Citation: Masahiro Seike. Histamine suppresses T helper 17 responses mediated by transforming growth factor-β1 in murine chronic allergic contact dermatitis[J]. AIMS Allergy and Immunology, 2018, 2(4): 180-189. doi: 10.3934/Allergy.2018.4.180
[1] | Gaozhong Sun, Tongwei Zhao . Lung adenocarcinoma pathology stages related gene identification. Mathematical Biosciences and Engineering, 2020, 17(1): 737-746. doi: 10.3934/mbe.2020038 |
[2] | Shuyi Cen, Kaiyou Fu, Yue Shi, Hanliang Jiang, Jiawei Shou, Liangkun You, Weidong Han, Hongming Pan, Zhen Liu . A microRNA disease signature associated with lymph node metastasis of lung adenocarcinoma. Mathematical Biosciences and Engineering, 2020, 17(3): 2557-2568. doi: 10.3934/mbe.2020140 |
[3] | Yuan Yang, Lingshan Zhou, Xi Gou, Guozhi Wu, Ya Zheng, Min Liu, Zhaofeng Chen, Yuping Wang, Rui Ji, Qinghong Guo, Yongning Zhou . Comprehensive analysis to identify DNA damage response-related lncRNA pairs as a prognostic and therapeutic biomarker in gastric cancer. Mathematical Biosciences and Engineering, 2022, 19(1): 595-611. doi: 10.3934/mbe.2022026 |
[4] | Bin Ma, Lianqun Cao, Yongmin Li . A novel 10-gene immune-related lncRNA signature model for the prognosis of colorectal cancer. Mathematical Biosciences and Engineering, 2021, 18(6): 9743-9760. doi: 10.3934/mbe.2021477 |
[5] | Ji-Ming Wu, Wang-Ren Qiu, Zi Liu, Zhao-Chun Xu, Shou-Hua Zhang . Integrative approach for classifying male tumors based on DNA methylation 450K data. Mathematical Biosciences and Engineering, 2023, 20(11): 19133-19151. doi: 10.3934/mbe.2023845 |
[6] | Jinqi He, Wenjing Zhang, Faxiang Li, Yan Yu . Development of metastasis-associated seven gene signature for predicting lung adenocarcinoma prognosis using single-cell RNA sequencing data. Mathematical Biosciences and Engineering, 2021, 18(5): 5959-5977. doi: 10.3934/mbe.2021298 |
[7] | Mengyang Han, Xiaoli Wang, Yaqi Li, Jianjun Tan, Chunhua Li, Wang Sheng . Identification of coagulation-associated subtypes of lung adenocarcinoma and establishment of prognostic models. Mathematical Biosciences and Engineering, 2023, 20(6): 10626-10658. doi: 10.3934/mbe.2023470 |
[8] | Yanping Xie, Zhaohui Dong, Junhua Du, Xiaoliang Zang, Huihui Guo, Min Liu, Shengwen Shao . The relationship between mouse lung adenocarcinoma at different stages and the expression level of exosomes in serum. Mathematical Biosciences and Engineering, 2020, 17(2): 1548-1557. doi: 10.3934/mbe.2020080 |
[9] | Ziyu Wu, Sugui Wang, Qiang Li, Qingsong Zhao, Mingming Shao . Identification of 10 differently expressed lncRNAs as prognostic biomarkers for prostate adenocarcinoma. Mathematical Biosciences and Engineering, 2020, 17(3): 2037-2047. doi: 10.3934/mbe.2020108 |
[10] | Siqi Hu, Fang Wang, Junjun Yang, Xingxiang Xu . Elevated ADAR expression is significantly linked to shorter overall survival and immune infiltration in patients with lung adenocarcinoma. Mathematical Biosciences and Engineering, 2023, 20(10): 18063-18082. doi: 10.3934/mbe.2023802 |
Baló's concentric sclerosis (BCS) was first described by Marburg [1] in 1906, but became more widely known until 1928 when the Hungarian neuropathologist Josef Baló published a report of a 23-year-old student with right hemiparesis, aphasia, and papilledema, who at autopsy had several lesions of the cerebral white matter, with an unusual concentric pattern of demyelination [2]. Traditionally, BCS is often regarded as a rare variant of multiple sclerosis (MS). Clinically, BCS is most often characterized by an acute onset with steady progression to major disability and death with months, thus resembling Marburg's acute MS [3,4]. Its pathological hallmarks are oligodendrocyte loss and large demyelinated lesions characterized by the annual ring-like alternating pattern of demyelinating and myelin-preserved regions. In [5], the authors found that tissue preconditioning might explain why Baló lesions develop a concentric pattern. According to the tissue preconditioning theory and the analogies between Baló's sclerosis and the Liesegang periodic precipitation phenomenon, Khonsari and Calvez [6] established the following chemotaxis model
$ ˜uτ=DΔX˜u⏟diffusion ofactivated macrophages−∇X⋅(˜χ˜u(ˉu−˜u)∇˜v)⏟chemoattractant attractssurrounding activated macrophages+μ˜u(ˉu−˜u)⏟production of activated macrophages,−˜ϵΔX˜v⏟diffusion of chemoattractant=−˜α˜v+˜β˜w⏟degradation∖production of chemoattractant,˜wτ=κ˜uˉu+˜u˜u(ˉw−˜w)⏟destruction of oligodendrocytes, $ | (1.1) |
where $ \tilde{u} $, $ \tilde{v} $ and $ \tilde{w} $ are, respectively, the density of activated macrophages, the concentration of chemoattractants and density of destroyed oligodendrocytes. $ \bar{u} $ and $ \bar{w} $ represent the characteristic densities of macrophages and oligodendrocytes respectively.
By numerical simulation, the authors in [6,7] indicated that model (1.1) only produces heterogeneous concentric demyelination and homogeneous demyelinated plaques as $ \chi $ value gradually increases. In addition to the chemoattractant produced by destroyed oligodendrocytes, "classically activated'' M1 microglia also can release cytotoxicity [8]. Therefore we introduce a linear production term into the second equation of model (1.1), and establish the following BCS chemotaxis model with linear production term
$ {˜uτ=DΔX˜u−∇X⋅(˜χ˜u(ˉu−˜u)∇˜v)+μ˜u(ˉu−˜u),−˜ϵΔX˜v+˜α˜v=˜β˜w+˜γ˜u,˜wτ=κ˜uˉu+˜u˜u(ˉw−˜w). $ | (1.2) |
Before going to details, let us simplify model (1.2) with the following scaling
$ u=˜uˉu,v=μˉu˜ϵD˜v,w=˜wˉw,t=μˉuτ,x=√μˉuDX,χ=˜χ˜ϵμ,α=D˜α˜ϵμˉu,β=˜βˉw,γ=˜γˉu,δ=κμ, $ |
then model (1.2) takes the form
$ {ut=Δu−∇⋅(χu(1−u)∇v)+u(1−u),x∈Ω,t>0,−Δv+αv=βw+γu,x∈Ω,t>0,wt=δu1+uu(1−w),x∈Ω,t>0,∂ηu=∂ηv=0,x∈∂Ω,t>0,u(x,0)=u0(x),w(x,0)=w0(x),x∈Ω, $ | (1.3) |
where $ \Omega\subset \mathbb{R}^{n}\; (n\geq 1) $ is a smooth bounded domain, $ \eta $ is the outward normal vector to $ \partial \Omega $, $ \partial_{\eta} = \partial/\partial \eta $, $ \delta $ balances the speed of the front and the intensity of the macrophages in damaging the myelin. The parameters $ \chi, \; \alpha $ and $ \delta $ are positive constants as well as $ \beta, \; \gamma $ are nonnegative constants.
If $ \delta = 0 $, then model (1.3) is a parabolic-elliptic chemotaxis system with volume-filling effect and logistic source. In order to be more line with biologically realistic mechanisms, Hillen and Painter [9,10] considered the finite size of individual cells-"volume-filling'' and derived volume-filling models
$ {ut=∇⋅(Du(q(u)−q′(u)u)∇u−q(u)uχ(v)∇v)+f(u,v),vt=DvΔv+g(u,v). $ | (1.4) |
$ q(u) $ is the probability of the cell finding space at its neighbouring location. It is also called the squeezing probability, which reflects the elastic properties of cells. For the linear choice of $ q(u) = 1-u $, global existence of solutions to model (1.4) in any space dimension are investigated in [9]. Wang and Thomas [11] established the global existence of classical solutions and given necessary and sufficient conditions for spatial pattern formation to a generalized volume-filling chemotaxis model. For a chemotaxis system with generalized volume-filling effect and logistic source, the global boundedness and finite time blow-up of solutions are obtained in [12]. Furthermore, the pattern formation of the volume-filling chemotaxis systems with logistic source and both linear diffusion and nonlinear diffusion are shown in [13,14,15] by the weakly nonlinear analysis. For parabolic-elliptic Keller-Segel volume-filling chemotaxis model with linear squeezing probability, asymptotic behavior of solutions is studied both in the whole space $ \mathbb{R}^{n} $ [16] and on bounded domains [17]. Moreover, the boundedness and singularity formation in parabolic-elliptic Keller-Segel volume-filling chemotaxis model with nonlinear squeezing probability are discussed in [18,19].
Very recently, we [20] investigated the uniform boundedness and global asymptotic stability for the following chemotaxis model of multiple sclerosis
$ \left\{ut=Δu−∇⋅(χ(u)∇v)+u(1−u),χ(u)=χu1+u,x∈Ω,t>0,τvt=Δv−βv+αw+γu,x∈Ω,t>0,wt=δu1+uu(1−w),x∈Ω,t>0, \right. $ |
subject to the homogeneous Neumann boundary conditions.
In this paper, we are first devoted to studying the local existence and uniform boundedness of the unique classical solution to system (1.3) by using Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory. Then we discuss that exponential asymptotic stability of the positive equilibrium point to system (1.3) by constructing Lyapunov function.
Although, in the pathological mechanism of BCS, the initial data in model (1.3) satisfy $ 0 < u_{0}(x)\leq\; 1, w_{0}(x) = 0 $, we mathematically assume that
$ {u0(x)∈C0(ˉΩ)with0≤,≢u0(x)≤1inΩ,w0(x)∈C2+ν(ˉΩ)with0<ν<1and0≤w0(x)≤1inΩ. $ | (1.5) |
It is because the condition (1.5) implies $ u(x, t_0) > 0 $ for any $ t_0 > 0 $ by the strong maximum principle.
The following theorems give the main results of this paper.
Theorem 1.1. Assume that the initial data $ (u_{0}(x), w_{0}(x)) $ satisfy the condition (1.5). Then model (1.3) possesses a unique global solution $ (u(x, t), v(x, t), w(x, t)) $ satisfying
$ u(x,t)∈C0(ˉΩ×[0,∞))∩C2,1(ˉΩ×(0,∞)),v(x,t)∈C0((0,∞),C2(ˉΩ)),w(x,t)∈C2,1(ˉΩ×[0,∞)), $ | (1.6) |
and
$ 0 \lt u(x, t)\leq 1, \; \; 0\leq v(x, t)\leq \frac{\beta+\gamma}{\alpha}, \; \; w_{0}(x)\leq w(x, t)\leq 1, \; \; \mathrm{in}\; \bar{\Omega}\times(0, \infty). $ |
Moreover, there exist a $ \nu\in(0, 1) $ and $ M > 0 $ such that
$ ‖u‖C2+ν,1+ν/2(ˉΩ×[1,∞))+‖v‖C0([1,∞),C2+ν(ˉΩ))+‖w‖Cν,1+ν/2(ˉΩ×[1,∞))≤M. $ | (1.7) |
Theorem 1.2. Assume that $ \beta \geq 0, \; \gamma\geq 0, \; \beta+\gamma > 0 $ and
$ χ<{min{2√2αβ,2√2αγ},β>0,γ>0,2√2αβ,β>0,γ=0,2√2αγ,β=0,γ>0. $ | (1.8) |
Let $ (u, v, w) $ be a positive classical solution of the problem (1.3), (1.5). Then
$ ‖u(⋅,t)−u∗‖L∞(Ω)+‖v(⋅,t)−v∗‖L∞(Ω)+‖w(⋅,t)−w∗‖L∞(Ω)→0,ast→∞. $ | (1.9) |
Furthermore, there exist positive constants $ \lambda = \lambda(\chi, \alpha, \gamma, \delta, n) $ and $ C = C(|\Omega|, \chi, \alpha, \beta, \gamma, \delta) $ such that
$ ‖u−u∗‖L∞(Ω)≤Ce−λt,‖v−v∗‖L∞(Ω)≤Ce−λt,‖w−w∗‖L∞(Ω)≤Ce−λt,t>0, $ | (1.10) |
where $ (u^{\ast}, v^{\ast}, w^{\ast}) = (1, \frac{\beta+\gamma}{\alpha}, 1) $ is the unique positive equilibrium point of the model (1.3).
The paper is organized as follows. In section 2, we prove the local existence, the boundedness and global existence of a unique classical solution. In section 3, we firstly establish the uniform convergence of the positive global classical solution, then discuss the exponential asymptotic stability of positive equilibrium point in the case of weak chemotactic sensitivity. The paper ends with a brief concluding remarks.
The aim of this section is to develop the existence and boundedness of a global classical solution by employing Neumann heat semigroup arguments, Banach fixed point theorem, parabolic Schauder estimate and elliptic regularity theory.
Proof of Theorem 1.1 (ⅰ) Existence. For $ p\in (1, \infty) $, let $ A $ denote the sectorial operator defined by
$ Au: = -\Delta u \; \mathrm{for}\; u\in D(A): = \Big\{\varphi\in W^{2, p}(\Omega)\Big|\frac{\partial}{\partial \eta}\varphi\Big|_{\partial\Omega} = 0\Big\}. $ |
$ \lambda_{1} > 0 $ denote the first nonzero eigenvalue of $ -\Delta $ in $ \Omega $ with zero-flux boundary condition. Let $ A_{1} = -\Delta+\alpha $ and $ X^{l} $ be the domains of fractional powers operator $ A^{l}, \; l\geq 0 $. From the Theorem 1.6.1 in [21], we know that for any $ p > n $ and $ l\in(\frac{n}{2p}, \frac{1}{2}) $,
$ ‖z‖L∞(Ω)≤C‖Al1z‖Lp(Ω)forallz∈Xl. $ | (2.1) |
We introduce the closed subset
$ S: = \left\{u\in X\big| \|u\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1\right\} $ |
in the space $ X: = C^{0}([0, T];C^{0}(\bar{\Omega})) $, where $ R $ is a any positive number satisfying
$ \|u_{0}(x)\|_{L^{\infty}(\Omega)}\leq R $ |
and $ T > 0 $ will be specified later. Note $ F(u) = \frac{u}{1+u} $, we consider an auxiliary problem with $ F(u) $ replaced by its extension $ \tilde{F}(u) $ defined by
$ \tilde{F}(u) = {F(u)uifu≥0,−F(−u)(−u)ifu<0. $ |
Notice that $ \tilde{F}(u) $ is a smooth globally Lipshitz function. Given $ \hat{u}\in S $, we define $ \Psi\hat{u} = u $ by first writing
$ w(x,t)=(w0(x)−1)e−δ∫t0˜F(ˆu)ˆuds+1,x∈Ω,t>0, $ | (2.2) |
and
$ w_{0}\leq w(x, t)\leq 1, \; \; x\in\Omega, \; t \gt 0, $ |
then letting $ v $ solve
$ {−Δv+αv=βw+γˆu,x∈Ω,t∈(0,T),∂ηv=0,x∈∂Ω,t∈(0,T), $ | (2.3) |
and finally taking $ u $ to be the solution of the linear parabolic problem
$ \left\{ut=Δu−χ∇⋅(ˆu(1−ˆu)∇v)+ˆu(1−ˆu),x∈Ω,t∈(0,T),∂ηu=0,x∈∂Ω,t∈(0,T),u(x,0)=u0(x),x∈Ω. \right. $ |
Applying Agmon-Douglas-Nirenberg Theorem [22,23] for the problem (2.3), there exists a constant $ C $ such that
$ ‖v‖W2p(Ω)≤C(β‖w‖Lp(Ω)+γ‖ˆu‖Lp(Ω))≤C(β|Ω|1p+γ(R+1)) $ | (2.4) |
for all $ t\in(0, T) $. From a variation-of-constants formula, we define
$ \Psi(\hat{u}) = e^{t\Delta}u_{0}-\chi\int^{t}_{0}e^{(t-s)\Delta}\nabla\cdot\left(\hat{u}(1-\hat{u})\nabla v(s)\right)ds+\int^{t}_{0}e^{(t-s)\Delta}\hat{u}(s)(1-\hat{u}(s))ds. $ |
First we shall show that for $ T $ small enough
$ \|\Psi(\hat{u})\|_{L^{\infty}((0, T);L^{\infty}(\Omega))}\leq R+1 $ |
for any $ \hat{u}\in S $. From the maximum principle, we can give
$ ‖etΔu0‖L∞(Ω)≤‖u0‖L∞(Ω), $ | (2.5) |
and
$ ∫t0‖etΔˆu(s)(1−ˆu(s))‖L∞(Ω)ds≤∫t0‖ˆu(s)(1−ˆu(s))‖L∞(Ω)ds≤(R+1)(R+2)T $ | (2.6) |
for all $ t\in(0, T) $. We use inequalities (2.1) and (2.4) to estimate
$ χ∫t0‖e(t−s)Δ∇⋅(ˆu(1−ˆu)∇v(s))‖L∞(Ω)ds≤C∫t0(t−s)−l‖et−s2Δ∇⋅(ˆu(1−ˆu)∇v(s))‖Lp(Ω)ds≤C∫t0(t−s)−l−12‖(ˆu(1−ˆu)∇v(s)‖Lp(Ω)ds≤CT12−l(R+1)(R+2)(β|Ω|1p+γ(R+1)) $ | (2.7) |
for all $ t\in(0, T) $. This estimate is attributed to $ T < 1 $ and the inequality in [24], Lemma 1.3 iv]
$ \| e^{t\Delta}\nabla z\|_{L^{p}(\Omega)}\leq C_{1}(1+t^{-\frac{1}{2}})e^{-\lambda_{1}t}\| z\|_{L^{p}(\Omega)}\; \mathrm{for\; all}\; \; z\in C^{\infty}_{c}(\Omega). $ |
From inequalities (2.5), (2.6) and (2.7) we can deduce that $ \Psi $ maps $ S $ into itself for $ T $ small enough.
Next we prove that the map $ \Psi $ is a contractive on $ S $. For $ \hat{u}_{1}, \hat{u}_{2}\in S $, we estimate
$ ‖Ψ(ˆu1)−Ψ(ˆu2)‖L∞(Ω)≤χ∫t0(t−s)−l−12‖[ˆu2(s)(1−ˆu2(s))−ˆu1(s)(1−ˆu1(s))]∇v2(s)‖Lp(Ω)ds+χ∫t0‖ˆu1(s)(1−ˆu1(s))(∇v1(s)−∇v2(s))‖Lp(Ω)ds+∫t0‖e(t−s)Δ[ˆu1(s)(1−ˆu1(s))−ˆu2(s)(1−ˆu2(s))]‖L∞(Ω)ds≤χ∫t0(t−s)−l−12(2R+1)‖ˆu1(s)−ˆu2(s)‖X‖∇v2(s)‖Lp(Ω)ds+χ∫t0(R+1)(R+2)(β‖w1(s)−w2(s)‖Lp(Ω)+γ‖ˆu1(s)−ˆu2(s)‖Lp(Ω))ds+∫t0(2R+1)‖ˆu1(s)−ˆu2(s)‖Xds≤χ∫t0(t−s)−l−12(2R+1)‖ˆu1(s)−ˆu2(s)‖X‖∇v2(s)‖Lp(Ω)ds+2βδχ∫t0(R+1)(R+2)t‖ˆu1(s)−ˆu2(s)‖Lp(Ω)+γ‖ˆu1(s)−ˆu2(s)‖Lp(Ω)ds+∫t0(2R+1)‖ˆu1(s)−ˆu2(s)‖Xds≤(CχT12−l(2R+1)(β|Ω|1p+γ(R+1))+2βδχT(R2+3R+γ+2)+T(2R+1))‖ˆu1(s)−ˆu2(s)‖X. $ |
Fixing $ T\in(0, 1) $ small enough such that
$ \left(C\chi T^{\frac{1}{2}-l}(2R+1)(\beta|\Omega|^{\frac{1}{p}}+\gamma (R+1))+2\beta\delta \chi T(R^{2}+3R+\gamma+2)+T(2R+1)\right)\leq \frac{1}{2}. $ |
It follows from the Banach fixed point theorem that there exists a unique fixed point of $ \Psi $.
(ⅱ) Regularity. Since the above of $ T $ depends on $ \|u_{0}\|_{L^{\infty}(\Omega)} $ and $ \|w_{0}\|_{L^{\infty}(\Omega)} $ only, it is clear that $ (u, v, w) $ can be extended up to some maximal $ T_{\max}\in(0, \infty] $. Let $ Q_{T} = \Omega \times (0, T] $ for all $ T\in (0, T_{\max}) $. From $ u\in C^{0}(\bar{Q}_{T}) $, we know that $ w\in C^{0, 1}(\bar{Q}_{T}) $ by the expression (2.2) and $ v\in C^{0}([0, T], W_{p}^{2}(\Omega)) $ by Agmon-Douglas-Nirenberg Theorem [22,23]. From parabolic $ L^{p} $-estimate and the embedding relation $ W_{p}^{1}(\Omega)\hookrightarrow C^{\nu}(\bar{\Omega}), \; p > n $, we can get $ u\in W^{2, 1}_{p}(Q_{T}) $. By applying the following embedding relation
$ W2,1p(QT)↪Cν,ν/2(ˉQT),p>n+22, $ | (2.8) |
we can derive $ u(x, t)\in C^{\nu, \nu/2}(\bar{Q}_{T}) $ with $ 0 < \nu\leq 2-\frac{n+2}{p} $. The conclusion $ w\in C^{\nu, 1+\nu/2}(\bar{Q}_{T}) $ can be obtained by substituting $ u\in C^{\nu, \nu/2}(\bar{Q}_{T}) $ into the formulation (2.2). The regularity $ u\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) $ can be deduced by using further bootstrap argument and the parabolic Schauder estimate. Similarly, we can get $ v\in C^{0}((0, T), C^{2+\nu}(\bar{\Omega})) $ by using Agmon-Douglas-Nirenberg Theorem [22,23]. From the regularity of $ u $ we have $ w\in C^{2+\nu, 1+\nu/2}(\bar{Q}_{T}) $.
Moreover, the maximal principle entails that $ 0 < u(x, t)\leq 1 $, $ 0\leq v(x, t)\leq\frac{\beta+\gamma}{\alpha} $. It follows from the positivity of $ u $ that $ \tilde{F}(u) = F(u) $ and because of the uniqueness of solution we infer the existence of the solution to the original problem.
(ⅲ) Uniqueness. Suppose $ (u_{1}, v_{1}, w_{1}) $ and $ (u_{2}, v_{2}, w_{2}) $ are two deferent solutions of model $ (1.3) $ in $ \Omega\times [0, T] $. Let $ U = u_{1}-u_{2} $, $ V = v_{1}-v_{2} $, $ W = w_{1}-w_{2} $ for $ t\in (0, T) $. Then
$ 12ddt∫ΩU2dx+∫Ω|∇U|2dx≤χ∫Ω|u1(1−u1)−u2(1−u2)|∇v1||∇U|+u2(1−u2)|∇V||∇U|dx+∫Ω|u1(1−u1)−u2(1−u2)||U|dx≤χ∫Ω|U||∇v1||∇U|+14|∇V||∇U|dx+∫Ω|U|2dx≤∫Ω|∇U|2dx+χ232∫Ω|∇V|2dx+χ2K2+22∫Ω|U|2dx, $ | (2.9) |
where we have used that $ |\nabla v_{1}|\leq K $ results from $ \nabla v_{1}\in C^{0}([0, T], C^{0}(\bar{\Omega})). $
Similarly, by Young inequality and $ w_{0}\leq w_{1}\leq 1 $, we can estimate
$ ∫Ω|∇V|2dx+α2∫Ω|V|2dx≤β2α∫Ω|W|2dx+γ2α∫Ω|U|2dx, $ | (2.10) |
and
$ ddt∫ΩW2dx≤δ∫Ω|U|2+|W|2dx. $ | (2.11) |
Finally, adding to the inequalities (2.9)–(2.11) yields
$ \frac{d}{dt}\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\leq C\left(\int_{\Omega}U^{2}dx+\int_{\Omega}W^{2}dx\right)\; \mathrm{for\; all}\; t \in (0, T). $ |
The results $ U\equiv 0 $, $ W\equiv0 $ in $ \Omega\times(0, T) $ are obtained by Gronwall's lemma. From the inequality (2.10), we have $ V\equiv 0 $. Hence $ (u_{1}, v_{1}, w_{1}) = (u_{2}, v_{2}, w_{2}) $ in $ \Omega\times(0, T) $.
(ⅳ) Uniform estimates. We use the Agmon-Douglas-Nirenberg Theorem [22,23] for the second equation of the model (1.3) to get
$ ‖v‖C0([t,t+1],W2p(Ω))≤C(‖u‖Lp(Ω×[t,t+1])+‖w‖Lp(Ω×[t,t+1]))≤C2 $ | (2.12) |
for all $ t\geq 1 $ and $ C_{2} $ is independent of $ t $. From the embedded relationship $ W_{p}^{1}(\Omega)\hookrightarrow C^{0}({\bar{\Omega}}), \; p > n $, the parabolic $ L^{p} $-estimate and the estimation (2.12), we have
$ \|u\|_{W_{p}^{2, 1}(\Omega\times[t, t+1])}\leq C_{3} $ |
for all $ t\geq 1 $. The estimate $ \|u\|_{C^{\nu, \frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{4} $ for all $ t\geq 1 $ obtained by the embedded relationship (2.8). We can immediately compute $ \|w\|_{C^{\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{5} $ for all $ t\geq 1 $ according to the regularity of $ u $ and the specific expression of $ w $. Further, bootstrapping argument leads to $ \|v\|_{C^{0}([t, t+1], C^{2+\nu}(\bar{\Omega}))}\leq C_{6} $ and $ \|u\|_{C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times [t, t+1])}\leq C_{7} $ for all $ t\geq 1 $. Thus the uniform estimation (1.7) is proved.
Remark 2.1. Assume the initial data $ 0 < u_{0}(x)\leq 1 $ and $ w_{0}(x) = 0 $. Then the BCS model (1.3) has a unique classical solution.
In this section we investigate the global asymptotic stability of the unique positive equilibrium point $ (1, \frac{\beta+\gamma}{\alpha}, 1) $ to model (1.3). To this end, we first introduce following auxiliary problem
$ {uϵt=Δuϵ−∇⋅(uϵ(1−uϵ)∇vϵ)+uϵ(1−uϵ),x∈Ω,t>0,−Δvϵ+αvϵ=βwϵ+γuϵ,x∈Ω,t>0,wϵt=δu2ϵ+ϵ1+uϵ(1−wϵ),x∈Ω,t>0,∂ηuϵ=∂ηvϵ=0,x∈∂Ω,t>0,uϵ(x,0)=u0(x),wϵ(x,0)=w0(x),x∈Ω. $ | (3.1) |
By a similar proof of Theorem 1.1, we get that the problem (3.1) has a unique global classical solution $ (u_{\epsilon}, v_{\epsilon}, w_{\epsilon}) $, and there exist a $ \nu\in(0, 1) $ and $ M_{1} > 0 $ which is independent of $ \epsilon $ such that
$ ‖uϵ‖C2+ν,1+ν/2(ˉΩ×[1,∞))+‖vϵ‖C2+ν,1+ν/2(ˉΩ×[1,∞))+‖wϵ‖Cν,1+ν/2(ˉΩ×[1,∞))≤M1. $ | (3.2) |
Then, motivated by some ideas from [25,26], we construct a Lyapunov function to study the uniform convergence of homogeneous steady state for the problem (3.1).
Let us give following lemma which is used in the proof of Lemma 3.2.
Lemma 3.1. Suppose that a nonnegative function $ f $ on $ (1, \infty) $ is uniformly continuous and $ \int_{1}^{\infty}f(t)dt < \; \infty $. Then $ f(t)\rightarrow 0 $ as $ t\rightarrow \infty. $
Lemma 3.2. Assume that the condition (1.8) is satisfied. Then
$ ‖uϵ(⋅,t)−1‖L2(Ω)+‖vϵ(⋅,t)−v∗‖L2(Ω)+‖wϵ(⋅,t)−1‖L2(Ω)→0,t→∞, $ | (3.3) |
where $ v^{\ast} = \frac{\beta+\gamma}{\alpha} $.
Proof We construct a positive function
$ E(t): = \int_{\Omega}(u_{\varepsilon}-1-\ln u_{\epsilon}) +\frac{1}{2\delta\epsilon}\int_{\Omega}(w_{\epsilon}-1)^{2}, \; \; t \gt 0. $ |
From the problem (3.1) and Young's inequality, we can compute
$ ddtE(t)≤χ24∫Ω|∇vϵ|2dx−∫Ω(uϵ−1)2dx−∫Ω(wϵ−1)2dx,t>0. $ | (3.4) |
We multiply the second equations in system (3.1) by $ v_{\epsilon}-v^{\ast} $, integrate by parts over $ \Omega $ and use Young's inequality to obtain
$ ∫Ω|∇vϵ|2dx≤γ22α∫Ω(uϵ−1)2dx+β22α∫Ω(wϵ−1)2dx,t>0, $ | (3.5) |
and
$ ∫Ω(vϵ−v∗)2dx≤2γ2α2∫Ω(uϵ−1)2dx+2β2α2∫Ω(wϵ−1)2dx,t>0. $ | (3.6) |
Substituting inequality (3.5) into inequality (3.4) to get
$ ddtE(t)≤−C8(∫Ω(uϵ−1)2dx+∫Ω(wϵ−1)2dx),t>0, $ |
where $ C_{8} = \min\left\{1-\frac{\chi^{2}\beta^{2}}{8\alpha}, 1-\frac{\chi^{2}\gamma^{2}}{8\alpha}\right\} > 0. $
Let $ f(t): = \int_{\Omega}(u_{\epsilon}-1)^{2}+(w_{\epsilon}-1)^{2}dx $. Then
$ \int_{1}^{\infty}f(t)dt\leq \frac{E(1)}{C_{8}} \lt \infty, \; \; t \gt 1. $ |
It follows from the uniform estimation $ (3.2) $ and the Arzela-Ascoli theorem that $ f(t) $ is uniformly continuous in $ (1, \infty) $. Applying Lemma 3.1, we have
$ ∫Ω(uϵ(⋅,t)−1)2+(wϵ(⋅,t)−1)2dx→0,t→∞. $ | (3.7) |
Combining inequality (3.6) and the limit (3.7) to obtain
$ \int_{\Omega}(v_{\epsilon}(\cdot, t)-v^{\ast})^{2}dx \rightarrow 0, \; \; t\rightarrow \infty. $ |
Proof of Theorem 1.2 As we all known, each bounded sequence in $ C^{2+\nu, 1+\frac{\nu}{2}}(\bar{\Omega}\times[1, \infty)) $ is precompact in $ C^{2, 1}(\bar{\Omega}\times[1, \infty)) $. Hence there exists some subsequence $ \{u_{\epsilon_{n}}\}_{n = 1}^{\infty} $ satisfying $ \epsilon_{n}\rightarrow0 $ as $ n\rightarrow \infty $ such that
$ \lim\limits_{n\rightarrow \infty}\|u_{\epsilon_{n}}-u_{\ast}\|_{C^{2, 1}(\bar{\Omega}\times[1, \infty))} = 0. $ |
Similarly, we can get
$ \lim\limits_{n\rightarrow \infty}\|v_{\epsilon_{n}}-v_{\ast}\|_{C^{2}(\bar{\Omega})} = 0, $ |
and
$ \lim\limits_{n\rightarrow \infty}\|w_{\epsilon_{n}}-w_{\ast}\|_{C^{0, 1}(\bar{\Omega}\times[1, \infty))} = 0. $ |
Combining above limiting relations yields that $ (u_{\ast}, v_{\ast}, w_{\ast}) $ satisfies model (1.3). The conclusion $ (u_{\ast}, v_{\ast}, w_{\ast}) = (u, v, w) $ is directly attributed to the uniqueness of the classical solution of the model (1.3). Furthermore, according to the conclusion, the strong convergence (3.3) and Diagonal line method, we can deduce
$ ‖u(⋅,t)−1‖L2(Ω)+‖v(⋅,t)−v∗‖L2(Ω)+‖w(⋅,t)−1‖L2(Ω)→0,t→∞. $ | (3.8) |
By applying Gagliardo-Nirenberg inequality
$ ‖z‖L∞≤C‖z‖2/(n+2)L2(Ω)‖z‖n/(n+2)W1,∞(Ω),z∈W1,∞(Ω), $ | (3.9) |
comparison principle of ODE and the convergence (3.8), the uniform convergence (1.9) is obtained immediately.
Since $ \lim_{t\rightarrow \infty}\|u(\cdot, t)-1\|_{L^{\infty}(\Omega)} = 0 $, so there exists a $ t_{1} > 0 $ such that
$ u(x,t)≥12forallx∈Ω,t>t1. $ | (3.10) |
Using the explicit representation formula of $ w $
$ w(x, t) = (w_{0}(x)-1)e^{-\delta\int_{0}^{t}F(u)uds}+1, \; \; x\in\Omega, \; t \gt 0 $ |
and the inequality (3.10), we have
$ ‖w(⋅,t)−1‖L∞(Ω)≤e−δ6(t−t1),t>t1. $ | (3.11) |
Multiply the first two equations in model (1.3) by $ u-1 $ and $ v-v^{\ast} $, respectively, integrate over $ \Omega $ and apply Cauchy's inequality, Young's inequality and the inequality (3.10), to find
$ ddt∫Ω(u−1)2dx≤χ232∫Ω|∇v|2dx−∫Ω(u−1)2dx,t>t1. $ | (3.12) |
$ ∫Ω|∇v|2dx+α2∫Ω(v−v∗)2dx≤β2α∫Ω(w−1)2dx+γ2α∫Ω(u−1)2dx,t>0. $ | (3.13) |
Combining the estimations (3.11)–(3.13) leads us to the estimate
$ ddt∫Ω(u−1)2dx≤(χ2γ232α−1)∫Ω(u−1)2dx+χ2β232αe−δ3(t−t1),t>t1. $ |
Let $ y(t) = \int_{\Omega}(u-1)^{2}dx $. Then
$ y'(t)\leq \left(\frac{\chi^{2}\gamma^{2}}{32\alpha}-1\right)y(t) +\frac{\chi^{2}\beta^{2}}{32\alpha}e^{-{\frac{\delta}{3}(t-t_{1})}}, \; \; t \gt t_{1}. $ |
From comparison principle of ODE, we get
$ y(t)\leq \left(y(t_{1})-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right) e^{-\left(1-\frac{\chi^{2}\gamma^{2}}{32\alpha}\right)(t-t_{1})} +\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}e^{-\frac{\delta}{3}(t-t_{1})}, \; \; t \gt t_{1}. $ |
This yields
$ ∫Ω(u−1)2dx≤C9e−λ2(t−t1),t>t1, $ | (3.14) |
where $ \lambda_{2} = \min\{1-\frac{\chi^{2}\gamma^{2}}{32\alpha}, \frac{\delta}{3}\} $ and $ C_{9} = \max\left\{|\Omega|-\frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}, \frac{3\chi^{2}\beta^{2}}{32\alpha(3-\delta)-\chi^{2}\gamma^{2}}\right\} $.
From the inequalities (3.11), (3.13) and (3.14), we derive
$ ∫Ω(v−β+γα)2dx≤C10e−λ2(t−t1),t>t1, $ | (3.15) |
where $ C_{10} = \max\left\{\frac{2\gamma^{2}}{\alpha^{2}}C_{9}, \frac{2\beta^{2}}{\alpha^{2}}\right\} $. By employing the uniform estimation (1.7), the inequalities (3.9), (3.14) and (3.15), the exponential decay estimation (1.10) can be obtained.
The proof is complete.
In this paper, we mainly study the uniform boundedness of classical solutions and exponential asymptotic stability of the unique positive equilibrium point to the chemotactic cellular model (1.3) for Baló's concentric sclerosis (BCS). For model (1.1), by numerical simulation, Calveza and Khonsarib in [7] shown that demyelination patterns of concentric rings will occur with increasing of chemotactic sensitivity. By the Theorem 1.1 we know that systems (1.1) and (1.2) are {uniformly} bounded and dissipative. By the Theorem 1.2 we also find that the constant equilibrium point of model (1.1) is exponentially asymptotically stable if
$ \tilde{\chi} \lt \frac{2}{\bar{w}\tilde{\beta}} \sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}, $ |
and the constant equilibrium point of the model (1.2) is exponentially asymptotically stable if
$ \tilde{\chi} \lt 2\sqrt{\frac{2D\mu\tilde{\alpha}\tilde{\epsilon}}{\bar{u}}}\min \left\{\frac{1}{\bar{w}\tilde{\beta}}, \frac{1}{\bar{u}\tilde{\gamma}}\right\}. $ |
According to a pathological viewpoint of BCS, the above stability results mean that if chemoattractive effect is weak, then the destroyed oligodendrocytes form a homogeneous plaque.
The authors would like to thank the editors and the anonymous referees for their constructive comments. This research was supported by the National Natural Science Foundation of China (Nos. 11761063, 11661051).
We have no conflict of interest in this paper.
[1] | Kim H, Kim JR, Kang H, et al. (2014) 7,8,4'-Trihyroxyisoflavone attenuates DNCB-induced atopic dermatitis-like symptoms in NC/Nga mice. PLoS One 29: e104938. |
[2] |
Kitagaki H, Fujisawa S, Watanabe K, et al. (1995) Immediate-type hypersensitivity response followed by a late reaction is induced by repeated epicutaneous application of contact sensitizing agents in mice. J Invest Dermatol 105: 749–755. doi: 10.1111/1523-1747.ep12325538
![]() |
[3] | Yamaura K, Shimada M, Ueno K (2011) Anthocyanins from bilberry (Vaccinium myrtillus L.) alleviate pruritus in a mouse model of chronic allergic contact dermatitis. Pharmacognosy Res 3: 173–177. |
[4] |
Boothe WD, Tarbox JA, Tarbox MB (2017) Atopic dermatitis: Pathophysiology. Adv Exp Med Biol 1027: 21–37. doi: 10.1007/978-3-319-64804-0_3
![]() |
[5] |
Lin L, Xie M, Chen X, et al. (2018) Toll-like receptor 4 attenuates a murine model of atopic dermatitis through inhibition of langerin-positive DCs migration. Exp Dermatol 27: 1015–1022. doi: 10.1111/exd.13698
![]() |
[6] |
Liu L, Guo D, Liang Q, et al. (2015) The efficacy of sublingual immunotherapy with Dermatophagoides farinae vaccine in a murine atopic dermatitis model. Clin Exp Allergy 45: 815–822. doi: 10.1111/cea.12417
![]() |
[7] |
Stander S, Steinhoff M (2002) Pathophysiology of pruritus in atopic dermatitis: An overview. Exp Dermatol 11: 12–24. doi: 10.1034/j.1600-0625.2002.110102.x
![]() |
[8] |
Seike M, Takata T, Ikeda M, et al. (2005) Histamine helps development of eczematous lesions in experimental contact dermatitis in mice. Arch Dermatol Res 297: 68–74. doi: 10.1007/s00403-005-0569-5
![]() |
[9] |
Seike M, Furuya K, Omura M, et al. (2010) Histamine H4 receptor antagonist ameliorates chronic allergic contact dermatitis induced by repeated challenge. Allergy 65: 319–326. doi: 10.1111/j.1398-9995.2009.02240.x
![]() |
[10] |
Matsushita A, Seike M, Okawa H, et al. (2012) Advantage of histamine H4 receptor antagonist usage with H1 receptor antagonist for the treatment of murine allergic contact dermatitis. Exp Dermatol 21: 714–715. doi: 10.1111/j.1600-0625.2012.01559.x
![]() |
[11] |
Ohsawa Y, Hirasawa N (2012) The antagonism of histamine H1 and H4 receptors ameliorates chronic allergic dermatitis via anti-pruritic and anti-inflammatory effects in NC/Nga mice. Allergy 67: 1014–1022. doi: 10.1111/j.1398-9995.2012.02854.x
![]() |
[12] |
Liang SC, Tan X, Luxenberg DP, et al. (2006) Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J Exp Med 203: 2271–2279. doi: 10.1084/jem.20061308
![]() |
[13] |
Yi T, Chen Y, Wang L, et al. (2009) Reciprocal differentiation and tissue-specific pathogenesis of Th1, Th2 and Th17 cells in graft-versus-host disease. Blood 114: 3101–3112. doi: 10.1182/blood-2009-05-219402
![]() |
[14] |
Koga C, Kabashima K, Shiraishi N, et al. (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J Invest Dermatol 128: 2625–2630. doi: 10.1038/jid.2008.111
![]() |
[15] |
Matsushita A, Seike M, Hagiwara T, et al. (2014) Close relationship between T helper (Th)17 and Th2 response in murine allergic contact dermatitis. Clin Exp Dermatol 39: 924–931. doi: 10.1111/ced.12425
![]() |
[16] |
Ohtsu H, Tanaka S, Terui T, et al. (2001) Mice lacking histidine decarboxylase exhibit abnormal mast cells. FEBS Lett 502: 53–56. doi: 10.1016/S0014-5793(01)02663-1
![]() |
[17] |
Tamura T, Matsubara M, Takada C (2004) Effects of olopatadine hydrochloride, antihistamine drug, on skin inflammation induced by repeated topical application of oxazolone in mice. Brit J Dermatol 151: 1133–1142. doi: 10.1111/j.1365-2133.2004.06172.x
![]() |
[18] |
Kim JY, Jeong MS, Park MK, et al. (2014) Time-dependent progression from the acute to chronic phases in atopic dermatitis induced by epicutaneous allergen stimulation in NC/Nga mice. Exp Dermatol 23: 53–57. doi: 10.1111/exd.12297
![]() |
[19] |
Ohtsu H, Kuramasu K, Tanaka S, et al. (2002) Plasma extravasation induced by dietary supplemented histamine in histamine-free mice. Eur J Immunol 32: 1698–1708. doi: 10.1002/1521-4141(200206)32:6<1698::AID-IMMU1698>3.0.CO;2-7
![]() |
[20] |
Hamada R, Seike M, Kamijima R, et al. (2006) Neuronal conditions of spinal cord in dermatitis are improved by olopatadine. Eur J Pharmacol 547: 45–51. doi: 10.1016/j.ejphar.2006.06.058
![]() |
[21] |
Tamaka K, Seike M, Hagiwara T, et al. (2015) Histamine suppresses regulatory T cells mediated by TGF-β in murine chronic contact dermatitis. Exp Dermatol 24: 280–284. doi: 10.1111/exd.12644
![]() |
[22] |
Nakae S, Komiyama Y, Nambu A, et al. (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17: 375–387. doi: 10.1016/S1074-7613(02)00391-6
![]() |
[23] |
Zhao Y, Balato A, Fishelevich R, et al. (2009) Th17/Tc17 infiltration and associated cytokine gene expression in elicitation phase of allergic contact dermatitis. Brit J Dermatol 161: 1301–1306. doi: 10.1111/j.1365-2133.2009.09400.x
![]() |
[24] | Kim D, McAlees JW, Bischoff LJ, et al. (2018) Combined administration of anti-IL-13 and anti-IL-17A at individually sub-therapeutic doses limits asthma-like symptoms in a mouse model of Th2/Th17 high asthma. Clin Exp Allergy, 24. |
[25] |
Bian R, Tang J, Hu L, et al. (2018) (E)-phenethyl 3-(3,5-dihydroxy-4-isopropylphenyl) acrylate gel improves DNFB-induced allergic contact hypersensitivity via regulating the balance of Th1/Th2/T17/Treg cell subsets. Int Immunopharmacol 65: 8–15. doi: 10.1016/j.intimp.2018.09.032
![]() |
[26] |
Wu R, Zeng J, Yuan J, et al. (2018) MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J Clin Invest 128: 2551–2568. doi: 10.1172/JCI97426
![]() |
[27] |
Orciani M, Campanati A, Caffarini M, et al. (2017) T helper (Th)1, Th17 and Th2 imbalance in mesenchymal stem cells of adult patients with atopic dermatitis: at the origin of the problem. Brit J Dermatol 176: 1569–1576. doi: 10.1111/bjd.15078
![]() |
[28] |
Harrington LE, Hatton RD, Mangan PR, et al. (2005) Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineage. Nat Immunol 6: 1123–1132. doi: 10.1038/ni1254
![]() |
[29] |
Mangan PR, Harrington LE, O'Quinn DB, et al. (2006) Transforming growth factor-beta induces development of the TH17 lineage. Nature 441: 231–234. doi: 10.1038/nature04754
![]() |
1. | Lu Xu, Chunlai Mu, Qiao Xin, Global boundedness and asymptotic behavior of solutions for a quasilinear chemotaxis model of multiple sclerosis with nonlinear signal secretion, 2023, 28, 1531-3492, 1215, 10.3934/dcdsb.2022118 |