We consider weak solutions to the equations of stationary motion of a class of non-Newtonian fluids which includes the power law model. The power depends on the spatial variable, which is motivated by electrorheological fluids. We prove the existence of second order derivatives of weak solutions in the shear thinning cases.
Citation: Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn. Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth[J]. Networks and Heterogeneous Media, 2018, 13(3): 479-491. doi: 10.3934/nhm.2018021
[1] | Hyeong-Ohk Bae, Hyoungsuk So, Yeonghun Youn . Interior regularity to the steady incompressible shear thinning fluids with non-Standard growth. Networks and Heterogeneous Media, 2018, 13(3): 479-491. doi: 10.3934/nhm.2018021 |
[2] | Grigory Panasenko, Ruxandra Stavre . Asymptotic analysis of a non-periodic flow in a thin channel with visco-elastic wall. Networks and Heterogeneous Media, 2008, 3(3): 651-673. doi: 10.3934/nhm.2008.3.651 |
[3] | Changli Yuan, Mojdeh Delshad, Mary F. Wheeler . Modeling multiphase non-Newtonian polymer flow in IPARS parallel framework. Networks and Heterogeneous Media, 2010, 5(3): 583-602. doi: 10.3934/nhm.2010.5.583 |
[4] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[5] | María Anguiano, Renata Bunoiu . Homogenization of Bingham flow in thin porous media. Networks and Heterogeneous Media, 2020, 15(1): 87-110. doi: 10.3934/nhm.2020004 |
[6] | Andro Mikelić, Giovanna Guidoboni, Sunčica Čanić . Fluid-structure interaction in a pre-stressed tube with thick elastic walls I: the stationary Stokes problem. Networks and Heterogeneous Media, 2007, 2(3): 397-423. doi: 10.3934/nhm.2007.2.397 |
[7] | Rinaldo M. Colombo, Graziano Guerra . A coupling between a non--linear 1D compressible--incompressible limit and the 1D $p$--system in the non smooth case. Networks and Heterogeneous Media, 2016, 11(2): 313-330. doi: 10.3934/nhm.2016.11.313 |
[8] | Alessia Marigo . Equilibria for data networks. Networks and Heterogeneous Media, 2007, 2(3): 497-528. doi: 10.3934/nhm.2007.2.497 |
[9] | Leda Bucciantini, Angiolo Farina, Antonio Fasano . Flows in porous media with erosion of the solid matrix. Networks and Heterogeneous Media, 2010, 5(1): 63-95. doi: 10.3934/nhm.2010.5.63 |
[10] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
We consider weak solutions to the equations of stationary motion of a class of non-Newtonian fluids which includes the power law model. The power depends on the spatial variable, which is motivated by electrorheological fluids. We prove the existence of second order derivatives of weak solutions in the shear thinning cases.
Traditionally, the Navier-Stokes equations have received quite a bit of attention. Recently, attention to the behavior of fluids with various viscosities has been increasing dramatically. It is because we can find such fluids everywhere. For example, water, yogurt, lubricants, sand in water, ink, gum solutions, nail polish, ketchup, molasses, ice, paint, custard, paper pulp, even blood in our body. The behavior of many of them can be described in the power law model. In that sense, we are interested in the power law model, which is a generalized Navier-Stokes system.
As mentioned in [16], electrorheological fluids are viscous liquids, that are characterized by their ability to undergo significant changes in their mechanical properties when an electric field is applied. The motion is governed by a system of partial differential equations consisting of electric field
In this article we consider the following stationary system related with non-Newtonian fluids:
$\left\{\label{pde1}
−div{S(x,D(u))}+u⋅∇u+∇π=g,divu=0 \right. \text{ in }\Omega,
$
|
(1) |
where
$ D^{ij}(u)(x) = \dfrac{1}{2}\left(\partial_{i}u^{j}+\partial_{j}u^{i}\right)(x)\in \mathbb{R}^{n \times n}_{sym}. $ |
In addition,
The continuous deviatoric stress tensor
$\left\{
|S(x,z)|+|Sz(x,z)|(|z|2+μ2)12≤L(|z|2+μ2)p(x)−12,ν(|z1|2+|z2|2+μ2)p(x)−22|z1−z2|2≤⟨S(x,z1)−S(x,z2),z1−z2⟩,|S(x1,ξ)−S(x2,ξ)|≤Lω(|x1−x2|)[1+|log(|ξ|2+μ2)|]×[(|ξ|2+μ2)p(x1)−12+(|ξ|2+μ2)p(x2)−12] \right.
$
|
(2) |
for every
$ \gamma_{1}\leq p(x) \leq \gamma_{2} \leq 2 ~~~~ {\rm{and}}~~~~ |p(x)-p(y)|\leq\omega(|x-y|) ~~~~ \textrm{for} ~~~~x, y\in\Omega, $ | (3) |
where
$ \omega(r)\leq c_pr, $ |
for some constant
$ p_{0} = p(x_{0}), ~~~~ p_{1}: = \inf\limits_{B_{4R}(x_{0})}p(x) ~~~~{\rm{and}}~~~~ p_{2}: = \sup\limits_{B_{4R}(x_{0})}p(x) $ |
for some fixed
Here, we denote the variable exponent Lebesgue space
$ \|f\|_{L^{p(\cdot)}(\Omega)}: = \inf\left\{\lambda > 0 : \int_{\Omega}\left(\dfrac{|f|(x)}{\lambda}\right)^{p(x)}dx\leq 1\right\} < \infty, $ |
and the space
$ \int_{\Omega}S(x, D(u)):D(\varphi)dx -\int_{\Omega} u\otimes u:D(\varphi)dx = \int_{\Omega}g\cdot\varphi dx, \, ^{\forall} \varphi\in W^{1, p(\cdot)}_{0, \sigma}(\Omega)^n, $ |
where
In [13], the existence of weak solutions was provided for constant
In case of anisotropic dissipative potential
$ \lambda (1+|z|^2)^{\frac{p_1-2}{2}}|A|^2\le \nabla^2 f(z)(A, A) \le \Lambda (1+|z|^2)^\frac{p_2-2}{2}|A|^2 $ |
with exponents
For a variable
The lower bound of
On the other hand, in [7] it was proved that a solution of
In this paper, we handle non-Newtonian problem (1) where
Theorem 1.1. Let
$ (1+|D(u)|^2)^{\frac{p(x)-2}{4}}\nabla D(u) \in L^2_{loc}(\Omega)^{n^3} $ | (4) |
and for all
$
\left\{
u∈W2,tloc(Ω)n when n=2,u∈W2,min{3p(⋅)1+p(⋅),t}loc(Ω)n when n=3. \right.
$
|
(5) |
To simplify the notation, the letter
We recall a useful lemma about higher integrability from [1].
Lemma 2.1. Let
$
(−∫BR(|D(u)|+μ)(1+σ)p(x)dx)11+σ≤c−∫B2R(|D(u)|+μ)p(x)dx+c−∫B2R(|∇u|γ1+|u|γ∗1+1)dx.
$
|
Here,
$ 16\omega(4R_{0}) \leq \sigma $ | (6) |
and assume
Remark 1. Although the authors only considered the case
Since
Lemma 2.2. There exists a constant
$ \log t \leq c(\epsilon)+ t^\epsilon + t^{-\epsilon} $ |
for all
Our proof is mainly based on that of [15]. We divide our proof of main theorem in three steps. At first, we derive estimation related to finite difference of
Step 1. Estimation of
From the modulus of continuity, there exists a radius
$ \int_{\Omega}S(x, D(u)):D(\varphi)dx = -\int_{\Omega} u_{i}\dfrac{\partial u_{j}}{\partial x_{i}}\varphi_{j} dx + \int_{\Omega} \pi \, {\rm{div}}{\varphi}dx +\int_{\Omega}g\cdot\varphi dx $ | (7) |
for all
$
∫B2RS(x,D(u)):D(Δ−λ(η2Δλu))dx=∫B2RΔλS(x,D(u)):D(η2Δλu)dx=∫B2Rη2ΔλS(x,D(u)):D(Δλu)dx+∫B2R2ηΔλS(x,D(u)):D(η)⊗Δλudx.
$
|
(8) |
The ellipticity condition in
$
∫B2Rη2ΔλS(x,D(u)):D(Δλu)dx=∫B2Rη2[S(x+λek,D(u)(x+λek))−S(x,D(u)(x+λek))]ΔλD(u)dx+∫B2Rη2[S(x,D(u)(x+λek))−S(x,D(u)(x))]ΔλD(u)dx≥∫B2Rη2[S(x+λek,D(u)(x+λek))−S(x,D(u)(x+λek))]ΔλD(u)dx+ν∫O+1η2(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)−22|ΔλD(u)|2dx,
$
|
(9) |
where
Note that the set
Combining (7)-(9), we obtain
$
I0:=ν∫O+1η2(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)−22|ΔλD(u)|2dx≤∫B2Rη2[S(x,D(u)(x+λek))−S(x+λek,D(u)(x+λek))]D(Δλu)dx−∫B2R2ηΔλS(x,D(u)):D(η)⊗Δλudx−∫B2Rui∂uj∂xi(Δ−λ(η2Δλuj))dx+∫B2Rπdiv(Δ−λ(η2Δλu))dx+∫B2Rg⋅Δ−λ(η2Δλu)dx=:I1+I2+I3+I4+I5.
$
|
(10) |
For simplicity, we set
Estimation of
$ O_{2}^{+} = \{x\in B_{2R} : |Du|(x+\lambda e_{k}) > 0\}\subset O_{1}^{+}. $ |
We use the continuity assumption in
$
|I1|≤cω(λ)∫O+2η2|D(Δλu)|[1+|log(|D(u)(x+λek)|2+μ2)|]×[(|D(u)(x+λek)|2+μ2)p(x+λek)−12+(|D(u)(x+λek)|2+μ2)p(x)−12]dx≤c|λ|∫O+2η2|D(Δλu)|(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)−24×[1+|log(|D(u)(x+λek)|2+μ2)|]
$
|
$
×[(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)2p(x+λek)−p(x)4+(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)4]dx≤ϵ∫O+1η2(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)−22|D(Δλu)|2dx+c(ϵ)|λ|2∫O+2η2[1+|log(|D(u)(x+λek)|2+μ2)|]2×[(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)2p(x+λek)−p(x)2+(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)2]dx.
$
|
Therefore, Lemma 2.2 and (6) reveals
$
|I1|≤ϵI0+c(ϵ)|λ|2∫B2Rη2[(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)2p(x+λek)−p(x)2+(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)2]×[1+(|D(u)(x+λek)|2+μ2)σγ116+(|D(u)(x+λek)|2+μ2)−σγ116]2dx≤ϵI0+c(ϵ)|λ|2∫B2Rη2(1+|D(u)(x)|)(1+σ)p(x)dx.
$
|
(11) |
Estimation of
$ p_{2}\leq p_{1}+\omega(4R_{0}) \leq p_{1}(1+\sigma) $ |
and
$ \frac{p_{1}(p_{2}-1)}{p_{1}-1}\leq p_{1}+\frac{\omega(4R_{0})p_{1}}{p_{1}-1}\leq p_{1}+\frac{\omega(4R_{0})\gamma_{1}}{\gamma_{1}-1} \leq p_{1}+8\omega(4R_{0}), $ | (12) |
we discover
$
|I2|≤2(∫B2R|S(x,D(u))|p′1dx)1p′1(∫B2R|Δ−λ(ηD(η)⊗Δλu)|p1dx)1p1≤c|λ|(∫B2R(1+|∇u|)p′1(p(x)−1)dx)1p′1×(∫B2R|∇(ηD(η)⊗Δλu)|p1dx)1p1≤c|λ|(∫B2R(1+|∇u|)(1+σ)p(x)dx)1p′1×(|λ|p1R2p1∫B2R(1+|∇u|p1)dx+1Rp1∫B2R|η∇(Δλu)|p1dx)1p1.
$
|
(13) |
Note that
$ \eta\nabla(\Delta_{\lambda}u) = \nabla(\eta\Delta_{\lambda}u)-(\nabla\eta)\cdot\Delta_{\lambda}u. $ | (14) |
Applying (14) and Korn's inequality, we have
$
∫B2R|η∇(Δλu)|p1dx≤c∫B2R|D(ηΔλu)|p1dx+cRp1∫B2R|Δλu|p1dx≤c∫O+1|ηD(Δλu)|p1dx+cRp1|λ|p1∫B3R|∇u|p1dx.
$
|
(15) |
And the first integral term in the last line is estimated as follows:
$
(∫O+1|η|p1|D(Δλu)|p1dx)1p1≤c(∫O+1|η|2(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)(p(x)−2)2|D(Δλu)|2dx)12×(∫B2R(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p1(2−p(x))2(2−p1)dx)2−p12p1≤c[I0]12(∫B3R(1+|∇u|)(1+σ)p(x)dx)2−p12p1.
$
|
(16) |
Combining (13), (15) and (16), we obtain
$
|I2|2≤c|λ|2R2∫B3R(1+|∇u|)(1+σ)p(x)dx+|λ|R(∫B3R(1+|∇u|)(1+σ)p(x)dx)1p′1(∫B2R|η|p1|D(Δλu)|p1dx)1p1≤c(ϵ)|λ|2R2∫B3R(1+|∇u|)(1+σ)p(x)dx+ϵI0.
$
|
Estimation of
Estimation of
$ \min\limits_{ B_{2R}}q(x) = \dfrac{p_{2}(1+\sigma)}{p_{2}-1} > \dfrac{p_{1}}{p_{1}-1} $ |
by the assumption
$
|I4|=|∫B2Rπ(Δ−λ,k(η∂η∂xiΔλui))dx|≤c|λ|R‖π‖Lp′1(∫B2R|∇(ηΔλu)|p1dx)1p1.
$
|
(17) |
In light of Korn's inequality, it holds that
$
(∫B2R|∇(ηΔλu)|p1dx)1p1≤c|λ|2R2(∫B2R(1+|∇u|)(1+σ)p(x)dx)1p1+c(∫O+1|η|p1|D(Δλu)|p1dx)1p1.
$
|
(18) |
Combining (16), (17) and (18), we obtain
$
|I4|≤c|λ|2R2‖π‖Lp′1(B2R)(∫B2R(1+|∇u|)(1+σ)p(x)dx)1p1+c(ϵ)|λ|2R2‖π‖2Lp′1(B2R)(∫B3R(1+|∇u|)(1+σ)p(x)dx)2−p1p1+ϵI0.
$
|
Estimation of
$
|I5|≤c‖g‖L∞(B2R)∫B2R|Δ−λ(η2(Δλu))|dx≤c|λ|∫O+1|D(η2Δλu)|dx≤c|λ|2R∫B3R|D(u)|dx+c|λ|∫O+1|η|2|ΔλD(u)|dx≤c(ϵ)|λ|2R2∫B2R(1+|D(u)|)(1+σ)p(x)dx+ϵI0.
$
|
Consequently, it follows from combining the estimates of
$
I0≤I3+c|λ|2R2∫B2R(1+|∇u|)(1+σ)p(x)dx+c|λ|2R2(∫B3R(1+|∇u|)(1+σ)p(x)dx)2−p1p1.
$
|
(19) |
Step 2. Boundedness of
In this step, we shall prove that
$
I3=∫B2RΔλui∂uj∂xi(x+λek)η2Δλujdx+∫B2RuiΔλ∂uj∂xiη2Δλujdx=:I3,1+I3,2.
$
|
We now assume that
$ u\in W^{1, s}_{loc}(\Omega)^n \textrm{ for some }s\in[\gamma_{1}, n). $ |
Next we estimate
$ |I_{3, 1}| \leq \int_{B_{2R}}|{\Delta _{\rm{\lambda }}} u|^{2}|\nabla u(x+\lambda {e_k})|dx \leq \|{\Delta _{\rm{\lambda }}} u\|_{L^{2s'}(B_{2R})^n}^{2}\| u \|_{W^{1, s}(B_{2R})^n}. $ |
Defining
$ \dfrac{1-\theta}{s^{*}}+\dfrac{\theta}{s} = \dfrac{1}{2s'}, $ |
where
$ \|{\Delta _{\rm{\lambda }}} u\|_{L^{2s'}(B_{2R})^n}^{2}\leq \|{\Delta _{\rm{\lambda }}} u\|_{L^{s^{*}}(B_{2R})^n}^{2(1-\theta)}\|{\Delta _{\rm{\lambda }}} u\|_{L^{s}(B_{2R})^n}^{2\theta}\leq c|\lambda|^{2\theta}\|u\|_{W^{1, s}(B_{3R})^n}^{2} $ |
and
$ |I_{3, 1}|\leq c|\lambda|^{2\theta}\|u\|_{W^{1, s}(B_{3R})^n}^{3}. $ | (20) |
On the other hand, integration by parts formula for finite difference reveals
$
|I3,2|≤12|∫B2R|ui|(Δλuj)2∂η2∂xidx|≤cR‖Δλu‖2L2s′(B2R)n‖u‖W1,s(B2R)n≤cR|λ|2θ‖u‖3W1,s(B3R)n.
$
|
(21) |
Merging up (20) and (21), we obtain
$ |I_{3}|\leq c(1+\dfrac{1}{R})|\lambda|^{2\theta}\|u\|_{W^{1, s}(B_{3R})^n}^{2}. $ | (22) |
Finally, since
$ \label{31} I_{0} \leq c \dfrac{|\lambda|^{2\theta}}{R^{2}}, $ | (23) |
where the constant
$ \hat{s}: = \dfrac{2s}{s-\gamma_{1}+2}. $ |
Then
$
∫BR|ΔλD(u)|ˆsdx=∫O+1(|D(u)(s+λek)|2+|D(u)(x)|2+μ2)p(x)−22ˆs2|ΔλD(u)(x)|ˆsηˆs×(|D(u)(s+λek)|2+|D(u)(x)|2+μ2)2−p(x)2ˆs2dx≤[I0]ˆs2[∫B2R(|D(u)(s+λek)|2+|D(u)(x)|2+μ2)2−p(x)2−ˆsˆs2dx]2−ˆs2≤c|λ|θˆsR2[∫B2R(1+|D(u)(x)|)sdx]2−ˆs2.
$
|
(24) |
This implies
$ D(u)\in W^{t, \hat{s}}(B_{R/2})^{n \times n} ~~~~ \textrm{for any } ~~t\in[0, \theta) $ |
and then we obtain by Nikolskii's embedding theorem in [2] that
$ D(u)\in L^{\frac{n\hat{s}}{n-t\hat{s}}}(B_{R/2})^{n \times n} ~~~~ \textrm{for any }~ t\in[0, \theta). $ | (25) |
We set
$ \sigma(s): = \dfrac{n\hat{s}}{n-\theta\hat{s}} = \dfrac{2ns}{(5-\gamma_{1})n-2s}, $ |
then it follows that
$ \sigma(s)-s\geq \tau_{0}: = \dfrac{\gamma_{1}((n+2)\gamma_{1}-3n)}{(5-\gamma_{1})n-2\gamma_{1}} > 0. $ |
Hence (25) can be written as
$ \nabla u\in L^{\tau}(B_{R/2})^{n \times n} ~~~~ \textrm{for any } \tau\in[1, \sigma(s)). $ |
Here, we have used Korn's inequality. According to Sobolev embedding theorem and the fact that
$ u\in W^{1, \tau}(B_{R/2}) ^n ~~~~\textrm{for any }\tau\in[1, \sigma(s)) $ |
and so, by covering, we also have
$ u\in W^{1, \tau}_{loc}(\Omega)^n ~~~~\textrm{for any }\tau\in[1, \sigma(s)). $ |
By bootstrap argument, we can conclude that
$ u\in W^{1, \tau}_{loc}(\Omega)^n ~~~~ \textrm{for any }\tau\in[1, \sigma(n)), $ |
where
Step 3. Completing the proof of Theorem 1.1.
For
$
|I3|≤|∫B2Rui∂uj∂xi(Δ−λ,k(η2Δλuj))dx|≤|λ|‖u‖L∞(B2R)n‖∇u‖Ls(B2R)n×n‖D(η2Δλu)‖Ls′(B2R)n×n≤|λ|‖u‖L∞(B2R)n‖∇u‖Ls(B2R)n×n×(‖η2D(Δλu)‖Ls′(B2R)n×n+|λ|R‖∇u‖Ls′(B2R)n×n).
$
|
(26) |
We select
$ \dfrac{(2-p(x))s'}{2-s'} = \dfrac{2-p(x)}{2-\gamma_{1}}(4-\gamma_{1})\leq (4-\gamma_{1}) = s. $ |
By following the calculations in (24), we also have
$ \label{44-1}
‖η2D(Δλu)‖Ls′(B2R)n×n≤[I0]12(∫B2R(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)(2−p(x))s′2(2−s′)dx)2−s′2s′≤[I0]12(∫B2R(1+|∇u|)sdx)2−s′2s′.
$
|
(27) |
Applying (27) and Young's inequality to (26), we find
$ \label{44} |I_{3}|\leq c(\epsilon)\dfrac{|\lambda|^{2}}{R}+\epsilon I_{0}. $ | (28) |
Combining (19), (28) and the assumption
$ \label{s1}
∫BR(1+|D(u)(x+λek)|2+|D(u)(x)|2)p(x)−22|ΔλD(u)λ|2dx=∫O+(1+|D(u)(x+λek)|2+|D(u)(x)|2)p(x)−22|ΔλD(u)λ|2dx≤∫O+1(|D(u)(x+λek)|2+|D(u)(x)|2+μ2)p(x)−22|ΔλD(u)λ|2dx≤c,
$
|
(29) |
where
$ O^{+}: = B_{R}\cap \{x\in \Omega : |Du|(x+\lambda e_{k}) + |Du|(x) + \mu > 0\}\subset O_{2}^{+}. $ |
We now divide (27) by
$ \frac{1}{|\lambda|}\|{\Delta _{\rm{\lambda }}} \nabla u\|_{L^{s'}(B_{R})^{n \times n}} \leq \frac{1}{|\lambda|}\|\eta^{2}D({\Delta _{\rm{\lambda }}} u)\|_{L^{s'}(B_{2R})^{n \times n}}\leq c $ |
for all
By difference quotient method (See [12,Section 5.8.2]), there exists the weak derivative of
$ \label{s2} \frac1\lambda {\Delta _{\rm{\lambda }}} \nabla u \rightharpoonup \frac{\partial}{\partial x_k}\nabla u \textrm{ in } L^{s'}(B_R)^{n \times n}. $ | (30) |
For the time being, we suppose that
$ \label{s3}
(1+|D(u)(x+λek)|2+|D(u)(x)|2)p(x)−24→(1+2|D(u)(x)|2)p(x)−24 \textrm{ in } L^q(B_R)
$
|
(31) |
for all
$
(1+|D(u)(x+λek)|2+|D(u)(x)|2)p(x)−24(ΔλD(u)λ)⇀(1+2|D(u)(x)|2)p(x)−24(∂∂xkD(u)) \textrm{ in } L^1(B_R)^{n\times n}.
$
|
Since there exists a function
$ (1+|D(u)(x+\lambda {e_k})|^{2}+|D(u)(x)|^{2})^{\frac{p(x)-2}{4}}\left( \dfrac{{\Delta _{\rm{\lambda }}} D(u)}{\lambda} \right) \rightharpoonup w_k \textrm{ in }L^2(B_R)^{n\times n}, $ |
we find
Verification of (31). To do this, we write
$
∫BR|1(h(x)+hλ(x))2−p(x)4−1(2h(x))2−p(x)4|qdx=∫BR|(2h(x))2−p(x)4−(h(x)+hλ(x))2−p(x)4(h(x)+hλ(x))2−p(x)4(2h(x))2−p(x)4|qdx≤c∫BR((2h(x))2−p(x)4+(h(x)+hλ(x))2−p(x)4)q−1((h(x)+hλ(x))2−p(x)4(2h(x))2−p(x)4)q×(2h(x))2−p(x)4−(h(x)+hλ(x))2−p(x)4)dx≤c∫BR(2h(x))2−p(x)4−(h(x)+hλ(x))2−p(x)4dx.
$
|
And we estimate
$
(2h(x))2−p(x)4−(h(x)+hλ(x))2−p(x)4=∫10ddt(h(x)+hλ(x)+t(h(x)−hλ(x)))2−p(x)4dt≤2−p(x)4|h(x)−hλ(x)|∫10(h(x)+hλ(x)+t(h(x)−hλ(x))−2−p(x)4dt≤2−p(x)2|h(x)−hλ(x)|=2−p(x)2||D(u)(x)|2−|D(u)(x+λek)|2|.
$
|
Hence we have
$∫BR|(1+|D(u)(x+λek)|2+|D(u)(x)|2)p(x)−24−(1+2|D(u)(x)|2)p(x)−24|qdx≤c∫BR||D(u)(x)|2−|D(u)(x+λek)|2|dx. $
|
Since the integral on the right-hand side above inequality converges to 0 as
To verify (5), we put
$ \left| \frac{\partial V}{\partial x_k} \right| \leq c \left( (1+|D(u)|^2 )^{\frac{p(x)}{4}}\log(1+ |D(u)|^2)+ (1+|D(u)|^2 )^{\frac{p(x)-2}{4}}\left|\frac{\partial}{\partial x_k}D(u)\right| \right). $ |
Using (4), the higher integrability of
$ \label{s6} V \in L^s_{loc}(\Omega) \textrm{ for all } s \in [1, \infty) \textrm{ if } n = 2, ~~~~V \in L^6_{loc}(\Omega) \textrm{ if } n = 3. $ | (32) |
Note that following inequality holds by Young's inequality:
$ |a|^t = |b|^{\frac{t(p-2)}{2}}|a|^t |b|^{\frac{t(2-p)}{2}} < |b|^{p-2}|a|^2 + |b|^{\frac{t(2-p)}{2-t}} $ |
for any
$
∫BR|∂D(u)∂xk|tdx≤∫BR(1+|D(u)|2)p(x)−22|∂D(u)∂xk|2dx+∫BR(1+|D(u)|2)t(2−p(x))2(2−t)dx.
$
|
Then, we immediately deduce
Bae was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2015R1D1A1A01057976 and 2016K2A9A2A06005080) and Youn was supported by NRF (2015R1A4A1041675). The authors would like to thank referees for valuable comments and suggestions. The authors would like to express their sincere gratitudes Jihoon Ok for helpful discussions.
[1] |
Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal. (2002) 164: 213-259. ![]() |
[2] | R. A. Adams, Sobolev Spaces, Academic Press, New York-London, 1975. |
[3] |
Steady states of anisotropic generalized Newtonian fluids. J. Math. Fluid Mech. (2005) 7: 261-297. ![]() |
[4] |
Navier-Stokes Equations with shear-thickening viscosity. Regularity up to the boundary. J. Math. Fluid Mech. (2009) 11: 233-257. ![]() |
[5] |
On strong solutions of the differential equations modeling the steady flow of certain incompressible generalized Newtonian fluids. Algebra i Analiz (2006) 18: 1-23. ![]() |
[6] |
On $W^{1, q(·)}$-estimates for elliptic equations of $p(x)$-Laplacian type. J. Math. Pures Appl. (2016) 106: 512-545. ![]() |
[7] |
Second order regularity for the $p(x)$-Laplace operator. Math. Nachr. (2011) 284: 1270-1279. ![]() |
[8] |
On the $C^{1, γ}(\bar{Ω}) \cap W^{2, 2} (Ω)$ regularity for a class of electro-rheological fluids. J. Math. Anal. Appl. (2009) 356: 119-132. ![]() |
[9] |
L. Diening, P. Harjulehto, P. Hästö and M. Růžička,
Lebesgue and Sobolev Spaces with Variable Exponents, Springer, Heidelberg, 2011. doi: 10.1007/978-3-642-18363-8
![]() |
[10] |
An existence result for non-Newtonian fluids in non-regular domains. Discrete Contin. Dyn. Syst. Ser. S (2010) 3: 255-268. ![]() |
[11] |
Existence of local strong solutions for motions of electrorheological fluids in three dimensions. Comput. Math. Appl. (2007) 53: 595-604. ![]() |
[12] |
L. C. Evans,
Partial Differential Equations, 2$^{nd}$ edition, Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 2010. doi: 10.1090/gsm/019
![]() |
[13] |
On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method. SIAM J. Math. Anal. (2003) 34: 1064-1083. ![]() |
[14] |
$C^{1, α}$-solutions to a class of nonlinear fluids in two dimensions-stationary Dirichlet problem. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) (1999) 259: 89-121. ![]() |
[15] |
Interior differentiability of weak solutions to the equations of stationary motion of a class of non-Newtonian fluids. J. Math. Fluid Mech. (2005) 7: 298-313. ![]() |
[16] | M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Springer-Verlag, Berlin, 2000. |
1. | Cholmin Sin, P. Areias, The Existence of Strong Solution for Generalized Navier-Stokes Equations withpx-Power Law under Dirichlet Boundary Conditions, 2021, 2021, 1687-9139, 1, 10.1155/2021/6755411 |