $ is uniformly convex if, for $ \epsilon \in (0, 2]\ $ $ \exists $ $ \delta > 0 $ satisfying, $ \lVert\frac{u + v}{2}\rVert $ $ \leq 1-\delta $ so that $ \lVert u-v\rVert > \epsilon $ and $ \lVert u \rVert = \lVert v\rVert = 1 $, $ u, v \in U $.
Definition 2.2. [14] A Banach space $ U $ is strictly convex if, $ \lVert \frac{u+v}{2}\rVert < 1 $ so that $ u \neq v, \lVert u\rVert = \lVert v\rVert = 1 $, $ u, v \in U $.
Theorem 2.1. [5] Suppose $ U $ is a uniformly convex Banach space. Then $ \exists $ a $ \gamma > {0} $, satisfying $ \lVert{\frac{1}{2}(\, u+v)\, }\rVert $$ \leq[\, 1-\gamma\frac{\epsilon}{\delta}]\, \delta $ for every $ \epsilon, \; {\delta > 0} $ so that $ \lVert{u-v}\rVert\geq{\epsilon} $, $ \; \lVert{u}\rVert\leq{\delta} $ and $ \lVert{v}\rVert\leq\delta $, for $ u, v \in U $.
Theorem 2.2. [14] The subsequent postulates are equivalent in a Banach space $ U $:
(i) $ U $ is strictly convex.
(ii) $ u = 0 $ or $ v = 0 $ or $ v = cu $ for $ c > {0} $, whenever $ \lVert { u + v }\rVert $ = $ \lVert{u}\rVert + \lVert{v}\rVert, u, v \in U $.
Definition 2.3. Suppose $ \mathcal{F} $ is a self-mapping on a non-void subset $ V $ of a Banach space $ U $.
(i) Suppose for $ u \in U $, $ \exists $ $ v \in V $ so that for all $ w \in V $, $ \lVert{v-u}\rVert $ $ \leq $$ \lVert{w-u}\rVert $. Then $ v $ is a metric projection [6] of $ U $ onto $ V $, and is symbolized by $ P_V(.) $. The mapping $ P_V(u) : U \rightarrow V $ is the metric projection if $ P_V(x) $ exists and is determined uniquely for each $ x\in U $.
(ii) $ \mathcal{F} $ satisfies condition $ (E_{\mu}) $ [23] on $ V $ if $ \exists\; $ $ \; \mu\geq{1} $, satisfying $ \lVert{u-\mathcal{F}v}\rVert \leq \mu\lVert{u-\mathcal{F}u}\rVert+\lVert{u-v}\rVert, \; \; u, v\in V $. Moreover, $ \mathcal{F} $ satisfies condition $ (E) $ on $ V $, if $ \mathcal{F} $ satisfies $ (E_{\mu}) $.
(iii) $ \mathcal{F} $ satisfies condition (E) [23] and $ F(\mathcal{F}) \neq 0 $, then $ \mathcal{F} $ is quasi-nonexpansive.
(iv) $ \mathcal{F} $ is a generalized $ \alpha $-Reich-Suzuki nonexpansive [21] if for an $ \alpha \in [\, 0, 1)\, $, $ \frac{1}{2}\lVert{u-\mathcal{F}u}\rVert \leq \lVert{u-v}\rVert \implies \lVert{\mathcal{F}u-\mathcal{F}v}\rVert \leq $ max $ \{ \alpha\lVert{\mathcal{F}u-u}\rVert + \alpha \lVert{\mathcal{F}v-v}\rVert + (\, 1-2\alpha)\, \lVert{u-v}\rVert, \; \alpha\lVert{\mathcal{F}u-v}\rVert + \alpha\lVert{\mathcal{F}v-u}\rVert + (\, 1-2\alpha)\, \lVert{u-v}\rVert\} $, $ \forall \; u, v \in V $.
(v) A self-mapping $ \mathcal{F}_{\alpha}:V\to V $ is an $ \alpha $-Krasnosel'skii associated with $ \mathcal{F} $ [2] if, $ \mathcal{F}_{\alpha} u = (1-\alpha) u + \alpha \mathcal{F}u $, for $ \alpha \in(0, 1) $, $ u \in V $.
(vi) $ \mathcal{F} $ is asymptotically regular [4] if $ \lim\limits_{n\to\infty} \lVert{\mathcal{F}^nu-\mathcal{F}^{n+1}u}\rVert = 0 $.
(vii) $ \mathcal{F} $ is a generalized contraction of Suzuki type [2], if $ \exists $ $ \beta\in(0, 1) $ and $ \alpha_1, \alpha_2, \alpha_3 \in [\, 0, 1]\, $, where $ \alpha_1 + 2\alpha_2 + 2\alpha_3 = 1 $, satisfying $ \beta\lVert{u-\mathcal{F}u}\rVert \leq \lVert{u-v}\rVert $ implies
$ ‖Fu−Fv‖≤α1‖u−v‖+α2(‖u−Fu‖+‖v−Fv‖)+α3(‖u−Fv‖+‖v−Fu‖) ,u,v∈U. $
|
(viii) $ \mathcal{F} $ is $ \alpha $-nonexpansive [7] if $ \exists $ an $ \alpha < 1 $ satisfying
$ ‖Fu−Fv‖≤α‖Fu−v‖+α‖Fv−u‖+(1−2α)‖u−v‖,u,v∈U. $
|
Theorem 2.3. [5] A continuous mapping on a non-void, convex and compact subset $ V $ of a Banach space $ U $ has a fixed point in $ V $.
Pant et al.[23] derived a proposition that if $ \beta = \frac{1}{2} $, then a generalized contraction of Suzuki type is a generalized $ \alpha $-Reich-Suzuki nonexpansive. Moreover, the reverse implication may not necessarily hold.
Lemma 2.1. [2] Let $ \mathcal{F} $ be a generalized contraction of the Suzuki type on a non-void subset $ V $ of a Banach space $ U $. Let $ \beta\in[\, \frac{1}{2}, 1)\, $, then
$ ‖u−Fv‖≤(2+α1+α2+3α31−α2−α3)‖u−Fu‖+‖u−v‖. $
|
Proposition 2.1. [23] Let $ \mathcal{F} $ be a generalized contraction of the Suzuki type on a non-void subset $ V $ of a Banach space $ U $, then $ \mathcal{F} $ satisfies condition (E).
The converse of this proposition is not true, which can be verified by the following example.
Example 2.1. Suppose $ U = (\mathbb{R}^2, \left\|.\right\|) $ with the Euclidean norm and $ V = [-1, 1]\times[-1, 1] $ be a subset of $ U $. Let $ \mathcal{F}:V\to V $ be defined as
$ F(u1,u2)={(u12,u2),if|u1|≤12(−u1,u2),if|u1|>12. $
|
Case I. Let $ x = (u_1, u_2), y = (v_1, v_2) $ with $ |u_1|\leq\frac{1}{2} $, $ |v_1|\leq\frac{1}{2} $. Then,
$ ‖Fx−Fy‖=‖(u12,u2)−(v12,v2)‖=√(u1−v1)24+(u2−v2)2≤√(u1−v1)2+(u2−v2)2=‖x−y‖, $
|
which implies
$ ‖x−Fy‖≤‖x−Fx‖+‖Fx−Fy‖≤‖x−Fx‖+‖x−y‖. $
|
Case II. If $ |u_1|\leq\frac{1}{2} $, $ |v_1| > \frac{1}{2} $
$ ‖x−Fy‖=√(u1+v1)2+(u2−v2)2‖x−y‖=√(u1−v1)2+(u2−v2)2‖x−Fx‖=|u1|2. $
|
Consider
$ ‖x−Fy‖=√(u1−v1)2+(u2−v2)2+4u1v1≤√(u1−v1)2+(u2−v2)2+4|u1|≤√(u1−v1)2+(u2−v2)2+4|u1|. $
|
Hence,
$ \left\|x-\mathcal{F}y\right\|\leq 8\left\|x-\mathcal{F}x\right\|+\left\|x-y\right\|. $ |
Here $ \mu = 8 $ satisfies the inequality.
Case III. If $ |u_1| > \frac{1}{2} $, $ |v_1|\leq\frac{1}{2} $
$ ‖x−Fy‖=√(u1−v12)2+(u2−v2)2‖x−y‖=√(u1+v1)2+(u2−v2)2‖x−Fx‖=2|u1|. $
|
Consider
$ ‖x−Fy‖=√(u1−v12)2+(u2−v2)2≤√(u1−v1)2+(u2−v2)2≤√(u1−v1)2+(u2−v2)2+|u1|≤√(u1−v1)2+(u2−v2)2+2|u1|. $
|
So,
$ \left\|x-\mathcal{F}y\right\|\leq \left\|x-\mathcal{F}y\right\|+\left\|x-y\right\|. $ |
Case IV. If $ |u_1| > \frac{1}{2} $ and $ |v_1| > \frac{1}{2} $, then
$ ‖x−Fy‖=√(u1+v1)2+(u2−v2)2‖x−y‖=√(u1−v1)2+(u2−v2)2‖x−Fx‖=2|u1|. $
|
Since $ |u_1| > \frac{1}{2} $ and $ |v_1| > \frac{1}{2} $, by simple calculation as above, we attain
$ ‖x−Fy‖≤μ‖x−Fx‖+‖x−y‖. $
|
Thus, $ \mathcal{F} $ satisfies condition (E) for $ \mu = 4 $.
Now, suppose $ x = (\frac{1}{2}, 1) $ and $ y = (1, 1) $, so
$ β‖x−Fx‖=β(12−14)=β4≤‖x−y‖=12. $
|
Clearly, $ \left\|\mathcal{F}x-\mathcal{F}y\right\| = \sqrt{(\frac{5}{4})^2+(1-1)^2} = \frac{5}{4} $.
Consider
$ α1‖x−y‖+α2(‖x−Fx‖+‖y−Fy‖)+α3(‖x−Fy‖+‖y−Fx‖)=α1‖(12,1)−(1,1)‖+α2(‖(12,1)−(14,1)‖+‖(1,1)−(−1,1)‖)+α3(‖(12,1)−(−1,1)‖+‖(1,1)−(14,1)‖)=α12+α24+2α2+3α32+3α34=α12+94(α2+α3)=α12+94(1−α12)(by Definition 2.3 (vii))=α12+98−9α18=98−5α18. $
|
Since $ \alpha_1, \alpha_2, \alpha_3\geq 0 $, therefore
$ ‖Fx−Fy‖>α1‖x−y‖+α2(‖x−Fy‖+‖y−Fy‖)+α3(‖x−Fy‖+‖y−Fx‖), $
|
which is a contradiction.
Thus, $ \mathcal{F} $ is not a generalized contraction of the Suzuki type.
Now, we establish results for a pair of $ \alpha $-Krasnosel'skii mappings using condition (E).
Theorem 3.1. Let $ \mathcal{F}_i $, for $ i\in\{1, 2\} $, be self-mappings on a non-void convex subset $ V $ of a uniformly convex Banach space $ U $ and satisfy condition (E) so that $ F(\mathcal{F}_1\cap \mathcal{F}_2)\neq \phi $. Then the $ \alpha $-Krasnosel'skii mappings $ \mathcal{F}_{i_{\alpha}} $, $ \alpha \in (\, 0, 1)\, $ and $ i\in\{1, 2\} $ are asymptotically regular.
Proof. Let $ v_0 \in V $. Define $ v_{n+1} = \mathcal{F}_{i_{\alpha}} v_n $ for $ i\in\{1, 2\} $ and $ n \in N\cup\{0\} $. Thus,
$ Fiαvn=yn+1=(1−α)vn+αFivnfori∈{1,2}, $
|
and
$ Fiαvn−vn=Fiαvn−Fiαvn−1=α(Fivn−vn)fori∈{1,2}. $
|
It is sufficient to show that $ \lim\limits_{n\to\infty} \lVert{\mathcal{F}_i v_n-v_n}\rVert = 0 $ to prove $ \mathcal{F}_{i_{\alpha}} $ is asymptotically regular.
By definition, for $ u_0 \in F(\mathcal{F}_1\cap \mathcal{F}_2) $, we have
$ ‖u0−Fivn‖≤‖u0−vn‖fori∈{1,2} $
|
(3.1) |
and for $ i\in\{1, 2\} $,
$ ‖u0−vn+1‖=‖u0−Fiαvn‖=‖u0−(1−α)vn−αFivn‖≤(1−α)‖u0−vn‖+α‖u0−Fivn‖=(1−α)‖u0−vn‖+α‖u0−vn‖=‖u0−vn‖. $
|
(3.2) |
Thus, the sequence $ \{\lVert u_0-v_n\rVert\} $ is bounded by $ s_0 = \lVert u_0-v_0\rVert $. From inequality (3.2), $ v_n \to u_0 $ as $ n \to \infty $, if $ v_{n_0} = u_0 $, for some $ n_0\in \mathbb{N} $. So, assume $ v_n\neq u_0 $, for $ n \in \mathbb{N} $, and
$ wn=u0−vn‖u0−vn‖anden=u0−Fivn‖u0−vn‖,fori∈{1,2}. $
|
(3.3) |
If $ \alpha\leq\frac{1}{2} $ and using Eq (3.3), we obtain
$ ‖u0−vn+1‖=‖u0−Fiαvn‖,fori∈{1,2}=‖u0−(1−α)vn−αFivn‖,fori∈{1,2}=‖u0−vn+αvn−αFivn−2αu0+2αu0+αvn−αvn‖,fori∈{1,2}=‖(1−2α)u0−(1−2α)vn+(2αu0−αvn−αFivn)‖,fori∈{1,2}≤(1−2α)‖u0−vn‖+α‖2u0−vn−Fivn‖=2α‖u0−vn‖‖wn+en2‖+(1−2α)‖u0−vn‖. $
|
(3.4) |
As the space $ U $ is uniformly convex with $ \lVert w_n\rVert \leq 1 $, $ \lVert e_n \rVert \leq 1 $ and $ \lVert w_n-e_n\rVert = \frac{\lVert v_n-\mathcal{F}_iv_n\rVert}{ \lVert u_0-v_n\rVert} \geq \frac{\lVert v_n-\mathcal{F}_iv_n\rVert}{s_0} = \epsilon $ (say) for $ i\in\{1, 2\} $, we obtain
$ ‖wn+en‖2≤1−δ‖vn−Fivn‖sofori∈{1,2}. $
|
(3.5) |
From inequalities (3.4) and (3.5),
$ ‖u0−vn+1‖≤(2α(1−δ‖vn−Fivn‖so)+(1−2α))‖u0−vn‖=(1−2αδ(‖vn−Fivn‖s0) )‖u0−vn‖. $
|
(3.6) |
By induction, it follows that
$ ‖u0−vn+1‖≤n∏j=1(1−2αδ(‖vn−Fivn‖s0))s0. $
|
(3.7) |
We shall prove that $ \lim\limits_{n\to\infty}\lVert \mathcal{F}_iv_n-v_n\rVert = 0 $ for $ i\in\{1, 2\} $. On the contrary, consider that $\{ \lVert \mathcal{F}_iv_n-v_n\rVert\} $ for $ i\in\{1, 2\} $ is not converging to zero, and we have a subsequence $ \{v_{n_k}\}, $ of $ \{v_n\}, $ satisfying $ \lVert \mathcal{F}_iv_{n_k}-v_{n_k} \rVert $ converges to $ \zeta > 1 $. As $ \delta\in [\, 0, 1]\, $ is increasing and $ \alpha\leq\frac{1}{2} $, $ 1-2\alpha\delta\frac{\lVert v_k-\mathcal{F}_iv_k\rVert}{s_0}\in [\, 0, 1]\, $, $ i\in\{1, 2\} $, for all $ k \in \mathbb{N} $. Since $ \lVert \mathcal{F}_iv_{n_k}-v_{n_k}\rVert \to \zeta $ so, for sufficiently large $ k, \; \; \lVert \mathcal{F}_iv_{n_k}-v_{n_k}\rVert\geq\frac{\zeta}{2} $, from inequality (3.7), we have
$ ‖u0−vnk+1‖≤s0(1−2αδ(ζ2−s0))(nk+1). $
|
(3.8) |
Making $ k\to\infty $, it follows that $ v_{n_{k}}\to u_0 $. By inequality (3.1), we get $ \mathcal{F}_{i} v_{n_{k}} \to u_0 $ and $ \lVert v_{n_{k}} -\mathcal{F}_{i} v_{n_{k}} \rVert \to 0 $ as $ k\to \infty $, which is a contradiction. If $ \alpha > \frac{1}{2} $, then $ 1-\alpha < \frac{1}{2} $, because $ \alpha \in (\, 0, 1)\, $. Now, for $ i\in\{1, 2\} $
$ ‖u0−vn+1‖=‖u0−(1−α)vn−αFivn‖=‖u0−vn+αvn−αFivn+(2−2α)u0−(2−2α)u0+Fivn−Fivn+αFivn−αFivn‖=‖(2u0−vn−Fivn)−α(2u0−vn−Fivn)+2α(u0−Fivn)−(u0−Fivn)‖≤(1−α)‖2u0−vn−Fivn‖+(2α−1)‖u0−vn‖≤2(1−2α)‖u0−vn‖‖wn+en‖2+(2α−1)‖u0−vn‖. $
|
By the uniform convexity of $ U $, we attain, for $ i\in\{1, 2\} $,
$ ‖x0−yn+1‖≤(2(1−α)−2(1−α)δ‖yn−Fiyn‖so+(1−2α))‖x0−yn‖. $
|
(3.9) |
By induction, we get
$ ‖u0−vn+1‖≤n∏j=1(1−2(1−α)δ(‖vj−Fivj‖s0))s0. $
|
Similarly, it can be easily proved that $ \lVert \mathcal{F}_{i}v_n-v_n\rVert \to 0 $ as $ n \to \infty $, which implies that $ \mathcal{F}_{i_{\alpha}} $ for $ i\in\{1, 2\} $, is asymptotically regular.
Next, we demonstrate by a numerical experiment that a pair of $ \alpha $-Krasnosel'skii mappings are asymptotically regular for fix $ \alpha \in (0, 1) $.
Example 3.1. Assume $ U = (R^2, ||.||) $ with Euclidean norm and $ V = \{ u\in R^2 : \lVert u\rVert \leq1 \} $, to be a convex subset of $ U $. $ \mathcal{F}_i $ for $ i\in \{1, 2\} $ be self-mappings on $ V $, satisfying
$ F1(u1,u2)=(u1,u2)F2(u1,u2)=(u12,0) $
|
Then, clearly both $ \mathcal{F}_1 $ and $ \mathcal{F}_2 $ satisfy the condition $ (E) $ and $ F(\mathcal{F}_1\cap \mathcal{F}_2) = (0, 0) $. Now, we will show that the $ \alpha $-Krasnosel'skii mappings $ \mathcal{F}_{i_{\alpha}} $ for $ \alpha \in (\, 0, 1)\, $ and $ i\in\{1, 2\} $ are asymptotically regular.
Since $ \mathcal{F}_1 $ is the identity map, $ \alpha $- Krasnosel'skii mapping $ \mathcal{F}_{1\alpha} $ is also identity and hence asymptotically regular.
Now, we show $ \mathcal{F}_{2\alpha} $ is asymptotically regular, let $ u = (u_1, u_2) \in V $
$ F2α(u1,u2)=(1−α)(u1,u2)+αF2(u1,u2)=((1−α)u1,(1−α)u2)+α(u12,0)=(u1−αu12,(1−α)u2), $
|
$ F22α(u1,u2)=(1−α)(u1−αu12,(1−α)u2)+αF2(u1−αu12,(1−α)u2)=(x1+α2u12−3αu12,(1−α)2u2)+(αu2−α2u14,0)=(u1−αu1+α2u14,(1−α)2x2). $
|
Continuing in this manner, we get
$ fn2α(u1,u2)=((u1−α2)n,(1−α)nu2). $
|
Since $ (u_1, u_2) \in V $ and $ \alpha \in(0, 1) $, we get that $ \lim\limits_{n\to \infty}(u_1-\frac{\alpha}{2})^n = 0 $ and $ \lim\limits_{n\to \infty}(1-\alpha)^n = 0 $. Now, consider
$ limn→∞‖Fn2α(u1,u2)−Fn+12α(u1,u2)‖=supu∈Mlimn→∞‖(u1−α2)n−(u1−α2)n+1,((1−α)n−(1−α)n+1)x2‖=0. $
|
Hence, $ \mathcal{F}_{2\alpha} $ is also asymptotically regular.
Theorem 3.2. Let $ \mathcal{F}_i $ be quasi-nonexpansive self-mappings on a non-void and closed subset $ V $ of a Banach space $ U $ for $ i\in \{1, 2\} $, and satisfy condition (E) so that $ F(\mathcal{F}_1\cap \mathcal{F}_2) \neq 0 $. Then, $ F(\mathcal{F}_1\cap \mathcal{F}_2) $ is closed in $ V $. Also, if $ U $ is strictly convex, then $ F(\mathcal{F}_1 \cap \mathcal{F}_2) $ is convex. Furthermore, if $ U $ is strictly convex, $ V $ is compact, and $ \mathcal{F} $ is continuous, then for any $ s_0 \in V, \alpha \in (0, 1) $, the $ \alpha $-Krasnosel'skii sequence $ \{\mathcal{F}^{n}_{i_{\alpha}} (s_0)\}, $ converges to $ s\in F(\ \mathcal{F}_1\cap \mathcal{F}_2)\ $.
Proof. (i) We assume $ \{s_n\} \in F(\ \mathcal{F}_1\cap \mathcal{F}_2)\ $ so that $ s_n \to s\in F(\mathcal{F}_1\cap \mathcal{F}_2) $ as $ n \to \infty $. Hence, $ \mathcal{F}_{i}s_n = s_n $ for $ i\in\{1, 2\} $. Next, we show that $ \mathcal{F}_is = s $ for $ i\in \{1, 2\} $. Since $ \mathcal{F}_i $ are quasi-nonexpansive, we get
$ ‖sn−Fis‖≤‖sn−s‖fori∈{1,2}, $
|
that is, $ \mathcal{F}_is = s $ for $ i = 1, 2 $, hence $ F(\mathcal{F}_2\cap \mathcal{F}_2) $ is closed.
(ii) $ V $ is convex since $ U $ is strictly convex. Also fix $ \gamma \in (\ 0, 1)\ $ and $ u, v \in F(\mathcal{F}_1\cap \mathcal{F}_2)\ $ so that $ u\neq v $. Take $ s = \gamma u + (1-\gamma)v \in V $. Since mapping $ \mathcal{F}_i $ satisfy condition (E),
$ ‖u−Fis‖≤‖u−Fiu‖+‖u−s‖=‖u−s‖fori∈{1,2}. $
|
Similarly,
$ ‖v−Fis‖≤‖v−s‖fori∈{1,2}. $
|
Using strict convexity of $ U $, there is a $ \theta \in [\ 0, 1]\ $ so that $ \mathcal{F}_is = \theta u + (1-\theta) v $ for $ i = 1, 2 $
$ (1−θ)‖u−v‖=‖Fiu−Fis‖≤‖u−s‖=(1−γ) ‖u−v‖,fori∈{1,2}, $
|
(3.10) |
and
$ θ‖u−v‖=‖Fiv−Fis‖≤‖v−s‖=γ‖u−v‖,fori∈{1,2}. $
|
(3.11) |
From inequalities (3.10) and (3.11), we obtain
$ 1−θ≤1−γandθ≤γimplies thatθ=γ. $
|
Hence, $ \mathcal{F}_{i}s = s $ for i = 1, 2, implies $ s\in F(\mathcal{F}_1\cap \mathcal{F}_2)\ $.
(iii) Let us define $ \{ s_n\} $ by $ s_n = \mathcal{F}^{n}_{i_{\alpha}}s_0, s_0 \in V $, where $ \mathcal{F}_{i_{\alpha}}s_0 = (1-\alpha) s_0 + \alpha \mathcal{F}_is_0, \alpha\in (\ 0, 1)\ $. We have a subsequence $ \{s_{n_k}\} $ of $ \{s_n\} $ converging to some $ s\in V $, since $ V $ is compact. Using the Schauder theorem and the continuity of $ \mathcal{F}_i $, we have $ F(\mathcal{F}_1\cap \mathcal{F}_2)\ \neq\phi $. We shall demonstrate that $ s \in F(\mathcal{F}_1\cap \mathcal{F}_2) $. Let $ w_0 \in F(\mathcal{F}_1\cap \mathcal{F}_2) $, consider
$ ‖sn−w0‖=‖Fniαs0−w0‖≤‖Fn−1iαs0−w0|=‖sn−1−w0‖. $
|
Therefore, $ \{ \lVert s_n-w_0\rVert \} $ converges as it is a decreasing sequence that is bounded below by $ 0 $. Moreover, since $ \mathcal{F}_{i_{\alpha}} $ for $ i = 1, 2 $ is continuous, we have
$ ‖w0−s0‖=limk→∞‖snk+1−so‖=limk→∞‖Fiαsnk−s0‖=‖Fiαs−s0‖=‖(1−α)s+αFis−s0‖≤(1−α)‖s−s0‖+α‖Fis−s0‖fori∈{1,2}. $
|
(3.12) |
Since $ \alpha > 0 $, we get
$ ‖s−s0‖≤‖Fis−s0‖,fori∈{1,2}. $
|
(3.13) |
Since $ \mathcal{F}_i $ are quasi-nonexpansive maps, we get
$ ‖Fis−s0‖≤‖s−s0‖,fori∈{1,2}, $
|
(3.14) |
and from inequalities (3.13) and (3.14), we get
$ ‖Fis−s0‖=‖s−s0‖,fori∈{1,2}. $
|
(3.15) |
Now, from inequality (3.12), we have
$ ‖s−s0‖≤‖(1−α)s+αFis−s0‖,fori∈{1,2}≤(1−α)‖s−s0‖+α‖Fis−s0‖,fori∈{1,2}=‖s−s0‖, $
|
which implies that
$ ‖(1−α)s+αFis−s0‖=(1−α)‖s−s0‖+α‖Fis−s0‖,fori∈{1,2}. $
|
Since $ U $ is strictly convex, either $ \mathcal{F}_is-s_0 = a(s-s_0) $ for some $ a \gneq 0 $ or $ s = s_0 $. From Eq (15), it follows that $ a = 1 $, then, $ \mathcal{F}_{i}s = s $ for $ i = 1, 2 $ and $ s \in F(\mathcal{F}_1 \cap \mathcal{F}_2) $. Since $ \lim\limits_{n \to \infty} \lVert s_n-s_0\rVert $ exists and $ \{s_{nk}\} $ converges strongly to $ s $. Hence, $ \{s_n\} $ converges strongly to $ s \in F(\mathcal{F}_1 \cap \mathcal{F}_2) $.
The next conclusion for metric projection is slightly more fascinating.
Theorem 3.3. Let $ \mathcal{F}_i $ be quasi-nonexpansive self-mappings on a non-void, closed, and convex subset $ V $ of a uniformly convex Banach space $ U $ for $ i\in\{1, 2\} $, and satisfies condition (E) so that $ F(\mathcal{F}_1 \cap \mathcal{F}_2)\neq \phi $. Let $ P: U \to F(\mathcal{F}_1 \cap \mathcal{F}_2) $ be the metric projection. Then, for every $ u \in U $, the sequence $ \{P\mathcal{F}^{n}_iu\} $ for $ i = \{1, 2\} $, converges to $ s \in F(\mathcal{F}_1 \cap \mathcal{F}_2) $.
Proof. Let $ u \in V $. For $ n, m \in N $
$ ‖PFniu−Fniu‖≤‖PFmiu−Fniu‖,forn≥m,i∈{1,2}. $
|
(3.16) |
Since $ u\in F(\mathcal{F}_1\cap \mathcal{F}_2)\ $, $ n \in N $ and $ \mathcal{F}_i $ are quasi-nonexpansive maps, $ \mbox{for}\; i\in \{1, 2\} $ we have
$ ‖PFmiu−Fniu‖=‖PFmiu−FiFn−1iu‖≤‖PFmiu−Fn−1iu‖. $
|
Therefore, for $ n \geq m $, it follows that
$ ‖PFmiu−Fniu‖≤‖PFmiu−Fmiu‖,fori∈{1,2}. $
|
(3.17) |
From inequalities (3.16) and (3.17), we have
$ ‖PFniu−Fniu‖≤‖PFmiu−Fmiu‖,fori∈{1,2}, $
|
which implies that $ \lim\limits_{n \to \infty} \lVert P\mathcal{F}^{n}_iu-\mathcal{F}^{n}_iu\rVert $ exists. Taking $ \lim\limits_{n \to \infty} \lVert P\mathcal{F}^{n}_iu-\mathcal{F}^{n}_iu\rVert = l $.
If $ l = 0 $, then we have an integer $ n_0(\ \epsilon)\ $ for $ \epsilon > 0 $, satisfying
$ ‖PFniu−Fniu‖>ϵ4,fori∈{1,2}, $
|
(3.18) |
for $ n \geq n_0 $. Therefore, if $ n \geq m \geq n_0 $ and using inequalities (3.17) and (3.18), we have, for $ i \in \{1, 2\} $,
$ ‖PFniu−PFmiu‖≤‖PFniu−PFn0iu‖+‖PFn0iu−Fmiu‖≤‖PFniu−Fniu‖+‖Fniu−PFn0iu‖+‖PFmiu−Fmiu‖+‖Fmiu−PFn0iu‖≤‖PFniu−Fniu‖+‖Fn0iu−PFn0iu‖+‖PFmiu−Fmiu‖+‖Fn0iu−PFn0iu‖≤ϵ4+ϵ4+ϵ4+ϵ4=ϵ. $
|
That is, $ \{P\mathcal{F}^{n}_iu\} $ for $ i = \{1, 2\} $ is a Cauchy sequence in $ F(\mathcal{F}_1\cap \mathcal{F}_2) $. Using the completeness of $ U $ and the closedness of $ F(\mathcal{F}_1\cap \mathcal{F}_2) $ from the above theorem, $ \{P\mathcal{F}^{n}_ix\} $ for $ i = 1, 2, $ converges in $ F(\mathcal{F}_1 \cap \mathcal{F}_2) $. Taking $ l > 0 $, we claim that the sequence $ \{P\mathcal{F}^{n}_iu\} $ for $ i = 1, 2, $ is a Cauchy sequence in $ U $. Also we have, an $ \epsilon _{0} > 0 $ so that, for each $ n_0 \in N $, we have some $ r_0, s_0 \geq n_0 $ satisfying
$ ‖PFr0iu−PFs0iu‖≥ϵ0,fori∈{1,2}. $
|
Now, we choose a $ \theta > 0 $
$ (l+θ)(1−δϵ0l+θ)<θ. $
|
Let $ m_0 $ be as large as possible such that for $ q\geq m_0 $
$ l≤‖PFqiu−Fqiu‖≤l+θ. $
|
For this $ m_0 $, there exist $ q_1, q_2 $ such that $ q_1, q_2 > m_0 $ and
$ ‖PFq1iu−PFq2iu‖≥ϵ0fori∈{1,2}. $
|
Thus, for $ q_0 \geq max \{q_1, q_2\} $, we attain
$ ‖PFq1ix−Fq0ix‖≥‖PFq1ix−Fq1ix‖<l+θ, $
|
and
$ ‖PFq2ix−Fq0ix‖≥‖PFq1ix−Fq1ix‖<l+θfori∈{1,2}. $
|
Now, using the uniform convexity of $ U $, we attain
$ l≤‖PFq0ix−Fq0ix‖≤‖PFq1ix+PFq2ix2−Fq0ix‖,fori∈{1,2}≤( l+θ) (1−δϵ0l+θ)<θ, $
|
a contradiction. Hence for every $ u \in V $, the sequence $ \{P\mathcal{F}^{n}_iu\} $ for $ i = 1, 2, $ converges to some $ s \in F(\mathcal{F}_1 \cap \mathcal{F}_2) $.
We have proved some properties of common fixed points and also showed that if two mappings have common fixed points, then their $ \alpha $-Krasnosel'skii mappings are asymptotically regular. To show the superiority of our results, we have provided an example. Further, we have proved that the $ \alpha $-Krasnosel'skii sequence and its projection converge to a common fixed whose collection is closed.
Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.
The authors declare no conflict of interest.
[1] |
Ben-Simon E, Podlipsky I, Arieli A, et al. (2008) Never resting brain simultaneous representation of two alpha related processes in humans. PLoS One 3: e3984. doi: 10.1371/journal.pone.0003984
![]() |
[2] |
de Munck JC, Goncalves SI, Huijboom L, et al. (2007) The hemodynamic response of the alpha rhythm an EEG/fMRI study. Neuroimage 35: 1142-1151. doi: 10.1016/j.neuroimage.2007.01.022
![]() |
[3] | Moss RA, Moss J. (2014) The role of dynamic columns in explaining gamma-band synchronization and NMDA receptors in cognitive functions. AIMS Neurosci 1: 65-88. |
[4] | Cadonic C, Albensi BC. (2014) Oscillations and NMDA receptors their interplay create memories. AIMS Neurosci 1: 52-64. |
[5] | Pinotsis D, Friston K. (2014) Gamma oscillations and neural field DCMs can reveal cortical excitability and microstructure. AIMS Neurosci 1: 18-38. |
[6] |
Jasper HH. (1936) Cortical excitatory state and variability in human brain rhythms. Science 83:259-260. doi: 10.1126/science.83.2150.259
![]() |
[7] | Sheer DE. (1975) Behavior and brain electrical activity. New York and London: Plenum Press. |
[8] | Sheer DE. (1989) Sensory and cognitive 40-Hz event-related potentials behavioral correlates, brain function and clinical application Brain Dynamics. Berlin: Springer, pp 339-374. |
[9] |
Kulli J, Koch C. (1991) Does anesthesia cause loss of consciousness? Trends Neurosci 14: 6-10. doi: 10.1016/0166-2236(91)90172-Q
![]() |
[10] |
Ferri R, Cosentino FI, Elia M, et al. (2001) Relationship between Delta, Sigma, Beta, and Gamma EEG bands at REM sleep onset and REM sleep end. Clin Neurophysiol 112: 2046-2052. doi: 10.1016/S1388-2457(01)00656-3
![]() |
[11] |
Cantero JL, Atienza M, Madsen JR, et al. (2004) Gamma EEG dynamics in neocortex and hippocampus during human wakefulness and sleep. Neuroimage 22: 1271-1280. doi: 10.1016/j.neuroimage.2004.03.014
![]() |
[12] | Baldeweg T, Spence S, Hirsch SR, et al. (1998) Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 352: 620-621. |
[13] |
Becker C, Gramann K, Muller HJ, et al. (2009) Electrophysiological correlates of flicker-induced color hallucinations. Conscious Cogn 18: 266-276. doi: 10.1016/j.concog.2008.05.001
![]() |
[14] |
Behrendt RP. (2003) Hallucinations synchronisation of thalamocortical gamma oscillations underconstrained by sensory input. Conscious Cogn 12: 413-451. doi: 10.1016/S1053-8100(03)00017-5
![]() |
[15] |
Ffytche DH. (2008) The hodology of hallucinations. Cortex 44: 1067-1083. doi: 10.1016/j.cortex.2008.04.005
![]() |
[16] |
Spencer KM, Nestor PG, Perlmutter R, et al. (2004) Neural synchrony indexes disordered perception and cognition in schizophrenia. Proc Natl Acad Sci U S A 101: 17288-17293. doi: 10.1073/pnas.0406074101
![]() |
[17] |
Bartha R, Williamson PC, Drost DJ, et al. (1997) Measurement of glutamate and glutamine in the medial prefrontal cortex of never-treated schizophrenic patients and healthy controls by proton magnetic resonance spectroscopy. Arch Gen Psychiatr 54: 959-965. doi: 10.1001/archpsyc.1997.01830220085012
![]() |
[18] | Theberge J, Bartha R, Drost DJ, et al. (2002) Glutamate and glutamine measured with 4. 0 T proton MRS in never-treated patients with schizophrenia and healthy volunteers. Am J Psychiatr 159:1944-1946. |
[19] |
Lutz A, Greischar LL, Rawlings NB, et al. (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci USA 101: 16369-16373. doi: 10.1073/pnas.0407401101
![]() |
[20] | Joliot M, Ribary U, Llinas R. (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci U S A 91: 11748-11751. |
[21] |
Tallon-Baudry C, Bertrand O. (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3: 151-162. doi: 10.1016/S1364-6613(99)01299-1
![]() |
[22] |
Varela F, Lachaux JP, Rodriguez E, et al. (2001) The brainweb phase synchronization and large-scale integration. Nat Rev Neurosci 2: 229-239. doi: 10.1038/35067550
![]() |
[23] | Zhang ZG, Hu L, Hung YS, et al. (2012) Gamma-band oscillations in the primary somatosensory cortex, a direct and obligatory correlate of subjective pain intensity. J Neurosci 32: 7429-7438. |
[24] |
Buzsaki G, Chrobak JJ. (1995) Temporal structure in spatially organized neuronal ensembles a role for interneuronal networks. Curr Opin Neurobiol 5: 504-510. doi: 10.1016/0959-4388(95)80012-3
![]() |
[25] | Buzsaki G. (2006) Rhythms of the brain. Oxford University Press. |
[26] |
Engel AK, Roelfsema PR, Fries P, Brecht M, Singer W. (1997) Role of the temporal domain for response selection and perceptual binding. Cereb Cortex 7: 571-582. doi: 10.1093/cercor/7.6.571
![]() |
[27] |
Fries P. (2009) Neuronal gamma-band synchronization as a fundamental process in cortical computation. Annu Rev Neurosci 32: 209-224. doi: 10.1146/annurev.neuro.051508.135603
![]() |
[28] |
Gray CM, Konig P, Engel AK, et al. (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338: 334-337. doi: 10.1038/338334a0
![]() |
[29] |
Singer W. (1999) Time as coding space? Curr Opin Neurobiol 9: 189-194. doi: 10.1016/S0959-4388(99)80026-9
![]() |
[30] |
Mantini D, Perrucci MG, Del GC, et al. (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A 104: 13170-13175. doi: 10.1073/pnas.0700668104
![]() |
[31] |
Buzsaki G, Draguhn A. (2004) Neuronal oscillations in cortical networks. Science 304: 1926-1929. doi: 10.1126/science.1099745
![]() |
[32] |
Buzsaki G, Wang XJ. (2012) Mechanisms of gamma oscillations. Annu Rev Neurosci 35: 203-225. doi: 10.1146/annurev-neuro-062111-150444
![]() |
[33] |
Steriade M. (2006) Grouping of brain rhythms in corticothalamic systems. Neurosci 137: 1087-1106. doi: 10.1016/j.neuroscience.2005.10.029
![]() |
[34] |
Roux F, Uhlhaas PJ. (2014) Working memory and neural oscillations alpha-gamma versus theta-gamma codes for distinct WM information? Trends Cogn Sci 18: 16-25. doi: 10.1016/j.tics.2013.10.010
![]() |
[35] |
Uhlhaas PJ, Roux F, Singer W, et al. (2009) The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proc Natl Acad Sci U S A 106:9866-9871. doi: 10.1073/pnas.0900390106
![]() |
[36] | Woolsey TA, Van Der Loos H. (1970) The structural organization of layer IV in the somatosensory region. (SI) of mouse cerebral cortex. The description of a cortical field composed of discrete cytoarchitectonic units. Brain Res 17: 205-242. |
[37] |
Van Der Loos H. (1976) Barreloids in mouse somatosensory thalamus. Neurosci Lett 2: 1-6. doi: 10.1016/0304-3940(76)90036-7
![]() |
[38] |
Yang JW, An S, Sun JJ, et al. (2013) Thalamic network oscillations synchronize ontogenetic columns in the newborn rat barrel cortex. Cereb Cortex 23: 1299-1316. doi: 10.1093/cercor/bhs103
![]() |
[39] |
Minlebaev M, Colonnese M, Tsintsadze T, et al. (2011) Early gamma oscillations synchronize developing thalamus and cortex. Science 334: 226-229. doi: 10.1126/science.1210574
![]() |
[40] |
Pinault D, Deschenes M. (1992) Voltage-dependent 40-Hz oscillations in rat reticular thalamic neurons in vivo. Neurosci 51: 245-258. doi: 10.1016/0306-4522(92)90312-P
![]() |
[41] |
Pinault D. (2004) The thalamic reticular nucleus structure, function and concept. Brain Res Rev 46:1-31. doi: 10.1016/j.brainresrev.2004.04.008
![]() |
[42] | Mountcastle VB. (1957) Modality and topographic properties of single neurons of cat's somatic sensory cortex. J Neurophysiol 20: 408-434. |
[43] | Mountcastle VB. (1997) The columnar organization of the neocortex. Brain 120. ( Pt 4): 701-722. |
[44] |
Feldmeyer D, Brecht M, Helmchen F, et al. (2013) Barrel cortex function. Prog Neurobiol 103: 3-27. doi: 10.1016/j.pneurobio.2012.11.002
![]() |
[45] |
Horton JC, Adams DL. (2005) The cortical column a structure without a function. Philos Trans R Soc Lond B Biol Sci 360: 837-862. doi: 10.1098/rstb.2005.1623
![]() |
[46] |
Adler CM, Goldberg TE, Malhotra AK, et al. (1998) Effects of Ketamine on Thought Disorder, Working Memory, and Semantic Memory in Healthy Volunteers. Biological Psychiatr 43: 811-816. doi: 10.1016/S0006-3223(97)00556-8
![]() |
[47] |
Hetem LA, Danion JM, Diemunsch P, et al. (2000) Effect of a subanesthetic dose of ketamine on memory and conscious awareness in healthy volunteers. Psychopharmacology. (Berl) 152: 283-288. doi: 10.1007/s002130000511
![]() |
[48] | Krystal JH, Karper LP, Seibyl JP, et al. (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatr 51: 199-214. |
[49] |
Newcomer JW, Farber NB, Jevtovic-Todorovic V, et al. (1999) Ketamine-induced NMDA receptor hypofunction as a model of memory impairment and psychosis. Neuropsychopharmacology 20:106-118. doi: 10.1016/S0893-133X(98)00067-0
![]() |
[50] | Fond G, Loundou A, Rabu C, et al. (2014) Ketamine administration in depressive disorders a systematic review and meta-analysis. Psychopharmacology. (Berl). In press. |
[51] | McGirr A, Berlim MT, Bond DJ, et al. (2014) A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol Med 1-12. |
[52] |
Zarate CA, Jr. , Singh JB, Carlson PJ, et al. (2006) A randomized trial of an N-methyl-D-aspartate antagonist in treatment-resistant major depression. Arch Gen Psychiatr 63: 856-864. doi: 10.1001/archpsyc.63.8.856
![]() |
[53] | Anticevic A, Corlett PR, Cole MW, et al. (2014) NMDA Receptor Antagonist Effects on Prefrontal Cortical Connectivity Better Model Early Than Chronic Schizophrenia. Biol Psychiatr [Epub ahead of print]. |
[54] |
Driesen NR, McCarthy G, Bhagwagar Z, et al. (2013) Relationship of resting brain hyperconnectivity and schizophrenia-like symptoms produced by the NMDA receptor antagonist ketamine in humans. Mol Psychiatr 18: 1199-1204. doi: 10.1038/mp.2012.194
![]() |
[55] |
Hong LE, Summerfelt A, Buchanan RW, et al. (2010) Gamma and delta neural oscillations and association with clinical symptoms under subanesthetic ketamine. Neuropsychopharmacology 35:632-640. doi: 10.1038/npp.2009.168
![]() |
[56] | Pinault D. (2008) N-methyl d-aspartate receptor antagonists ketamine and MK-801 induce wake-related aberrant gamma oscillations in the rat neocortex. Biol Psychiatr 63: 730-735. |
[57] |
Chrobak JJ, Hinman JR, Sabolek HR. (2008) Revealing past memories proactive interference and ketamine-induced memory deficits. J Neurosci 28: 4512-4520. doi: 10.1523/JNEUROSCI.0742-07.2008
![]() |
[58] |
Kocsis B. (2012) Differential role of NR2A and NR2B subunits in N-methyl-D-aspartate receptor antagonist-induced aberrant cortical gamma oscillations. Biol Psychiatr 71: 987-995. doi: 10.1016/j.biopsych.2011.10.002
![]() |
[59] |
Ma J, Leung LS. (2007) The supramammillo-septal-hippocampal pathway mediates sensorimotor gating impairment and hyperlocomotion induced by MK-801 and ketamine in rats. Psychopharmacology (Berl) 191: 961-974. doi: 10.1007/s00213-006-0667-x
![]() |
[60] |
Hakami T, Jones NC, Tolmacheva EA, et al. (2009) NMDA receptor hypofunction leads to generalized and persistent aberrant gamma oscillations independent of hyperlocomotion and the state of consciousness. PLoS One 4: e6755. doi: 10.1371/journal.pone.0006755
![]() |
[61] |
Ehrlichman RS, Gandal MJ, Maxwell CR, et al. (2009) N-methyl-d-aspartic acid receptor antagonist-induced frequency oscillations in mice recreate pattern of electrophysiological deficits in schizophrenia. Neuroscience 158: 705-712. doi: 10.1016/j.neuroscience.2008.10.031
![]() |
[62] |
Hunt MJ, Raynaud B, Garcia R. (2006) Ketamine dose-dependently induces high-frequency oscillations in the nucleus accumbens in freely moving rats. Biol Psychiatr 60: 1206-1214. doi: 10.1016/j.biopsych.2006.01.020
![]() |
[63] |
Kulikova SP, Tolmacheva EA, Anderson P, Gaudias J, Adams BE, Zheng T, et al. (2012) Opposite effects of ketamine and deep brain stimulation on rat thalamocortical information processing. Eur J Neurosci 36: 3407-3419. doi: 10.1111/j.1460-9568.2012.08263.x
![]() |
[64] |
Molina LA, Skelin I, Gruber AJ. (2014) Acute NMDA receptor antagonism disrupts synchronization of action potential firing in rat prefrontal cortex. PLoS One 9: e85842. doi: 10.1371/journal.pone.0085842
![]() |
[65] |
Homayoun H, Moghaddam B. (2007) NMDA receptor hypofunction produces opposite effects on prefrontal cortex interneurons and pyramidal neurons. J Neurosci 27: 11496-11500. doi: 10.1523/JNEUROSCI.2213-07.2007
![]() |
[66] |
Callicott JH, Bertolino A, Mattay VS, Langheim FJ, Duyn J, Coppola R, et al. (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10:1078-1092. doi: 10.1093/cercor/10.11.1078
![]() |
[67] |
Corlett PR, Honey GD, Fletcher PC. (2007) From prediction error to psychosis ketamine as a pharmacological model of delusions. J Psychopharmacol 21: 238-252. doi: 10.1177/0269881107077716
![]() |
[68] |
Adell A, Jimenez-Sanchez L, Lopez-Gil X, et al. (2012) Is the acute NMDA receptor hypofunction a valid model of schizophrenia? Schizophr Bull 38: 9-14. doi: 10.1093/schbul/sbr133
![]() |
[69] |
Frohlich J, Van Horn JD. (2014) Reviewing the ketamine model for schizophrenia. J Psychopharmacol 28: 287-302. doi: 10.1177/0269881113512909
![]() |
[70] |
Gunduz-Bruce H. (2009) The acute effects of NMDA antagonism from the rodent to the human brain. Brain Res Rev 60: 279-286. doi: 10.1016/j.brainresrev.2008.07.006
![]() |
[71] |
Canolty RT, Knight RT. (2010) The functional role of cross-frequency coupling. Trends Cogn Sci 14:506-515. doi: 10.1016/j.tics.2010.09.001
![]() |
[72] |
Kirihara K, Rissling AJ, Swerdlow NR, et al. (2012) Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol Psychiatr 71: 873-880. doi: 10.1016/j.biopsych.2012.01.016
![]() |
[73] |
Jensen O, Colgin LL. (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11: 267-269. doi: 10.1016/j.tics.2007.05.003
![]() |
[74] |
Lisman JE, Jensen O. (2013) The theta-gamma neural code. Neuron 77: 1002-1016. doi: 10.1016/j.neuron.2013.03.007
![]() |
[75] |
Palenicek T, Fujakova M, Brunovsky M, et al. (2011) Electroencephalographic spectral and coherence analysis of ketamine in rats correlation with behavioral effects and pharmacokinetics. Neuropsychobiology 63: 202-218. doi: 10.1159/000321803
![]() |
[76] |
Tsuda N, Hayashi K, Hagihira S, et al. (2007) Ketamine, an NMDA-antagonist, increases the oscillatory frequencies of alpha-peaks on the electroencephalographic power spectrum. Acta Anaesthesiol Scand 51: 472-481. doi: 10.1111/j.1399-6576.2006.01246.x
![]() |
[77] | Caixeta FV, Cornelio AM, Scheffer-Teixeira R, et al. (2013) Ketamine alters oscillatory coupling in the hippocampus. Sci Rep 3: 2348. |
[78] |
Hiyoshi T, Kambe D, Karasawa J, et al. (2014) Differential effects of NMDA receptor antagonists at lower and higher doses on basal gamma band oscillation power in rat cortical electroencephalograms. Neuropharmacology 85: 384-396. doi: 10.1016/j.neuropharm.2014.05.037
![]() |
[79] |
Nicolas MJ, Lopez-Azcarate J, Valencia M, et al. (2011) Ketamine-induced oscillations in the motor circuit of the rat basal ganglia. PLoS One 6: e21814. doi: 10.1371/journal.pone.0021814
![]() |
[80] |
Buzsaki G. (1991) The thalamic clock emergent network properties. Neurosci 41: 351-364. doi: 10.1016/0306-4522(91)90332-I
![]() |
[81] | Friston KJ. (2002) Dysfunctional connectivity in schizophrenia. World Psychiatr 1: 66-71. |
[82] | Melillo R, Leisman G. (2009) Autistic spectrum disorders as functional disconnection syndrome. Rev Neurosci 20: 111-131. |
[83] |
de Haan W. , Pijnenburg YA, Strijers RL, et al. (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer's disease using EEG and graph theory. BMC Neurosci 10:101. doi: 10.1186/1471-2202-10-101
![]() |
[84] |
Bokde AL, Ewers M, Hampel H. (2009) Assessing neuronal networks understanding Alzheimer's disease. Prog Neurobiol 89: 125-133. doi: 10.1016/j.pneurobio.2009.06.004
![]() |
[85] |
Popescu BO, Toescu EC, Popescu LM, et al. (2009) Blood-brain barrier alterations in ageing and dementia. J Neurol Sci 283: 99-106. doi: 10.1016/j.jns.2009.02.321
![]() |
[86] |
Herrmann CS, Demiralp T. (2005) Human EEG gamma oscillations in neuropsychiatric disorders. Clin Neurophysiol 116: 2719-2733. doi: 10.1016/j.clinph.2005.07.007
![]() |
[87] |
van Deursen JA, Vuurman EF, Verhey FR, et al. (2008) Increased EEG gamma band activity in Alzheimer's disease and mild cognitive impairment. J Neural Transm 115: 1301-1311. doi: 10.1007/s00702-008-0083-y
![]() |
[88] |
Yordanova J, Banaschewski T, Kolev V, et al. (2001) Abnormal early stages of task stimulus processing in children with attention-deficit hyperactivity disorder--evidence from event-related gamma oscillations. Clin Neurophysiol 112: 1096-1108. doi: 10.1016/S1388-2457(01)00524-7
![]() |
[89] | Spencer KM, Nestor PG, Niznikiewicz MA, et al. (2003) Abnormal neural synchrony in schizophrenia. J Neurosci 23: 7407-7411. |
[90] |
Uhlhaas PJ, Singer W. (2006) Neural synchrony in brain disorders relevance for cognitive dysfunctions and pathophysiology. Neuron 52: 155-168. doi: 10.1016/j.neuron.2006.09.020
![]() |
[91] |
Whittington MA. (2008) Can brain rhythms inform on underlying pathology in schizophrenia? Biol Psychiatr 63: 728-729. doi: 10.1016/j.biopsych.2008.02.007
![]() |
[92] | Cronenwett WJ, Csernansky J. (2010) Thalamic pathology in schizophrenia. Curr Top Behav Neurosci 4: 509-528. |
[93] |
Ferrarelli F, Peterson MJ, Sarasso S, et al. (2010) Thalamic dysfunction in schizophrenia suggested by whole-night deficits in slow and fast spindles. Am J Psychiatr 167: 1339-1348. doi: 10.1176/appi.ajp.2010.09121731
![]() |
[94] |
Lisman JE, Pi HJ, Zhang Y, et al. (2010) A thalamo-hippocampal-ventral tegmental area loop may produce the positive feedback that underlies the psychotic break in schizophrenia. Biol Psychiatr 68:17-24. doi: 10.1016/j.biopsych.2010.04.007
![]() |
[95] |
Pinault D. (2011) Dysfunctional thalamus-related networks in schizophrenia. Schizophr Bull 37:238-243. doi: 10.1093/schbul/sbq165
![]() |
[96] |
Watis L, Chen SH, Chua HC, et al. (2008) Glutamatergic abnormalities of the thalamus in schizophrenia a systematic review. J Neural Transm 115: 493-511. doi: 10.1007/s00702-007-0859-5
![]() |
[97] |
Zhang Y, Su TP, Liu B, et al. (2014) Disrupted thalamo-cortical connectivity in schizophrenia a morphometric correlation analysis. Schizophr Res 153: 129-135. doi: 10.1016/j.schres.2014.01.023
![]() |
[98] |
Javitt DC. (2007) Glutamate and schizophrenia phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int Rev Neurobiol 78: 69-108. doi: 10.1016/S0074-7742(06)78003-5
![]() |
[99] |
Moghaddam B. (2003) Bringing order to the glutamate chaos in schizophrenia. Neuron 40: 881-884. doi: 10.1016/S0896-6273(03)00757-8
![]() |
[100] |
Gandal MJ, Edgar JC, Klook K, et al. (2012) Gamma synchrony towards a translational biomarker for the treatment-resistant symptoms of schizophrenia. Neuropharmacology 62: 1504-1518. doi: 10.1016/j.neuropharm.2011.02.007
![]() |
[101] |
Rolls ET, Loh M, Deco G, et al. (2008) Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat Rev Neurosci 9: 696-709. doi: 10.1038/nrn2462
![]() |
[102] |
Winterer G, Ziller M, Dorn H, et al. (2000) Schizophrenia reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 111: 837-849. doi: 10.1016/S1388-2457(99)00322-3
![]() |
[103] |
Llinas RR, Ribary U, Jeanmonod D, et al. (1999) Thalamocortical dysrhythmia A neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222-15227. doi: 10.1073/pnas.96.26.15222
![]() |
[104] |
Gonzalez-Burgos G, Lewis DA. (2008) GABA neurons and the mechanisms of network oscillations implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34: 944-961. doi: 10.1093/schbul/sbn070
![]() |
[105] |
Roopun AK, Cunningham MO, Racca C, et al. (2008) Region-specific changes in gamma and beta2 rhythms in NMDA receptor dysfunction models of schizophrenia. Schizophr Bull 34: 962-973. doi: 10.1093/schbul/sbn059
![]() |