AIMS Mathematics, 2017, 2(1): 24-27. doi: 10.3934/Math.2017.1.24.

Research article

Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Monotone Dynamical Systems with Polyhedral Order Cones and Dense Periodic Points

Department of Mathematics, University of Wisconsin, Madison WI 53706, USA

Let $X\subset \mathbb{R}^{n}$ be a set whose interior is connected and dense in $X$, ordered by a closed convex cone $K\subset \mathbb{R}^{n}$ having nonempty interior. Let $T: X\approx X$ be an order-preserving homeomorphism. The following result is proved: Assume the set of periodic points of $T$ is dense in $X$, and  $K$ is a polyhedron.  Then $T$ is periodic. 
  Article Metrics

Keywords Dynamical systems; ordered spaces; convex cones; periodic orbits

Citation: MorrisW. Hirsch. Monotone Dynamical Systems with Polyhedral Order Cones and Dense Periodic Points. AIMS Mathematics, 2017, 2(1): 24-27. doi: 10.3934/Math.2017.1.24


  • 1. R. Baire, Sur les fonctions de variables réelles, Ann. di Mat. 3 (1899), 1-123.    
  • 2. M. Hirsch and H. Smith, Monotone Dynamical Systems, Handbook of Differential Equations, volume 2, chapter 4. A. Cãnada, P. Drabek & A. Fonda, editors. Elsevier North Holland, 2005.
  • 3. S. Kaul, On pointwise periodic transformation groups, Proceedings of the American Mathematical Society 27 (1971), 391-394.
  • 4. D. Montgomery, Pointwise periodic homeomorphisms, American Journal of Mathematics 59 (1937), 118-120.
  • 5. E. Spanier, Algebraic Topology, McGraw Hill, 1966.
  • 6. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1941.
  • 7. R. Wilder, Topology of Manifolds, American Mathematical Society, 1949.


This article has been cited by

  • 1. Bas Lemmens, Onno van Gaans, Hent van Imhoff, Monotone dynamical systems with dense periodic points, Journal of Differential Equations, 2018, 10.1016/j.jde.2018.07.012

Reader Comments

your name: *   your email: *  

Copyright Info: 2017, MorrisW. Hirsch, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved