

http://www.aimspress.com/journal/Math

AIMS Mathematics, 2(1): 24-27 DOI:10.3934/Math.2017.1.24 Received: 29 November 2016 Accepted: 30 November 2016 Published: 16 December 2016

Research article

Monotone Dynamical Systems with Polyhedral Order Cones and Dense Periodic Points

Morris W. Hirsch*

Department of Mathematics, University of Wisconsin, Madison WI 53706, USA

* Correspondence: Email: mwhirsch@chorus.net

Abstract: Let $X \subset \mathbb{R}^n$ be a set whose interior is connected and dense in *X*, ordered by a closed convex cone $K \subset \mathbb{R}^n$ having nonempty interior. Let $T: X \approx X$ be an order-preserving homeomorphism. The following result is proved: Assume the set of periodic points of *T* is dense in *X*, and *K* is a polyhedron. Then *T* is periodic.

Keywords: Dynamical systems; ordered spaces; convex cones; periodic orbits

1. Introduction

The following postulates and notation are used throughout:

- $K \subset \mathbb{R}^n$ (Euclidean *n*-space) is a *solid order cone*: a closed convex cone that has nonempty interior lnt (*K*) and contains no affine line.
- \mathbb{R}^n has the (partial) order \geq determined by *K*:

$$y \ge x \iff y - x \in K,$$

referred to as the K-order.

- $X \subset \mathbb{R}^n$ is a nonempty set whose Int(X) is connected and dense in *X*.
- $T: X \approx X$ is homeomorphism that is *monotone* for the *K*-order:

$$x \ge y \implies Tx \ge Ty.$$

A point $x \in X$ has *period* k provided k is a positive integer and $T^k x = x$. The set of such points is $\mathcal{P}_k = \mathcal{P}_k(T)$, and the set of periodic points is $\mathcal{P} = \mathcal{P}(T) = \bigcup_k \mathcal{P}_k$. T is *periodic* if $X = \mathcal{P}_k$, and *pointwise periodic* if $X = \mathcal{P}$.

Our main concern is the following speculation:

Conjecture. If \mathcal{P} is dense in X, then T is periodic.

The assumptions on X show that T is periodic iff T | Int(X) is periodic. Therefore we assume hence-forth:

• *X* is connected and open \mathbb{R}^n .

We prove the conjecture under the additional assumption that *K* is a *polyhedron*, the intersection of finitely many closed affine halfspaces of \mathbb{R}^n :

Theorem 1 (MAIN). Assume K is a polyhedron, $T: X \approx X$ is monotone for the K-order, and \mathcal{P} is dense in X. Then T is periodic.

For analytic maps there is an interesting contrapositive:

Theorem 2. Assume K is a polyhedron and $T: X \approx X$ is monotone for the K-order. If T is analytic but not periodic, \mathcal{P} is nowhere dense.

Proof. As *X* is open and connected but not contained in any of the closed sets \mathcal{P}_k , analyticity implies each \mathcal{P}_k is nowhere dense. Since $\mathcal{P} = \bigcup_{k=1}^{\infty} \mathcal{P}_k$, a well known theorem of Baire [1] implies \mathcal{P} is nowhere dense.

The following result of D. MONTGOMERY [4]* is crucial for the proof of the Main Theorem:

Theorem 3 (MONTGOMERY). Every pointwise periodic homeomorphism of a connected manifold is periodic.

Notation

i, *j*, *k*, *l* denote positive integers. Points of \mathbb{R}^n are denoted by *a*, *b*, *p*, *q*, *u*, *v*, *w*, *x*, *y*, *z*. $x \leq y$ is a synonym for $y \geq x$. If $x \leq y$ and $x \neq y$ we write x < or y > x. The relations $x \ll y$ and $y \gg x$ mean $y - x \in \text{Int}(K)$. A set *S* is *totally ordered* if $x, y \in S \implies x \leq y$ or $x \geq y$. If $x \leq y$, the *order interval* [x, y] is $\{z: x \leq z \leq y\} = K_x \cap -K_y$. The translation of *K* by $x \in \mathbb{R}^n$ is $K_x := \{w + x, w \in K.\}$ The image of a set or point ξ under a mean *H* is denoted by $H\xi$ or $H(\xi)$. A set *S* is positive

The image of a set or point ξ under a map H is denoted by $H\xi$ or $H(\xi)$. A set S is *positively invariant* under H if $HS \subset S$, *invariant* if $H\xi = \xi$, and *periodically invariant* if $H^k\xi = \xi$.

2. Proof of the Main Theorem

The following four topological consequences of the standing assumptions are valid even if K is not polyhedral.

Proposition 4. Assune $p, q \in \mathcal{P}_k$ are such that

 $p \ll q$, $p, q \in \mathcal{P}_k$. $[p,q] \subset X$.

Then $T^{k}([p,q] = [p,q].$

*See also S. KAUL [3].

AIMS Mathematics

Proof. It suffices to take k = 1. Evidently $T\mathcal{P} = \mathcal{P}$, and $T[p,q] \subset [p,q]$ because T is monotone, whence $Int([p,q]) \cap \mathcal{P}$ is positively invariant under T. The conclusion follows because $Int([p,q]) \cap \mathcal{P}$ is dense in [p,q] and T is continuous.

Proposition 5. Assume $a, b \in \mathcal{P}_k, a \ll b$, and $[a, b] \subset X$. There is a compact arc $J \subset \mathcal{P}_k \cap [a, b]$ that joins a to b, and is totally ordered by \ll .[†]

Proof. An application of Zorn's Lemma yields a maximal set $J \subset [a, b] \cap P$ such that: J is totally ordered by \ll , $a = \max J$, $b = \min J$. Maximality implies J is compact and connected and $a, b \in J$, so J is an arc (WILDER [7], Theorem I.11.23).

Proposition 6. Let $M \subset X$ be a homeomorphically embedded topological manifold of dimension n - 1, with empty boundary.

(i) \mathcal{P} is dense in M.

(ii) If M is periodically invariant, it has a neighborhood base \mathcal{B} of periodically invariant open sets.

Proof. (i) *M* locally separates *X*, by Lefschetz duality [5] (or dimension theory [6]. Therefore we can choose a family \mathcal{V} of nonempty open sets in *X* that the family of sets $\mathcal{V}_M := \{V \cap M : V \in \mathcal{V}\}$ satisfies:

- \mathcal{V}_M is a neighborhood basis of M,
- each set $V \cap M$ separates V.

By Proposition 5, for each $V \in \mathcal{V}$ there is a compact arc $J_V \cap \mathcal{P} \cap V$ whose endpoints a_V, b_v lie in different components of $V \setminus M$. Since J_V is connected, it contains a point in $V \cap M \cap \mathcal{P}$. This proves (i).

(ii) With notation as above, let $B_V := [a_V, b_V] \setminus \partial[a_V, b_V]$. The desired neighborhood basis is $\mathcal{B} := \{B_V : V \in \mathcal{V}\}$.

From Propositions 4 and 6 we infer:

Proposition 7. Suppose $p, q \in \mathcal{P}$, $p \ll q$ and $[p,q] \subset X$. Then \mathcal{P} is dense in $\partial[p,q]$.

Let $\mathcal{T}(m)$ stand for the statement of Theorem 1 for the case n = m. Then $\mathcal{T}(0)$ is trivial, and we use the following inductive hypothesis:

Hypothesis (INDUCTION). $n \ge 1$ and $\mathcal{T}(n-1)$ holds.

Let $Q \subset \mathbb{R}^n$ be a compact *n*-dimensional polyhedron. Its boundary ∂Q is the union of finitely many convex compact (n - 1)-cells, the *faces* of Q. Each face F is the intersection of $\partial[p,q]$ with a unique affine hyperplane E^{n-1} . The corresponding *open face* $F^\circ := F \setminus \partial F$ is an open (n - 1)-cell in E^{n-1} . Distinct open faces are disjoint, and their union is dense and open in ∂Q .

Proposition 8. Assume $p, q \in \mathcal{P}_k$, $p \ll q$, $[p,q] \subset X$. Then $T|\partial[p,q]$ is periodic.

[†]This result is adapted from HIRSCH & SMITH [2], Theorems 5,11 & 5,15.

Proof. [p,q] is a compact, convex *n*-dimensional polyhedron, invariant under T^k (Proposition 4). By Proposition 6 applied to $M := \partial[p,q]$, there is a neighborhood base \mathcal{B} for $\partial[p,q]$ composed of periodically invariant open sets. Therefore if $F^{\circ} \subset \partial[p,q]$ is an open face of [p,q], the family of sets

$$\mathcal{B}_{F^{\circ}} := \{ W \in \mathcal{B} \colon W \subset F^{\circ} \}$$

is a neighborhood base for F° , and each $W \in \mathcal{B}_{F^{\circ}}$ is a periodically invariant open set in which \mathcal{P} is dense.

For every face F of [p,q] the Induction Hypothesis shows that $F^{\circ} \subset \mathcal{P}$. Therefore Montgomery's Theorem implies $T|F^{\circ}$ is periodic, so T|F is periodic by continuity. Since $\partial[p,q]$ is the union of the finitely many faces, it follows that $T|\partial[p,q]$ is periodic.

To complete the inductive proof of the Main Theorem, it suffices by Montgomery's theorem to prove that an arbitrary $x \in X$ is periodic. As X is open in \mathbb{R}^n and \mathcal{P} is dense in X, there is an order interval $[a, b] \subset X$ such that

$$a \ll x \ll b, \qquad a, b \in \mathcal{P}_k$$

By Proposition 5, *a* and *b* are the endpoints of a compact arc $J \subset \mathcal{P}_k \cap [a, b]$, totally ordered by \ll . Define $p, q \in J$:

$$p := \sup \{ y \in J : y \le x \}, \qquad q := \inf \{ y \in J : y \ge x \}.$$

If p = q = x then $x \in \mathcal{P}_k$. Otherwise $p \ll q$, implying $x \in \partial[p, q]$, whence $x \in \mathcal{P}$ by Proposition 8.

Conflict of Interest

The author declares no conflicts of interest in this paper.

References

- 1. R. Baire, Sur les fonctions de variables réelles, Ann. di Mat. 3 (1899), 1-123.
- 2. M. Hirsch and H. Smith, *Monotone Dynamical Systems*, Handbook of Differential Equations, volume 2, chapter 4. A. Cañada, P. Drabek & A. Fonda, editors. Elsevier North Holland, 2005.
- 3. S. Kaul, *On pointwise periodic transformation groups*, Proceedings of the American Mathematical Society **27** (1971), 391-394.
- 4. D. Montgomery, *Pointwise periodic homeomorphisms*, American Journal of Mathematics **59** (1937), 118-120.
- 5. E. Spanier, Algebraic Topology, McGraw Hill, 1966.
- 6. W. Hurewicz and H. Wallman, Dimension Theory, Princeton University Press, 1941.
- 7. R. Wilder, Topology of Manifolds, American Mathematical Society, 1949.

© 2016, M. W. Hirsch, licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

AIMS Mathematics