[1]
|
Bunker A, Magarkar A, Viitala T (2016) Rational design of liposomal drug delivery systems, a review: combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BBA Biomembranes 1858: 2334–2352. doi: 10.1016/j.bbamem.2016.02.025
|
[2]
|
Mak IW, Evaniew N, Ghert M (2014) Lost in translation: animal models and clinical trials in cancer treatment. Am J Transl Res 6: 114–118.
|
[3]
|
Kopecek J (2010) Biomaterials and drug delivery: past, present, and future. Mol Pharm 7: 922–925. doi: 10.1021/mp1001813
|
[4]
|
Goldstein DB (2003) Pharmacogenetics in the laboratory and the clinic. N Engl J Med 348: 553–556. doi: 10.1056/NEJMe020173
|
[5]
|
Uetrecht J (2003) Screening for the potential of a drug candidate to cause idiosyncratic drug reactions. Drug Discov Today 8: 832–837. doi: 10.1016/S1359-6446(03)02816-2
|
[6]
|
Lindon JC, Nicholson JK, Holmes E, et al. (2003) Contemporary issues in toxicology the role of metabonomics in toxicology and its evaluation by the COMET project. Toxicol Appl Pharm 187: 137–146.
|
[7]
|
Shaw LM, Kaplan B, Kaufman D (1996) Toxic effects of immunosuppressive drugs: mechanisms and strategies for controlling them. Clin Chem 42: 1316–1321.
|
[8]
|
Serajuddin A (1999) Solid dispersion of poorly water-soluble drugs: early promises, subsequent problems, and recent breakthroughs. J Pharm Sci 88: 1058–1066. doi: 10.1021/js980403l
|
[9]
|
Brodie BB (1962) Difficulties in extrapolating data on metabolism of drugs from animal to man. Clin Pharm Th 3: 374–380. doi: 10.1002/cpt196233374
|
[10]
|
Dedrick RL, Flessner MF (1997) Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer I 89: 480–487.
|
[11]
|
Bach PB (2009) Limits on medicare's ability to control rising spending on cancer drugs. N Engl J Med 360: 626–633. doi: 10.1056/NEJMhpr0807774
|
[12]
|
Vermeire E, Hearnshaw H, Van Royen P, et al. (2001) Patient adherence to treatment: three decades of research: a comprehensive review. J Clin Pharm Ther 26: 331–342. doi: 10.1046/j.1365-2710.2001.00363.x
|
[13]
|
Cho EC, Glaus C, Chen J, et al. (2010) Inorganic nanoparticle-based contrast agents for molecular imaging. Trends Mol Med 16: 561–573. doi: 10.1016/j.molmed.2010.09.004
|
[14]
|
Dobrucki LW, Pan D, Smith AM (2015) Multiscale imaging of nanoparticle drug delivery. Curr Drug Targets 16: 560–570. doi: 10.2174/1389450116666150202163022
|
[15]
|
Garcia J, Tang T, Louie AY (2015) Nanoparticle-based multimodal PET/MRI probes. Nanomedicine 10: 1343–1359. doi: 10.2217/nnm.14.224
|
[16]
|
Janib SM, Moses AS, MacKay JA (2010) Imaging and drug delivery using theranostic nanoparticles. Adv Drug Deliver Rev 62: 1052–1063. doi: 10.1016/j.addr.2010.08.004
|
[17]
|
Llovet JM, Real MI, Montaña X, et al. (2002) Arterial embolisation or chemoembolisation versus symptomatic treatment in patients with unresectable hepatocellular carcinoma: a randomised controlled trial. Lancet 359: 1734–1739. doi: 10.1016/S0140-6736(02)08649-X
|
[18]
|
Zhou X, Tang Z, Wang J, et al. (2014) Doxorubicin-eluting beads versus conventional transarterialchemoembolization for the treatment of hepatocellular carcinoma: a meta-analysis. Int J Clin Exp Med 7: 3892–3903.
|
[19]
|
Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4: 548–556. doi: 10.1016/S1470-2045(03)01194-X
|
[20]
|
King I, Bermudes D, Lin S, et al. (2004) Tumor-targeted salmonella expressing cytosine deaminase as an anticancer agent. Hum Gene Ther 13: 1225–1233.
|
[21]
|
Low KB, Ittensohn M, Le T, et al. (1999) Lipid a mutant salmonella with suppressed virulence and TNF-α induction retain tumor-targeting in vivo. Nat Biotechnol 17: 37–41.
|
[22]
|
Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted salmonella as a novel anticancer vector. Cancer Res 57: 4537–4544.
|
[23]
|
Schlechte H, Elbe B (1988) Recombinant plasmid DNA variation of clostridium oncolyticum- model experiments of cancerostatic gene transfer. Cent Sheet Bacteriol Microbiol Hyg Ser A 268: 347–356.
|
[24]
|
Sasaki T, Fujimori M, Hamaji Y, et al. (2006) Genetically engineered bifidobacterium longum for tumor-targeting enzyme-prodrug therapy of autochthonous mammary tumors in rats. Cancer Sci 97: 649–657. doi: 10.1111/j.1349-7006.2006.00221.x
|
[25]
|
Panteli JT, Forbes NS (2016) Engineered bacteria detect spatial profiles in glucose concentration within solid tumor cell masses. Biotechnol Bioeng 113: 2474–2484. doi: 10.1002/bit.26006
|
[26]
|
Hosseinidoust Z, Mostaghaci B, Yasa O, et al. (2016) Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv Drug Deliver Rev 106: 27–44. doi: 10.1016/j.addr.2016.09.007
|
[27]
|
Akin D, Sturgis J, Ragheb K, et al. (2007) Bacteria-mediated delivery of nanoparticles and cargo into cells. Nat Nanotechnol 2: 441–449. doi: 10.1038/nnano.2007.149
|
[28]
|
Edwards MR, Carlsen RW, Zhuang J, et al. (2014) Swimming characterization of serratia marcescens for bio-hybrid micro-robotics. J MicroBio Robot 9: 47–60. doi: 10.1007/s12213-014-0072-1
|
[29]
|
Zhuang J, Carlsen RW, Sitti M (2015) pH-taxis of biohybrid microsystems. Sci Rep 5: 11403–11415. doi: 10.1038/srep11403
|
[30]
|
Lee JB, Hong J, Bonner DK, et al. (2012) Self-assembled RNA interference microsponges for efficient siRNA delivery. Nat Mater 11: 316–322. doi: 10.1038/nmat3253
|
[31]
|
Koudelka KJ, Pitek AS, Manchester M, et al. (2015) Virus-based nanoparticles as versatile nanomachines. Annu Rev Virol 2: 379–401. doi: 10.1146/annurev-virology-100114-055141
|
[32]
|
Douglas T, Young M (2006) Viruses: making friends with old foes. Science 312: 873–875. doi: 10.1126/science.1123223
|
[33]
|
Esfandiari N, Arzanani MK, Soleimani M, et al. (2015) A new application of plant virus nanoparticles as drug delivery in breast cancer. Tumor Biol 37: 1229–1236.
|
[34]
|
Cheng F, Tsvetkova IB, Khuong YL, et al. (2013) The packaging of different cargo into enveloped viral nanoparticles. Mol Pharm 10: 51–58. doi: 10.1021/mp3002667
|
[35]
|
Steinmetz NF, Mertens ME, Taurog RE, et al. (2010) Potato virus x as a novel platform for potential biomedical applications. Nano Lett 10: 305–312. doi: 10.1021/nl9035753
|
[36]
|
Aljabali AAA, Shukla S, Lomonossoff GP, et al. (2013) CPMV-DOX delivers. Mol Pharm 10: 3–10. doi: 10.1021/mp3002057
|
[37]
|
Galaway FA, Stockley PG (2013) MS2 viruslike particles: a robust, semisynthetic targeted drug delivery platform. Mol Pharm 10: 59–68. doi: 10.1021/mp3003368
|
[38]
|
Choi KM, Choi SH, Jeon H, et al. (2011) Chimeric capsid protein as a nanocarrier for siRNA delivery: stability and cellular uptake of encapsulated siRNA. Acs Nano 5: 8690–8699. doi: 10.1021/nn202597c
|
[39]
|
Choi KM, Kim K, Kwon IC, et al. (2013) Systemic delivery of siRNA by chimeric capsid protein: tumor targeting and RNAi activity in vivo. Mol Pharm 10: 18–25. doi: 10.1021/mp300211a
|
[40]
|
Kim KR, Kim DR, Lee T, et al. (2013) Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells. Chem Commun 49: 2010–2012. doi: 10.1039/c3cc38693g
|
[41]
|
Jiang Q, Song C, Nangreave J, et al. (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134: 13396–13403. doi: 10.1021/ja304263n
|
[42]
|
Charoenphol P, Bermudez H (2014) Design and application of multifunctional DNA nanocarriers for therapeutic delivery. Acta Biomater 10: 1683–1691.
|
[43]
|
Kumar V, Palazzolo S, Bayda S, et al. (2016) DNA nanotechnology for cancer therapy. Theranostics 6: 710–725. doi: 10.7150/thno.14203
|
[44]
|
Angell C, Xie S, Zhang L, et al. (2016) DNA nanotechnology for precise control over drug delivery and gene therapy. Small 12: 1117–1132. doi: 10.1002/smll.201502167
|
[45]
|
Taylor AI, Beuron F, Peak CSY, et al. (2016) Nanostructures from synthetic genetic polymers. Chembiochem 17: 1107–1110. doi: 10.1002/cbic.201600136
|
[46]
|
Kim KR, Kim HY, Lee YD, et al. (2016) Self-assembled mirror DNA nanostructures for tumor-specific delivery of anticancer drugs. J Control Release 243: 121–131. doi: 10.1016/j.jconrel.2016.10.015
|
[47]
|
Kim KR, Lee T, Kim BS, et al. (2014) Utilizing the bioorthogonal base-pairing system of l-DNA to design ideal DNA nanocarriers for enhanced delivery of nucleic acid cargos. Chem Sci 5: 1533–1537. doi: 10.1039/C3SC52601A
|
[48]
|
Bangham AD, Standish MM, Watkins JC (1965) Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 13: 238–IN27. doi: 10.1016/S0022-2836(65)80093-6
|
[49]
|
Allen TM, Cullis PR (2004) Drug delivery systems: entering the mainstream. Science 303: 1818–1822. doi: 10.1126/science.1095833
|
[50]
|
Pattni BS, Chupin VV, Torchilin VP (2015) New developments in liposomal drug delivery. Chem Rev 115: 10938–10966. doi: 10.1021/acs.chemrev.5b00046
|
[51]
|
Leung SJ, Romanowski M (2012) Light-activated content release from liposomes. Theranostics 2: 1020–1036. doi: 10.7150/thno.4847
|
[52]
|
Ng LT, Yuba E, Kono K (2009) Modification of liposome surface with pH-responsive polyampholytes for the controlled-release of drugs. Res Chem Intermediat 35: 1015–1025. doi: 10.1007/s11164-009-0089-6
|
[53]
|
Obata Y, Tajima S, Takeoka S (2010) Evaluation of pH-responsive liposomes containing amino acid-based zwitterionic lipids for improving intracellular drug delivery in vitro and in vivo. J Control Release 142: 267–276. doi: 10.1016/j.jconrel.2009.10.023
|
[54]
|
Landon CD, Park JY, Needham D, et al. (2011) Nanoscale drug delivery and hyperthermia: the materials design and preclinical and clinical testing of low temperature-sensitive liposomes used in combination with mild hyperthermia in the treatment of local cancer. Open Nanomed J 3: 38–64.
|
[55]
|
Stubbs M, McSheehy PM, Griffiths JR (1999) Causes and consequences of acidic pH in tumors: a magnetic resonance study. Adv Enzyme Regul 39: 13–30. doi: 10.1016/S0065-2571(98)00018-1
|
[56]
|
Zhang J, Tao W, Chen Y, et al. (2015) Doxorubicin-loaded star-shaped copolymer PLGA-vitamin E tpgs nanoparticles for lung cancer therapy. J Mater Sci Mater M 26: 165. doi: 10.1007/s10856-015-5498-z
|
[57]
|
Kocer A (2007) A remote controlled valve in liposomes for triggered liposomal release. J Liposome Res 17: 219–225. doi: 10.1080/08982100701528203
|
[58]
|
Kocer A, Walko M, Bulten E, et al. (2006) Rationally designed chemical modulators convert a bacterial channel protein into a pH-sensory valve. Angew Chem Int Edit 45: 3126–3130. doi: 10.1002/anie.200503403
|
[59]
|
Kocer A, Walko M, Meijberg W, et al. (2005) A light-actuated nanovalve derived from a channel protein. Science 309: 755–758. doi: 10.1126/science.1114760
|
[60]
|
Pacheco TJ, Mukherjee N, Walko M, et al. (2015) Image guided drug release from pH-sensitive Ion channel-functionalized stealth liposomes into an in vivo glioblastoma model. Nanomedicine 11: 1345–1354.
|
[61]
|
Shriver LP, Koudelka KJ, Manchester M (2009) Viral nanoparticles associate with regions of inflammation and blood brain barrier disruption during CNS infection. J Neuroimmunol 211: 66–72. doi: 10.1016/j.jneuroim.2009.03.015
|
[62]
|
Rae CS, Khor IW, Wang Q, et al. (2005) Systemic trafficking of plant virus nanoparticles in mice via the oral route. Virology 343: 224–235. doi: 10.1016/j.virol.2005.08.017
|
[63]
|
Lewis JD, Destito G, Zijlstra A, et al. (2006) Viral nanoparticles as tools for intravital vascular imaging. Nat Med 12: 354–360. doi: 10.1038/nm1368
|
[64]
|
Leong HS, Steinmetz NF, Ablack A, et al. (2010) Intravital imaging of embryonic and tumor neovasculature using viral nanoparticles. Nat Protoc 5: 1406–1417. doi: 10.1038/nprot.2010.103
|
[65]
|
Manchester M, Singh P (2006) Virus-based nanoparticles (VNPs): platform technologies for diagnostic imaging. Adv Drug Deliver Rev 58: 1505–1522. doi: 10.1016/j.addr.2006.09.014
|
[66]
|
Cheng F, Mukhopadhyay S (2011) Generating enveloped virus-like particles with in vitro assembled cores. Virology 413: 153–160. doi: 10.1016/j.virol.2011.02.001
|
[67]
|
Weissleder R, Mahmood U (2001) Molecular imaging. Radiology 219: 316–333. doi: 10.1148/radiology.219.2.r01ma19316
|
[68]
|
Bao G, Mitragotri S, Tong S (2013) Multifunctional nanoparticles for drug delivery and molecular imaging. Annu Rev Biomed Eng 15: 253–282. doi: 10.1146/annurev-bioeng-071812-152409
|
[69]
|
Ding H, Wu F (2012) Image guided biodistribution of drugs and drug delivery. Theranostics 2: 1037–1039. doi: 10.7150/thno.5321
|
[70]
|
Brys AK, Gowda R, Loriaux DB, et al. (2016) Nanotechnology-based strategies for combating toxicity and resistance in melanoma therapy. Biotechnol Adv 34: 565–577. doi: 10.1016/j.biotechadv.2016.01.004
|
[71]
|
Gowda R, Jones NR, Banerjee S, et al. (2013) Use of nanotechnology to develop multi-drug inhibitors for cancer therapy. J Nanomed Nanotechnol 4: 184.
|
[72]
|
Medina FJL, Giulianotti MA, Welmaker GS, et al. (2013) Shifting from the single to the multitarget paradigm in drug discovery. Drug Discov Today 18: 495–501. doi: 10.1016/j.drudis.2013.01.008
|
[73]
|
Yuan Y, Cai T, Xia X, et al. (2016) Nanoparticle delivery of anticancer drugs overcomes multidrug resistance in breast cancer. Drug Deliv 23: 3350–3357. doi: 10.1080/10717544.2016.1178825
|
[74]
|
Zheng H, Fridkin M, Youdim M (2014) From single target to multitarget/network therapeutics in Alzheimer's therapy. Pharmaceuticals 7: 113–135. doi: 10.3390/ph7020113
|
[75]
|
Pawar S, Shevalkar G, Vavia P (2016) Glucosamine-anchored doxorubicin-loaded targeted nano-niosomes: pharmacokinetic, toxicity and pharmacodynamic evaluation. J Drug Target 24: 730–743.
|
[76]
|
Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33: 941–951. doi: 10.1038/nbt.3330
|
[77]
|
Shin TH, Choi Y, Kim S, et al. (2015) Recent advances in magnetic nanoparticle-based multi-modal imaging. Chem Soc Rev 44: 4501–4516. doi: 10.1039/C4CS00345D
|
[78]
|
Johnsen KB, Moos T (2016) Revisiting nanoparticle technology for blood-brain barrier transport: unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release 222: 32–46. doi: 10.1016/j.jconrel.2015.11.032
|
[79]
|
Grabrucker AM, Ruozi B, Belletti D, et al. (2016) Nanoparticle transport across the blood brain barrier. Tissue Barriers 4: e1153568–e1153571. doi: 10.1080/21688370.2016.1153568
|
[80]
|
Ho D, Wang C-HK, Chow EKH (2015) Nanodiamonds: the intersection of nanotechnology, drug development, and personalized medicine. Sci Adv 1: e1500439–e1500439.
|
[81]
|
Webb S (1988) The physics of medical imaging, CRC Press.
|
[82]
|
Farncombe T, Iniewsky K (2013) Medical imaging: technology ad applications, CRC Press, 732.
|
[83]
|
Caravan P, Ellison JJ, McMurry TJ, et al. (1999) Gadolinium(III) chelates as MRI contrast agents: structure, dynamics, and applications. Chem Rev 99: 2293–2352. doi: 10.1021/cr980440x
|
[84]
|
Pavel DG, Zimmer M, Patterson VN (1977) In vivo labeling of red blood cells with 99mTc: a new approach to blood pool visualization. J Nucl Med 18: 305–308.
|
[85]
|
Hahn MA, Singh AK, Sharma P, et al. (2011) Nanoparticles as contrast agents for in-vivo bioimaging: current status and future perspectives. Anal Bioanal Chem 399: 3–27. doi: 10.1007/s00216-010-4207-5
|
[86]
|
Chakravarty R, Hong H, Cai W (2014) Positron emission tomography image-guided drug delivery: current status and future perspectives. Mol Pharm 11: 3777–3797. doi: 10.1021/mp500173s
|
[87]
|
de Smet M, Langereis S, van den Bosch S et al. (2013) SPECT/CT imaging of temperature-sensitive liposomes for MR-image guided drug delivery with high intensity focused ultrasound. J Control Release 169: 82–90.
|
[88]
|
Gao X, Cui Y, Levenson RM, et al. (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22: 969–976. doi: 10.1038/nbt994
|
[89]
|
Weissleder R, Tung CH, Mahmood U, et al. (1999) In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol 17: 375–378. doi: 10.1038/7933
|
[90]
|
Calle D, Negri V, Ballesteros P, et al. (2015) Magnetoliposomes loaded with poly-unsaturated fatty acids as novel theranostic anti-inflammatory formulations. Theranostics 5: 489–503. doi: 10.7150/thno.10069
|
[91]
|
Heinle SK, Noblin J, Goree BP, et al. (2000) Assessment of myocardial perfusion by harmonic power doppler imaging at rest and during adenosine stress: comparison with (99 m) Tc-sestamibi SPECT imaging. Circulation 102: 55–60. doi: 10.1161/01.CIR.102.1.55
|
[92]
|
Urtasun RC, Parliament MB, McEwan AJ, et al. (1996) Measurement of hypoxia in human tumours by non-invasive spect imaging of iodoazomycin arabinoside. Brit J Cancer Suppl 27: S209–S212.
|
[93]
|
Leitha T, Glaser C, Pruckmayer M, et al. (1998) Technetium-99m-MIBI in primary and recurrent head and neck tumors: contribution of bone SPECT image fusion. J Nucl Med 39: 1166–1171.
|
[94]
|
Tharp K, Israel O, Hausmann J, et al. (2004) Impact of 131I-SPECT/CT images obtained with an integrated system in the follow-up of patients with thyroid carcinoma. Eur J Nucl Med Mol I 31: 1435–1442.
|
[95]
|
Fukuyama H, Ouchi Y, Matsuzaki S, et al. (1997) Brain functional activity during gait in normal subjects: a SPECT study. Neurosci Lett 228: 183–186. doi: 10.1016/S0304-3940(97)00381-9
|
[96]
|
Rudin M, Weissleder R (2003) Molecular imaging in drug discovery and development. Nat Rev Drug Discov 2: 123–131. doi: 10.1038/nrd1007
|
[97]
|
Bushberg JT, Boone JM (2011) The essential physics of medical imaging, Lippincott Williams & Wilkins.
|
[98]
|
Finnema SJ, Scheinin M, Shahid M, et al. (2015) Application of cross-species PET imaging to assess neurotransmitter release in brain. Psychopharmacology 232: 4129–4157. doi: 10.1007/s00213-015-3938-6
|
[99]
|
Haubner R, Maschauer S, Prante O (2014) PET radiopharmaceuticals for imaging integrin expression: tracers in clinical studies and recent developments. Biomed Res Int 2014: 871609–871617.
|
[100]
|
Tateishi U, Oka T, Inoue T (2012) Radiolabeled RGD peptides as integrin alpha(v)beta3-targeted PET tracers. Curr Med Chem 19: 3301–3309. doi: 10.2174/092986712801215937
|
[101]
|
Wagner S, Breyholz HJ, Law MP, et al. (2007) Novel fluorinated derivatives of the broad-spectrum MMP inhibitors N-hydroxy-2(R)-[[(4-methoxyphenyl)sulfonyl](benzyl)- and (3-picolyl)-amino]-3-methyl-butanamide as potential tools for the molecular imaging of activated MMPs with PET. J Med Chem 50: 5752–5764. doi: 10.1021/jm0708533
|
[102]
|
Stacy MR, Maxfield MW, Sinusas AJ (2012) Targeted molecular imaging of angiogenesis in PET and SPECT: a review. Yale J Biol Med 85: 75–86.
|
[103]
|
Ripa RS, Pedersen SF, Kjaer A (2016) PET/MR imaging in vascular disease atheroscleroaia and inflammation. Positron Emission Tomo 11: 479–488.
|
[104]
|
Wu C, Li F, Niu G, et al. (2013) PET imaging of inflammation biomarkers. Theranostics 3: 448–466. doi: 10.7150/thno.6592
|
[105]
|
Pacheco TJ, Calle D, Lizarbe B, et al. (2011) Environmentally sensitive paramagnetic and diamagnetic contrast agents for nuclear magnetic resonance imaging and spectroscopy. Curr Top Med Chem 11: 115–130. doi: 10.2174/156802611793611904
|
[106]
|
Lanza GM, Moonen C, Baker JR, et al. (2013) Assessing the barriers to image-guided drug delivery. WIRE Nanomed Nanobiotechnol 6: 1–14.
|
[107]
|
Na HB, Song IC, Hyeon T (2009) Inorganic nanoparticles for MRI contrast agents. Adv Mater 21: 2133–2148.
|
[108]
|
Bonnemain B (1998) Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications: a review. J Drug Target 6: 167–174. doi: 10.3109/10611869808997890
|
[109]
|
Yu Y, Sun D (2010) Superparamagnetic iron oxide nanoparticle "theranostics" for multimodality tumor imaging, gene delivery, targeted drug and prodrug delivery. Expert Rev Clin Pharmaco 3: 117–130. doi: 10.1586/ecp.09.39
|
[110]
|
Liu F, Laurent S, Fattahi H, et al. (2011) Superparamagnetic nanosystems based on iron oxide nanoparticles for biomedical imaging. Nanomedicine 6: 519–528. doi: 10.2217/nnm.11.16
|
[111]
|
Al-Nahhas A, Win Z, Singh Q, et al. (2006) The role of 18F-FDG PET in oncology: clinical and resource implications. Nucl Med Rev Cent East Eur 9: 1–5.
|
[112]
|
Chopra A (2004) 18F-Labeled N-succinimidyl-4-fluorobenzoate-conjugated rat anti-mouse vascular endothelial growth factor receptor 2 monoclonal antibody linked to microbubbles, MICAD.
|
[113]
|
Gupta H, Aqil M, Khar RK, et al. (2010) Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine 6: 324–333.
|
[114]
|
Luo Q, Zhao J, Zhang X, et al. (2011) Nanostructured lipid carrier (NLC) coated with chitosan oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm 403: 185–191. doi: 10.1016/j.ijpharm.2010.10.013
|
[115]
|
Möller W, Schuschnig U, Celik G, et al. (2013) Topical drug delivery in chronic rhinosinusitis patients before and after sinus surgery using pulsating aerosols. Plos One 8: e74991. doi: 10.1371/journal.pone.0074991
|
[116]
|
Gallamini A, Zwarthoed C, Borra A (2014) Positron emission tomography (PET) in oncology. Cancers 6: 1821–1889. doi: 10.3390/cancers6041821
|
[117]
|
Xiao Y, Hong H, Javadi A, et al. (2012) Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging. Biomaterials 33: 3071–3082. doi: 10.1016/j.biomaterials.2011.12.030
|
[118]
|
Guo J, Hong H, Chen G, et al. (2014) Theranostic unimolecular micelles based on brush-shaped amphiphilic block copolymers for tumor-targeted drug delivery and positron emission tomography imaging. Acs Appl Mater Interface 6: 21769–21779. doi: 10.1021/am5002585
|
[119]
|
Hong H, Zhang Y, Engle JW, et al. (2012) In vivo targeting and positron emission tomography imaging of tumor vasculature with (66)Ga-labeled nano-graphene. Biomaterials 33: 4147–4156. doi: 10.1016/j.biomaterials.2012.02.031
|
[120]
|
Liu Z, Cal W, He L, et al. (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2: 47–52. doi: 10.1038/nnano.2006.170
|
[121]
|
Blasberg RG (2003) In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl Med Biol 30: 879–888. doi: 10.1016/S0969-8051(03)00115-X
|
[122]
|
Hoffman RM (2015) Application of GFP imaging in cancer. Lab Invest 95: 432–452. doi: 10.1038/labinvest.2014.154
|
[123]
|
Kocher B, Piwnica WD (2013) Illuminating cancer systems with genetically engineered mouse models and coupled luciferase reporters in vivo. Cancer Discov 3: 616–629.
|
[124]
|
Wang C, Cheng L, Liu Z (2011) Drug delivery with upconversion nanoparticles for multi-functional targeted cancer cell imaging and therapy. Biomaterials 32: 1110–1120. doi: 10.1016/j.biomaterials.2010.09.069
|
[125]
|
Yuan Y, Liu B (2014) Self-assembled nanoparticles based on PEGylated conjugated polyelectrolyte and drug molecules for image-guided drug delivery and photodynamic therapy. Acs Appl Mater Interface 6: 14903–14910. doi: 10.1021/am5020925
|
[126]
|
Cool SK, Geers B, Roels S, et al. (2013) Coupling of drug containing liposomes to microbubbles improves ultrasound triggered drug delivery in mice. J Control Release 172: 885–893.
|
[127]
|
Chen ML, He YJ, Chen XW, et al. (2012) Quantum dots conjugated with Fe3O4-filled carbon nanotubes for cancer-targeted imaging and magnetically guided drug delivery. Langmuir 28: 16469–16476.
|
[128]
|
Sun X, Liu Z, Welsher K, et al. (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res 1: 203–212. doi: 10.1007/s12274-008-8021-8
|
[129]
|
Shen Z, Wu A, Chen X (2016) Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm, DOI: 10.1021/acs.molpharmaceut.6b00839.
|
[130]
|
Hermann P, Kotek J, Kubíček V, et al. (2008) Gadolinium(III) complexes as MRI contrast agents : ligand design and properties of the complexes. Dalton Trans 23: 3027–3047.
|
[131]
|
Kaida S, Cabral H, Kumagai M, et al. (2010) Visible drug delivery by supramolecular nanocarriers directing to single-platformed diagnosis and therapy of pancreatic tumor model. Cancer Res 70: 7031–7041. doi: 10.1158/0008-5472.CAN-10-0303
|
[132]
|
Negussie AH, Yarmolenko PS, Partanen A, et al. (2011) Formulation and characterisation of magnetic resonance imageable thermally sensitive liposomes for use with magnetic resonance-guided high intensity focused ultrasound. Int J Hyperther 27: 140–155. doi: 10.3109/02656736.2010.528140
|
[133]
|
Tagami T, Foltz WD, Ernsting MJ, et al. (2011) MRI monitoring of intratumoral drug delivery and prediction of the therapeutic effect with a multifunctional thermosensitive liposome. Biomaterials 32: 6570–6578. doi: 10.1016/j.biomaterials.2011.05.029
|
[134]
|
Ma X, Tao H, Yang K, et al. (2012) A functionalized graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res 5: 199–212. doi: 10.1007/s12274-012-0200-y
|
[135]
|
Al-Jamal WT, Kostarelos K (2007) Liposome-nanoparticle hybrids for multimodal diagnostic and therapeutic applications. Nanomedicine 2: 85–98. doi: 10.2217/17435889.2.1.85
|
[136]
|
Mikhaylov G, Mikac U, Magaeva AA, et al. (2011) Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat Nanotechnol 6: 594–602. doi: 10.1038/nnano.2011.112
|
[137]
|
Xu H, Cheng L, Wang C, et al. (2011) Polymer encapsulated upconversion nanoparticle/iron oxide nanocomposites for multimodal imaging and magnetic targeted drug delivery. Biomaterials 32: 9364–9373. doi: 10.1016/j.biomaterials.2011.08.053
|
[138]
|
Yang X, Hong H, Grailer JJ, et al. (2011) cRGD-functionalized, DOX-conjugated, and ⁶⁴Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32: 4151–4160. doi: 10.1016/j.biomaterials.2011.02.006
|
[139]
|
Claesen J, Fischbach MA (2015) Synthetic microbes as drug delivery systems. Acs Synth Biol 4: 358–364. doi: 10.1021/sb500258b
|
[140]
|
Sotoudeh H, Sharma A, Fowler KJ, et al. (2016) Clinical application of PET/MRI in oncology. J Magn Reson Imaging 44: 265–276. doi: 10.1002/jmri.25161
|
[141]
|
Pan D, Caruthers SD, Chen J, et al. (2010) Nanomedicine strategies for molecular targets with MRI and optical imaging. Future Med Chem 2: 471–490. doi: 10.4155/fmc.10.5
|
[142]
|
Culver J, Akers W, Achilefu S (2008) Multimodality molecular imaging with combined optical and SPECT/PET modalities. J Nucl Med 49: 169–172. doi: 10.2967/jnumed.107.043331
|