Research article Special Issues

Two classes of coupled second order evolution equations with indirect damping: Lack of exponential decay

  • Received: 21 April 2025 Revised: 02 September 2025 Accepted: 15 September 2025 Published: 19 September 2025
  • In this work, we consider two classes of coupled second-order abstract evolution equations with past history only acting in one of the equations of the systems, where the coupling terms are composed of fractional powers of operators. With the aid of the semigroup method and operator theory, we successfully establish that the coupled systems have no exponential decay rate for some fractional powers of coupled operators. Simultaneously, some applications of our abstract results in concrete models of the real world are given. It can be seen that our theorems cover and generalize the previous related results.

    Citation: Kun-Peng Jin, Can Liu. Two classes of coupled second order evolution equations with indirect damping: Lack of exponential decay[J]. Networks and Heterogeneous Media, 2025, 20(3): 1010-1025. doi: 10.3934/nhm.2025044

    Related Papers:

  • In this work, we consider two classes of coupled second-order abstract evolution equations with past history only acting in one of the equations of the systems, where the coupling terms are composed of fractional powers of operators. With the aid of the semigroup method and operator theory, we successfully establish that the coupled systems have no exponential decay rate for some fractional powers of coupled operators. Simultaneously, some applications of our abstract results in concrete models of the real world are given. It can be seen that our theorems cover and generalize the previous related results.



    加载中


    [1] T. J. Xiao, J. Liang, The Cauchy Problem for Higher-Order Abstract Differential Equations, Springer, Berlin, Germany, 1998.
    [2] B. Feng, W. Youssef, T. El Arwadi, Polynomial and exponential decay rates of a laminated beam system with thermodiffusion effects, J. Math. Anal. Appl., 517 (2023), 126633. https://doi.org/10.1016/j.jmaa.2022.126633 doi: 10.1016/j.jmaa.2022.126633
    [3] K. P. Jin, Stability of a class of coupled systems, Abstr. Appl. Anal., 2014 (2014), 835765. https://doi.org/10.1155/2014/835765 doi: 10.1155/2014/835765
    [4] F. Alabau-Boussouira, M. Lautaud, Indirect stabilization of locally coupled wave-type systems, ESAIM Control Optim. Calc. Var., 18 (2012), 548–582. https://doi.org/10.1051/cocv/2011106 doi: 10.1051/cocv/2011106
    [5] K. P. Jin, Stability for locally coupled wave-type systems with indirect mixed-type dampings, Appl. Math. Optim., 85 (2022), 11. https://doi.org/10.1007/s00245-022-09830-x doi: 10.1007/s00245-022-09830-x
    [6] K. P. Jin, Indirect stabilization of coupled abstract evolution equations with memory: Different propagation speeds, Math. Methods Appl. Sci., 45 (2022), 4451–4467. https://doi.org/10.1002/mma.8048 doi: 10.1002/mma.8048
    [7] K. P. Jin, J. Liang, T. J. Xiao, Asymptotic behavior for coupled systems of second order abstract evolution equations with one infinite memory, J. Math. Anal. Appl., 475 (2019), 554–575. https://doi.org/10.1016/j.jmaa.2019.02.055 doi: 10.1016/j.jmaa.2019.02.055
    [8] F. Ammar-Khodja, A. Benabdallah, J. E. Muñoz Rivera, R. Racke, Energy decay for Timoshenko systems of memory type, J. Differ. Equ., 194 (2003), 82–115. https://doi.org/10.1016/S0022-0396(03)00185-2 doi: 10.1016/S0022-0396(03)00185-2
    [9] M. I. Mustafa, Viscoelastic Timoshenko beams with variable-exponent nonlinearity, J. Math. Anal. Appl., 516 (2022), 126520. https://doi.org/10.1016/j.jmaa.2022.126520 doi: 10.1016/j.jmaa.2022.126520
    [10] T. J. Xiao, J. Liang, Coupled second order semilinear evolution equations indirectly damped via memory effects, J. Differ. Equ., 254 (2013), 2128–2157. https://doi.org/10.1016/j.jde.2012.11.019 doi: 10.1016/j.jde.2012.11.019
    [11] A. Youkana, A. M. Al-Mahdi, S. A. Messaoudi, General energy decay result for a viscoelastic swelling porous-elastic system, Z. Angew. Math. Phys., 73 (2022), 88. https://doi.org/10.1007/s00033-022-01696-x doi: 10.1007/s00033-022-01696-x
    [12] I. Lasiecka, S. A. Messaoudi, M. Mustafa, Note on intrinsic decay rates for abstract wave equations with memory, J. Math. Phys., 54 (2013), 031504. https://doi.org/10.1063/1.4793988 doi: 10.1063/1.4793988
    [13] R. G. C. Almeida, M. L. Santos, Lack of exponential decay of a coupled system of wave equations with memory, Nonlinear Anal. Real World Appl., 12 (2011), 1023–1032. https://doi.org/10.1016/j.nonrwa.2010.08.025 doi: 10.1016/j.nonrwa.2010.08.025
    [14] A. M. Al-Mahdi, M. M. Al-Gharabli, S. A. Messaoudi, New general decay of solutions in a porous-thermoelastic system with infinite memory, J. Math. Anal. Appl., 500 (2021), 125136. https://doi.org/10.1016/j.jmaa.2021.125136 doi: 10.1016/j.jmaa.2021.125136
    [15] K. P. Jin, J. Liang, T. J. Xiao, Coupled second order evolution equations with fading memory: Optimal energy decay rate, J. Differ. Equ., 257 (2014), 1501–1528. https://doi.org/10.1016/j.jde.2014.05.018 doi: 10.1016/j.jde.2014.05.018
    [16] T. J. Xiao, Y. Zhang, Lack of exponential decay in viscoelastic materials with voids, Syst. Control Lett., 63 (2014), 39–42. https://doi.org/10.1016/j.sysconle.2013.11.006 doi: 10.1016/j.sysconle.2013.11.006
    [17] D. Chalishajar, D. Kasinathan, K. Ramkumar, K. Ravikumar, Viscoelastic Kelvin-Voigt model on Ulam-Hyer's stability and T-controllability for a coupled integro fractional stochastic systems with integral boundary conditions via integral contractors, Chaos, Solitons Fractals, 191 (2025), 115785. https://doi.org/10.1016/j.chaos.2024.115785 doi: 10.1016/j.chaos.2024.115785
    [18] D. Chalishajar, D. Kasinathan, K. Ramkumar, K. Ravikumar, Exponential stability, T-controllability and optimal controllability of higher-order fractional neutral stochastic differential equation via integral contractor, Chaos, Solitons Fractals, 186 (2024), 115278. https://doi.org/10.1016/j.chaos.2024.115278 doi: 10.1016/j.chaos.2024.115278
    [19] K. Ramkumar, K. Ravikumar, D. Chalishajar, Existence trajectory and optimal control of Clarke subdifferential stochastic integrodifferential inclusions suffered by non-instantaneous impulses and deviated arguments, Results Control Optim., 13 (2023), 100295. https://doi.org/10.1016/j.rico.2023.100295 doi: 10.1016/j.rico.2023.100295
    [20] M. Akil, H. Badawi, S. Nicaise, A. Wehbe, Stability results of coupled wavw models with locally memory in a past history framework via nonsmooth coefficients on the interface, Math. Methods Appl. Sci., 44 (2021), 6950–6981. https://doi.org/10.1002/mma.7235 doi: 10.1002/mma.7235
    [21] W. Rudin, Functional Analysis, McGraw-Hill Science/Engineering/Math, 2nd edition, 1991.
    [22] J. Sun, Z. Wang, W. Wang, Science Press, in pectral Analysis of Linear Operators, 2 edition, Publishing House: Beijin, China, 2015.
    [23] L. Gearhart, Spectral theory for contraction semigroups on Hilbert spaces, Trans. Am. Math. Soc., 236 (1978), 385–394. https://doi.org/10.1090/S0002-9947-1978-0461206-1 doi: 10.1090/S0002-9947-1978-0461206-1
    [24] F. L. Huang, Characteristic condition for exponential stability of linear dynamical systems in Hilbert space, Ann. Differ. Equ., 1 (1985), 43–56.
    [25] S. A. Messaoudi, B. Said-Houari, Uniform decay in a Timoshenko-type system with past history, J. Math. Anal. Appl., 360 (2009), 459–475. https://doi.org/10.1016/j.jmaa.2009.06.064 doi: 10.1016/j.jmaa.2009.06.064
    [26] J. E. M. Rivera, H. D. F. Sare, Stability of Timoshenko systems with past history, J. Math. Anal. Appl., 339 (2008), 482–502. https://doi.org/10.1016/j.jmaa.2007.07.012 doi: 10.1016/j.jmaa.2007.07.012
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(394) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog