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Abstract: Let X ⊂ Rn be a set whose interior is connected and dense in X, ordered by a closed convex
cone K ⊂ Rn having nonempty interior. Let T : X ≈ X be an order-preserving homeomorphism. The
following result is proved: Assume the set of periodic points of T is dense in X, and K is a polyhedron.
Then T is periodic.
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1. Introduction

The following postulates and notation are used throughout:

• K ⊂ Rn (Euclidean n-space) is a solid order cone: a closed convex cone that has nonempty interior
Int (K) and contains no affine line.
• Rn has the (partial) order ≽ determined by K:

y ≽ x ⇐⇒ y − x ∈ K,

referred to as the K-order.
• X ⊂ Rn is a nonempty set whose Int (X) is connected and dense in X.
• T : X ≈ X is homeomorphism that is monotone for the K-order:

x ≽ y =⇒ T x ≽ Ty.

A point x ∈ X has period k provided k is a positive integer and T kx = x. The set of such points
is Pk = Pk(T ), and the set of periodic points is P = P(T ) =

∪
k Pk. T is periodic if X = Pk, and

pointwise periodic if X = P.

Our main concern is the following speculation:
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Conjecture. If P is dense in X, then T is periodic.

The assumptions on X show that T is periodic iff T | Int (X) is periodic. Therefore we assume hence-
forth:

• X is connected and open Rn.

We prove the conjecture under the additional assumption that K is a polyhedron, the intersection of
finitely many closed affine halfspaces of Rn:

Theorem 1 (Main). Assume K is a polyhedron, T : X ≈ X is monotone for the K-order, and P is dense
in X. Then T is periodic.

For analytic maps there is an interesting contrapositive:

Theorem 2. Assume K is a polyhedron and T : X ≈ X is monotone for the K-order. If T is analytic
but not periodic, P is nowhere dense.

Proof. As X is open and connected but not contained in any of the closed sets Pk, analyticity implies
eachPk is nowhere dense. SinceP = ∪∞k=1Pk, a well known theorem of Baire [1] impliesP is nowhere
dense.

The following result of D. Montgomery [4]∗ is crucial for the proof of the Main Theorem:

Theorem 3 (Montgomery). Every pointwise periodic homeomorphism of a connected manifold is
periodic.

Notation

i, j, k, l denote positive integers. Points of Rn are denoted by a, b, p, q, u, v,w, x, y, z.
x ≼ y is a synonym for y ≽ x. If x ≼ y and x , y we write x ≺ or y ≻ x.
The relations x ≪ y and y ≫ x mean y − x ∈ Int (K).
A set S is totally ordered if x, y ∈ S =⇒ x ≼ y or x ≽ y.
If x ≼ y, the order interval [x, y] is {z : x ≼ z ≼ y} = Kx ∩ −Ky.
The translation of K by x ∈ Rn is Kx := {w + x,w ∈ K.}
The image of a set or point ξ under a map H is denoted by Hξ or H(ξ). A set S is positively invariant

under H if HS ⊂ S , invariant if Hξ = ξ, and periodically invariant if Hkξ = ξ.

2. Proof of the Main Theorem

The following four topological consequences of the standing assumptions are valid even if K is not
polyhedral.

Proposition 4. Assune p, q ∈ Pk are such that

p ≪ q, p, q ∈ Pk. [p, q] ⊂ X.

Then T k([p, q] = [p, q].
∗See also S. Kaul [3].
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Proof. It suffices to take k = 1. Evidently TP = P, and T [p, q] ⊂ [p, q] because T is monotone,
whence Int ([p, q]) ∩ P is positively invariant under T . The conclusion follows because Int ([p, q]) ∩ P
is dense in [p, q] and T is continuous.

Proposition 5. Assume a, b ∈ Pk, a ≪ b, and [a, b] ⊂ X. There is a compact arc J ⊂ Pk ∩ [a, b] that
joins a to b, and is totally ordered by≪.†

Proof. An application of Zorn’s Lemma yields a maximal set J ⊂ [a, b] ∩ P such that: J is totally
ordered by≪, a = max J, b = min J. Maximality implies J is compact and connected and a, b ∈ J, so
J is an arc (Wilder [7], Theorem I.11.23).

Proposition 6. Let M ⊂ X be a homeomorphically embedded topological manifold of dimension n−1,
with empty boundary.

(i) P is dense in M.

(ii) If M is periodically invariant, it has a neighborhood base B of periodically invariant open sets.

Proof. (i) M locally separates X, by Lefschetz duality [5] (or dimension theory [6]. Therefore we can
choose a familyV of nonempty open sets in X that the family of setsVM := {V∩M : V ∈ V) satisfies:

• VM is a neighborhood basis of M,
• each set V ∩ M separates V .

By Proposition 5, for each V ∈ V there is a compact arc JV ∩ P ∩ V whose endpoints aV , bv lie in
different components of V \M. Since JV is connected, it contains a point in V ∩ M ∩ P. This proves
(i).

(ii) With notation as above, let BV := [aV , bV] \ ∂[aV , bV]. The desired neighborhood basis is B :={
BV : V ∈ V}.

From Propositions 4 and 6 we infer:

Proposition 7. Suppose p, q ∈ P, p ≪ q and [p, q] ⊂ X. Then P is dense in ∂[p, q].

Let T (m) stand for the statement of Theorem 1 for the case n = m. Then T (0) is trivial, and we use
the following inductive hypothesis:

Hypothesis (Induction). n ≥ 1 and T (n − 1) holds.

Let Q ⊂ Rn be a compact n-dimensional polyhedron. Its boundary ∂Q is the union of finitely many
convex compact (n − 1)-cells, the faces of Q. Each face F is the intersection of ∂[p, q] with a unique
affine hyperplane En−1. The corresponding open face F◦ := F \ ∂F is an open (n − 1)-cell in En−1.
Distinct open faces are disjoint, and their union is dense and open in ∂Q.

Proposition 8. Assume p, q ∈ Pk, p ≪ q, [p, q] ⊂ X. Then T |∂[p, q] is periodic.

†This result is adapted from Hirsch & Smith [2], Theorems 5,11 & 5,15.
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Proof. [p, q] is a compact, convex n-dimensional polyhedron, invariant under T k (Proposition 4). By
Proposition 6 applied to M := ∂[p, q], there is a neighborhood base B for ∂[p, q] composed of period-
ically invariant open sets. Therefore if F◦ ⊂ ∂[p, q] is an open face of [p, q], the family of sets

BF◦ := {W ∈ B : W ⊂ F◦}

is a neighborhood base for F◦, and each W ∈ BF◦ is a periodically invariant open set in which P is
dense.

For every face F of [p, q] the Induction Hypothesis shows that F◦ ⊂ P. Therefore Montgomery’s
Theorem implies T |F◦ is periodic, so T |F is periodic by continuity. Since ∂[p, q] is the union of the
finitely many faces, it follows that T |∂[p, q] is periodic.

To complete the inductive proof of the Main Theorem, it suffices by Montgomery’s theorem to
prove that an arbitrary x ∈ X is periodic. As X is open in Rn and P is dense in X, there is an order
interval [a, b] ⊂ X such that

a ≪ x ≪ b, a, b ∈ Pk.

By Proposition 5, a and b are the endpoints of a compact arc J ⊂ Pk ∩ [a, b], totally ordered by ≪.
Define p, q ∈ J:

p := sup {y ∈ J : y ≼ x}, q := inf {y ∈ J : y ≽ x}.
If p = q = x then x ∈ Pk. Otherwise p ≪ q, implying x ∈ ∂[p, q], whence x ∈ P by Proposition 8.
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