We describe the macroscopic behavior of evolutions by crystalline curvature of planar sets in a chessboard-like medium, modeled by a periodic forcing term. We show that the underlying microstructure may produce both pinning and confinement effects on the geometric motion.
Citation: Annalisa Malusa, Matteo Novaga. Crystalline evolutions in chessboard-like microstructures[J]. Networks and Heterogeneous Media, 2018, 13(3): 493-513. doi: 10.3934/nhm.2018022
[1] | Pham Van Viet, Le Van Hieu, Cao Minh Thi . The directed preparation of TiO2 nanotubes film on FTO substrate via hydrothermal method for gas sensing application. AIMS Materials Science, 2016, 3(2): 460-469. doi: 10.3934/matersci.2016.2.460 |
[2] | Dong Geun Lee, Hwan Chul Yoo, Eun-Ki Hong, Won-Ju Cho, Jong Tae Park . Device performances and instabilities of the engineered active layer with different film thickness and composition ratios in amorphous InGaZnO thin film transistors. AIMS Materials Science, 2020, 7(5): 596-607. doi: 10.3934/matersci.2020.5.596 |
[3] | Nhung Thi-Tuyet Hoang, Anh Thi-Kim Tran, Nguyen Van Suc, The-Vinh Nguyen . Antibacterial activities of gel-derived Ag-TiO2-SiO2 nanomaterials under different light irradiation. AIMS Materials Science, 2016, 3(2): 339-348. doi: 10.3934/matersci.2016.2.339 |
[4] | Wolfgang Zúñiga-Mera, Sonia Gaona Jurado, Alejandra Isabel Guerrero Duymovic, Claudia Fernanda Villaquirán Raigoza, José Eduardo García . Effect of the incorporation of BiFeO3 on the structural, electrical and magnetic properties of the lead-free Bi0.5Na0.5TiO3. AIMS Materials Science, 2021, 8(5): 792-808. doi: 10.3934/matersci.2021048 |
[5] | Raghvendra K Pandey, William A Stapleton, Mohammad Shamsuzzoha, Ivan Sutanto . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.3.243 |
[6] | K.Pandey Raghvendra, A.Stapleto Williamn, Shamsuzzoha Mohammad, Sutanto Ivan . Voltage biased Varistor-Transistor Hybrid Devices: Properties and Applications. AIMS Materials Science, 2015, 2(3): 243-259. doi: 10.3934/matersci.2015.243 |
[7] | Ahmed Z. Abdullah, Adawiya J. Haider, Allaa A. Jabbar . Pure TiO2/PSi and TiO2@Ag/PSi structures as controllable sensor for toxic gases. AIMS Materials Science, 2022, 9(4): 522-533. doi: 10.3934/matersci.2022031 |
[8] | Etsana Kiros Ashebir, Berhe Tadese Abay, Taame Abraha Berhe . Sustainable A2BⅠBⅢX6 based lead free perovskite solar cells: The challenges and research roadmap for power conversion efficiency improvement. AIMS Materials Science, 2024, 11(4): 712-759. doi: 10.3934/matersci.2024036 |
[9] | Wei-Chi Chen, Pin-Yao Chen, Sheng-Hsiung Yang . Solution-processed hybrid light emitting and photovoltaic devices comprising zinc oxide nanorod arrays and tungsten trioxide layers. AIMS Materials Science, 2017, 4(3): 551-560. doi: 10.3934/matersci.2017.3.551 |
[10] | Ya-Ting Tsu, Yu-Wen Chen . Preparation of gold-containing binary metal clusters by co-deposition-precipitation method and for hydrogenation of chloronitrobenzene. AIMS Materials Science, 2017, 4(3): 738-754. doi: 10.3934/matersci.2017.3.738 |
We describe the macroscopic behavior of evolutions by crystalline curvature of planar sets in a chessboard-like medium, modeled by a periodic forcing term. We show that the underlying microstructure may produce both pinning and confinement effects on the geometric motion.
The physical phenomena of real world can effectively be modeled by making use of the theory of derivatives and integrals of fractional order. In this sense, the nonlinear fractional order evolution equations (NLFEEs) have recently become a burning topic to the researchers for searching their exact traveling wave solutions to depict the physical phenomena due to the nonlinear mechanisms arisen in various fields. The use of nonlinear equations is extensive as the nonlinearity exists everywhere in the world. NLFEEs have been attracted great interest due to their frequent appearance in many applications such as in biology, physics, chemistry, electromagnetic, polymeric materials, neutron point kinetic model, control and vibration, image and signal processing, system identifications, the finance, acoustics and fluid dynamics [1,2,3]. Many researchers have offered different approaches to construct analytic and numerical solutions to NLFEEs as well as NLEEs and put them forward for searching traveling wave solutions, such as the exponential decay law [4], the Ibragimov's nonlocal conservation method [5], the reproducing kernel method [6], the Jacobi elliptic function method [7], the $(G'/G)$-expansion method and its various modifications [8,9,10,11,12], the Exp-function method [13,14], the sub-equation method [15,16], the first integral method [17,18], the functional variable method [19], the modified trial equation method [20,21], the simplest equation method [22], the Lie group analysis method [23], the fractional characteristic method [24], the auxiliary equation method [25,26], the finite element method [27], the differential transform method [28], the Adomian decomposition method [29,30], the variational iteration method [31], the finite difference method [32], the various homotopy perturbation method [33,34,35,36,37] and the He's variational principle [38] etc. But no method is uniquely appreciable to investigate the exact solutions to all kind of NLFEEs. That is why; it is very much needed to introduce new method. In this study, we implemented recently established effectual and reliable productive method, called the fractional generalized $(D_\xi ^\alpha G/G)$-expansion method to construct closed form analytic wave solutions to some NLFEEs in the sense of conformable fractional derivative [39]. The results obtained throughout the article have been compared with those existing in the literature and shown that the achieved solutions are new and much more general. We have finally concluded that the solutions might bring up their importance through the contribution and be recorded in the literature.
A new and simple definition of derivative for fractional order introduced by Khalil et al. [39] is called conformable fractional derivative. This definition is analogous to the ordinary derivative
$ \frac{{d\psi }}{{dx}} = \mathop {\lim }\limits_{\varepsilon \to 0} \, \frac{{\psi (x + \varepsilon ) - \psi (x)}}{\varepsilon }, $ |
where $\psi (x):[0, \, \infty] \to {\mathbf{R}}$ and $x > 0$. According to this classical definition, $\frac{{d({x^n})}}{{dx}} = n{x^{n - 1}}$. According to this perception, Khalil has introduced $\alpha $ order fractional derivative of $\psi $as
$ {T_\alpha }\psi (x) = \mathop {\lim }\limits_{\varepsilon \to 0} \, \frac{{\psi (x + \varepsilon \, {x^{1 - \alpha }}) - \psi (x)}}{\varepsilon }$ , $0 < \alpha \leqslant 1. $ |
If the function $\psi $ is $\alpha $-differentiable in $(0, \, r)$ for $r > 0$ and $\mathop {\lim }\limits_{x \to {0^ + }} \, {T_\alpha }\psi (x)$ exists, then the conformable derivative at $x = 0$ is defined as ${T_\alpha }\psi (0) = \mathop {\lim }\limits_{x \to {0^ + }} \, {T_\alpha }\psi (x)$. The conformable integral of $\psi $ is
$ I_\alpha ^r\psi (x) = \int_r^x {\frac{{\psi (t)}}{{{t^{1 - \alpha }}}}dt} $, $r \geqslant 0$, $0 < \alpha \leqslant 1. $ |
This integral represents usual Riemann improper integral.
The conformable fractional derivative satisfies the following useful properties [39]:
If the functions $u(x)$ and $v(x)$ are $\alpha $-differentiable at any point$x > 0$, for $\alpha \in (0, \, 1]$, then
(a) ${T_\alpha }(au + bv) = a{T_\alpha }(u) + b{T_\alpha }(v)$ $\forall \, a, \, b \in {\mathbf{R}}$.
(b) ${T_\alpha }({x^n}) = n\, {x^{n - \alpha }}$ $\forall \, n \in {\mathbf{R}}$.
(c) ${T_\alpha }(c) = 0$, where $c$ is any constant.
(d) ${T_\alpha }(uv) = u{T_\alpha }(v) + v{T_\alpha }(u)$.
(e) ${T_\alpha }(u/v) = \frac{{v{T_\alpha }(u) - u{T_\alpha }(v)}}{{{v^2}}}$.
(f) if $u$ is differentiable, then ${T_\alpha }(u)(x) = {x^{1 - \alpha }}\frac{{du}}{{dx}}(x)$.
Many researchers used this new derivative of fractional order in physical applications due to its convenience, simplicity and usefulness [40,41,42].
Consider a nonlinear partial differential equation of fractional order in the independent variables $t, \, {x_1}, \, {x_2}, \, ..., \, {x_n}$ as
$ F(u, \, D_t^\alpha u, \, D_{{x_1}}^\alpha u, \, D_{{x_2}}^\alpha u, \, ..., \, D_{{x_n}}^\alpha u, \, D_t^{2\alpha }u, \, D_{{x_1}}^{2\alpha }u, \, D_{{x_2}}^{2\alpha }u, \, ..., \, D_{{x_n}}^{2\alpha }u, \, ...) = 0, $ | (2.2.1) |
where $F$ is a polynomial in $u(t, \, {x_1}, \, {x_2}, \, ..., \, \, {x_n})$ and it's various conformable fractional derivatives. The main steps of the fractional generalized $(D_\xi ^\alpha G/G)$-expansion method referred as follows:
Step 1: Use the wave transformation
$ \xi = \xi (t, \, {x_1}, \, {x_2}, \, ..., \, {x_n}), {u_i} = {u_i}(t,\,{x_1},\,{x_2},\,...,\,{x_n}) = {U_i}(\xi ) $ | (2.2.2) |
to reduce Eq. (2.2.1) to the following ordinary differential equation of fractional order with respect to the variable $\xi $:
$ P(U, \, D_\xi ^\alpha U, \, D_\xi ^{2\alpha }U, \, ...) = 0, $ | (2.2.3) |
Take anti-derivative of Eq. (2.2.3), if possible, one or more times and the integral constant can be set to zero as soliton solutions are sought.
Step 2: Assume that Eq. (2.2.3) has solution in the form
$ u(\xi ) = \sum\limits_{i = 0}^n {{a_i}{{(d + D_\xi ^\alpha G/G)}^i}} + \sum\limits_{i = 1}^n {{b_i}{{(d + D_\xi ^\alpha G/G)}^{ - i}}}, $ | (2.2.4) |
where ${a_i}(i = 0, \, 1, \, 2, \, ..., \, n)$, ${b_i}(i = \, 1, \, 2, \, 3, \, ..., \, n)$ and $d$ are arbitrary constants with at least one of ${a_n}$ and ${b_n}$ is nonzero and $G = G(\xi)$ satisfies the auxiliary equation
$ AGD_\xi ^{2\alpha }G - BGD_\xi ^\alpha G - E{G^2} - C{(D_\xi ^\alpha G)^2} = 0, $ | (2.2.5) |
where $0 < \alpha \leqslant 1$ and $D_\xi ^\alpha G(\xi)$stands for the conformable fractional derivative $G(\xi)$ of order $\alpha $ with respect to $\xi $; $A, \, B, \, C$ and $E$ are real parameters.
Making use of the transformation $G(\xi) = H(\eta)$, $\eta = {\xi ^\alpha }/\alpha $, Eq. (2.2.5) turns into the equation
$ AHH'' - BHH' - E{H^2} - C{(H')^2} = 0, $ | (2.2.6) |
whose solutions are well-known. Utilizing the solutions in Ref. [10] of Eq. (2.2.6) together with the transformation $D_\xi ^\alpha G(\xi) = D_\xi ^\alpha H(\eta) = H'(\eta)D_\xi ^\alpha \eta = H'(\eta)$, which can be derived by using conformable fractional derivative, we can easily obtain the following solutions to Eq. (2.2.5):
Family 1: When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi > 0$,
$ (D_\xi ^\alpha G/G) = \frac{B}{{2\psi }} + \frac{{\sqrt \Omega }}{{2\psi }}\frac{{{C_1}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} $ | (2.2.7) |
Family 2: When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi < 0$,
$ (D_\xi ^\alpha G/G) = \frac{B}{{2\psi }} + \frac{{\sqrt { - \Omega } }}{{2\psi }}\frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} $ | (2.2.8) |
Family 3: When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi = 0$,
$ (D_\xi ^\alpha G/G) = \frac{B}{{2\psi }} + \frac{{\alpha \, {C_2}}}{{{C_1}\alpha + {C_2}{\xi ^\alpha }}} $ | (2.2.9) |
Family 4: When $B = 0$, $\psi = A - C$ and $\Delta = \psi E > 0$,
$ (D_\xi ^\alpha G/G) = \frac{{\sqrt \Delta }}{\psi }\frac{{{C_1}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}} $ | (2.2.10) |
Family 5: When $B = 0$, $\psi = A - C$ and $\Delta = \psi E < 0$,
$ (D_\xi ^\alpha G/G) = \frac{{\sqrt { - \Delta } }}{\psi }\frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}} $ | (2.2.11) |
Step 3: Take the homogeneous balance between the highest order linear and nonlinear terms appearing in Eq. (2.2.3) to determine the positive constant $n$.
Step 4: Using the value of $n$ obtained in step 3, Eq. (2.2.3) along with Eqs. (2.2.4), (2.2.5) makes available polynomials in ${(d + D_\xi ^\alpha G/G)^n}$ $(n = 0, \, 1, \, 2, \, ...)$ and ${(d + D_\xi ^\alpha G/G)^{ - n}}$ $(n = \, 1, \, 2, \, 3, \, ...)$. Equalize each coefficient of these polynomials to zero yield a system of algebraic equations for ${a_i}(i=0,1,2,...)$,$bi
Step 5: Eq. (2.2.4) together with Eqs. (2.2.7)–(2.2.11) and the values appeared in step 4 provides traveling wave solutions of the nonlinear evolution equation (2.2.1) in closed form.
In this section, the closed form traveling wave solutions to the suggested equations are examined.
Consider the space time fractional (2+1)-dimensional dispersive long wave equations
$
\left. ∂2αu∂yα∂tα+∂2αv∂x2α+∂α(u(∂αu/∂xα))∂yα=0∂αv∂tα+∂αu∂xα+∂α(uv)∂xα+∂3αu∂x2α∂yα=0 \right\},
$
|
(3.1.1) |
where $0 < \alpha \leqslant 1$; the notation $\frac{{{\partial ^\alpha }u}}{{\partial {x^\alpha }}}$ denotes the $\alpha $-order partial derivative of $u$ with respect to $x$ and the other notations are so. This system of equations was first obtained by Boiti et al. [43] as compatibility condition for a weak Lax pair.
The composite transformation
$ u(t, \, x, \, y) = U(\xi ), v(t, \, x, \, y) = V(\xi ), \xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t, $ | (3.1.2) |
where $k$, $l$ and $w$ are constants, with the aid of chain rule
$ D_x^\alpha U = \frac{{{\partial ^\alpha }U}}{{\partial {x^\alpha }}} = \frac{{{\partial ^\alpha }U}}{{\partial {\xi ^\alpha }}}.\frac{{\partial {\xi ^\alpha }}}{{\partial {x^\alpha }}} = \frac{{{\partial ^\alpha }U}}{{\partial {\xi ^\alpha }}}.{\left( {\frac{{\partial \xi }}{{\partial x}}} \right)^\alpha } = k\, D_\xi ^\alpha U, $ |
forces Eq. (3.1.1) to take the form
$
\left. lwD2αξU+k2D2αξV+kl(UD2αξU+(DαξU)2)=0wDαξV+kDαξU+kDαξ(UV)+k2lD3αξU=0 \right\}
$
|
(3.1.3) |
The positive constant $n$ under the homogeneous balance from Eq. (3.1.3) reduces Eq. (2.2.4) into the form
$
\left. U(ξ)=a0+a1φ+b1φ−1V(ξ)=c0+c1φ+c2φ2+d1φ−1+d2φ−2 \right\},
$
|
(3.1.4) |
where $\varphi = (d + D_\xi ^\alpha G/G)$. Eq. (3.1.3) with the aid of Eq. (3.1.4) and Eq. (2.2.5) produces a polynomial in $\varphi $. Setting each coefficient of this polynomial to zero gives a set of algebraic equations for the constants in Eq. (3.1.4). Solving these equations by the computational software Maple present the following results:
$
Set−1:a0=±1Ak3/2{k3(2dψ+B)∓Aw√k},a1=∓2Ak3/2ψ,b1=∓2k3/2A(d2ψ+Bd−E),c1=2k2lψA2(2dψ+B),c2=−2A2k2lψ2,d1=2k2lA2(2dψ+B)(d2ψ+Bd−E),c0=−1,d2=−2k2lA2(d2ψ+Bd−E)2
$
|
(3.1.5) |
$
Set−2:a0=±1Ak3/2{k3(2dψ+B)∓Aw√k},a1=0,b1=∓2k3/2A(d2ψ+Bd−E),c1=0,c0=−1A2{2k2lψ(d2ψ+Bd−E)+A2},d1=2k2lA2{(2d2ψ+3Bd−2E)dψ+B2d−BE},c2=0,d2=−2k2lA2{d2ψ(d2ψ+2Bd−2E)+E2+B2d2−2BdE}
$
|
(3.1.6) |
$
Set−3:a0=±1Ak3/2{k3(2dψ+B)∓Aw√k},a1=∓2Ak3/2ψ,b1=0,c1=2k2lψA2(2dψ+B),c0=−1A2{k2lψ(2d2ψ+2Bd−2E)+A2},c2=−2A2k2lψ2,d1=0,d2=0
$
|
(3.1.7) |
Putting Eqs. (3.1.5)–(3.1.6) into Eq. (3.1.4) yields
$
U1(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓2Ak3/2ψ(d+DαξG/G)∓2k3/2A(d2ψ+Bd−E)(d+DαξG/G)−1
$
|
(3.1.8) |
$
V1(ξ)=−1+2k2lψA2(2dψ+B)(d+DαξG/G)−2A2k2lψ2(d+DαξG/G)2+2k2lA2(2dψ+B)(d2ψ+Bd−E)(d+DαξG/G)−1−2k2lA2(d2ψ+Bd−E)2(d+DαξG/G)−2
$
|
(3.1.9) |
$ {U_2}(\xi ) = \pm \frac{1}{{A{k^{3/2}}}}\{ {k^3}(2d\psi + B) \mp Aw\sqrt k \} \mp \frac{{2{k^{3/2}}}}{A}({d^2}\psi + Bd - E)(d + D_\xi ^\alpha G/G) $ | (3.1.10) |
$
V2(ξ)=−1A2{2k2lψ(d2ψ+Bd−E)+A2}+2k2lA2{(2d2ψ+3Bd−2E)dψ+B2d−BE}(d+DαξG/G)−1−2k2lA2{d2ψ(d2ψ+2Bd−2E)+E2+B2d2−2BdE}(d+DαξG/G)−2
$
|
(3.1.11) |
$ {U_3}(\xi ) = \pm \frac{1}{{A{k^{3/2}}}}\{ {k^3}(2d\psi + B) \mp Aw\sqrt k \} \mp \frac{2}{A}{k^{3/2}}\psi (d + D_\xi ^\alpha G/G) $ | (3.1.12) |
$
V3(ξ)=−1A2{k2lψ(2d2ψ+2Bd−2E)+A2}+2k2lψA2(2dψ+B)(d+DαξG/G)−2A2k2lψ2(d+DαξG/G)2
$
|
(3.1.13) |
where $\xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t$.
Eqs. (3.1.8), (3.1.9) together with Eqs. (2.2.7)–(2.2.11) make available the following three types solutions in terms hyperbolic function, trigonometric function and rational function as:
When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi > 0$,
$
U11(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓2Ak3/2ψ{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}∓2k3/2A(d2ψ+Bd−E){d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−1
$
|
(3.1.14) |
$
V11(ξ)=−1+2k2lψA2(2dψ+B){d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−2A2k2lψ2{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}2+2k2lA2(2dψ+B)(d2ψ+Bd−E)×{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−1−2k2lA2(d2ψ+Bd−E)2{d+B2ψ+√Ω2ψC1sinhΦ+C2coshΦC1coshΦ+C2sinhΦ}−2
$
|
(3.1.15) |
where $\Phi = \frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}$.
Since ${C_1}$ and ${C_2}$ are arbitrary constants, if${C_1} \ne 0$ and ${C_2} = 0$, then Eqs. (3.1.14), (3.1.15) become
$
U11(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A{2dψ+B+√Ωtanh√Ωξα2Aα}∓4ψk3/2A(d2ψ+Bd−E){2dψ+B+√Ωtanh√Ωξα2Aα}−1
$
|
(3.1.16) |
$
V11(ξ)=−1+k2lA2(2dψ+B){2dψ+B+√Ωtanh√Ωξα2Aα}−k2l2A2{2dψ+B+√Ωtanh√Ωξα2Aα}2+4ψk2lA2(2dψ+B)(d2ψ+Bd−E)×{2dψ+B+√Ωtanh√Ωξα2Aα}−1−8ψ2k2lA2(d2ψ+Bd−E)2{2dψ+B+√Ωtanh√Ωξα2Aα}−2
$
|
(3.1.17) |
where $\xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t$.
When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi < 0$
$
U12(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A{2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}∓4ψk3/2A(d2ψ+Bd−E){2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−1
$
|
(3.1.18) |
$
V12(ξ)=−1+k2lA2(2dψ+B){2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−k2l2A2{2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}2+4k2lψA2(2dψ+B)(d2ψ+Bd−E){2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−1−8k2lψ2A2(d2ψ+Bd−E)2{2dψ+B+√−Ω−C1sinΦ+C2cosΦC1cosΦ+C2sinΦ}−2
$
|
(3.1.19) |
where $\Phi = \frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}$.
In particular, if ${C_1} \ne 0$ and ${C_2} = 0$, then Eqs. (3.1.18), (3.1.19) are simplified as
$
U12(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A(2dψ+B−√−ΩtanΦ)∓4ψk3/2A(d2ψ+Bd−E)(2dψ+B−√−ΩtanΦ)−1
$
|
(3.1.20) |
$
V12(ξ)=−1+k2lA2(2dψ+B)(2dψ+B−√−ΩtanΦ)−k2l2A2(2dψ+B−√−ΩtanΦ)2+4k2lψA2(2dψ+B)(d2ψ+Bd−E)(2dψ+B−√−ΩtanΦ)−1−8k2lψ2A2(d2ψ+Bd−E)2(2dψ+B−√−ΩtanΦ)−2
$
|
(3.1.21) |
where $\Phi = \frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}$ and $\xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t$.
When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi = 0$,
$
U13(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A{2dψ+B+2ψαC2C1α+C2ξα}∓4ψk3/2A(d2ψ+Bd−E){2dψ+B+2ψαC2C1α+C2ξα}−1
$
|
(3.1.22) |
$
V13(ξ)=−1+k2lA2(2dψ+B){2dψ+B+2ψαC2C1α+C2ξα}−k2l2A2{2dψ+B+2ψαC2C1α+C2ξα}2+4k2lψA2(2dψ+B)(d2ψ+Bd−E){2dψ+B+2ψαC2C1α+C2ξα}−1−8ψ2k2lA2(d2ψ+Bd−E)2{2dψ+B+2ψαC2C1α+C2ξα}−2
$
|
(3.1.23) |
If ${C_1} = 0$ and ${C_2} \ne 0$, then
$
U13(ξ)=±1Ak3/2{k3(2dψ+B)∓Aw√k}∓k3/2A(2dψ+B+2ψα/ξα)∓4ψk3/2A(d2ψ+Bd−E)(2dψ+B+2ψα/ξα)−1
$
|
(3.1.24) |
$
V13(ξ)=−1+k2lA2(2dψ+B)(2dψ+B+2ψα/ξα)−k2l2A2(2dψ+B+2ψα/ξα)2+4k2lψA2(2dψ+B)(d2ψ+Bd−E)(2dψ+B+2ψα/ξα)−1−8ψ2k2lA2(d2ψ+Bd−E)2(2dψ+B+2ψα/ξα)−2
$
|
(3.1.25) |
where $\xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t$.
When $B = 0$, $\psi = A - C$ and $\Delta = \psi E > 0$,
$
U14(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}∓2ψk3/2A(d2ψ−E){dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−1
$
|
(3.1.26) |
$
V14(ξ)=−1+4dψk2lA2{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−2A2k2l{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}2+4dk2lψ2A2(d2ψ−E){dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−1−2ψ2k2lA2(d2ψ−E)2{dψ+√ΔC1sinhL+C2coshLC1coshL+C2sinhL}−2
$
|
(3.1.27) |
Consider the arbitrary constants as ${C_1} \ne 0$ and ${C_2} = 0$, then
$
U14(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2(dψ+√ΔtanhL)∓2ψk3/2A(d2ψ−E)(dψ+√ΔtanhL)−1
$
|
(3.1.28) |
$
V14(ξ)=−1+4dψk2lA2(dψ+√ΔtanhL)−2A2k2l(dψ+√ΔtanhL)2+4dψ2k2lA2(d2ψ−E)(dψ+√ΔtanhL)−1−2ψ2k2lA2(d2ψ−E)2(dψ+√ΔtanhL)−2
$
|
(3.1.29) |
where $L = \frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}$ and $\xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t$.
When $B = 0$, $\psi = A - C$ and $\Delta = \psi E < 0$,
$
U15(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}∓2k3/2ψA(d2ψ−E){dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−1
$
|
(3.1.30) |
$
V15(ξ)=−1+4dψk2lA2{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−2A2k2l{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}2+4dψ2k2lA2(d2ψ−E){dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−1−2k2lψ2A2(d2ψ−E)2{dψ+√−Δ−C1sinM+C2cosMC1cosM+C2sinM}−2
$
|
(3.1.31) |
For particular case ${C_1} \ne 0$ and ${C_2} = 0$,
$
U15(ξ)=±1Ak3/2{2dψk3∓Aw√k}∓2Ak3/2(dψ−√−ΔtanM)∓2k3/2ψA(d2ψ−E)(dψ−√−ΔtanM)−1
$
|
(3.1.32) |
$
V15(ξ)=−1+4dψk2lA2(dψ−√−ΔtanM)−2A2k2l(dψ−√−ΔtanM)2+4dψ2k2lA2(d2ψ−E)(dψ−√−ΔtanM)−1−2k2lψ2A2(d2ψ−E)2(dψ−√−ΔtanM)−2
$
|
(3.1.33) |
where $M = \frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}$ and $\xi = {k^{1/\alpha }}x + {l^{1/\alpha }}y + {w^{1/\alpha }}t$.
Following the same procedure as above for Eqs. (3.1.10)–(3.1.13) together with Eqs. (2.2.7)–(2.2.11), we might obtain more general closed form traveling wave solutions to the space time fractional (2+1)-dimensional dispersive long wave equations in terms of hyperbolic function, trigonometric function and rational function. To avoid the disturbance of readers the results have not been recorded here.
Let us consider the (3+1)-dimensional space time fractional mKdV-ZK equation in the form
$ D_t^\alpha u + \delta {u^2}D_x^\alpha u + D_x^{3\alpha }u + D_x^\alpha (D_y^{2\alpha }u) + D_x^\alpha (D_z^{2\alpha }u) = 0, $ | (3.2.1) |
where $0 < \alpha \leqslant 1$ and $\delta $ is an arbitrary constant. This equation is derived for plasma comprised of cool and hot electrons and a species of fluid ions [44].
Using the fractional composite transformation
$ u(x, \, y, \, z, \, t) = U\, (\xi ), \xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\omega ^{1/\alpha }}\, t, $ | (3.2.2) |
where $l, \, \, m, \, \, n$ and $\omega $ are non-zero parameters, Eq. (3.2.1) is turned into the ordinary differential equation
$ - \omega \, D_\xi ^\alpha U + \delta \, l\, {U^2}D_\xi ^\alpha U + ({l^3} + l\, {m^2} + l\, {n^2})D_\xi ^{3\alpha }U = 0. $ | (3.2.3) |
The anti-derivative of Eq. (3.2.3) with integral constant zero possesses
$ - \omega \, U + \frac{{\delta \, l}}{3}\, {U^3} + ({l^3} + l\, {m^2} + l\, {n^2})D_\xi ^{2\alpha }U = 0. $ | (3.2.4) |
Considering the value of $n$ obtained by homogeneous balance to Eq. (3.2.4), Eq. (2.2.4) takes the form
$ U(\xi ) = {a_0} + {a_1}(d + D_\xi ^\alpha G/G) + {b_1}{(d + D_\xi ^\alpha G/G)^{ - 1}}, $ | (3.2.5) |
where at least one of ${a_1}$ and ${b_1}$ is non-zero.
Substitute Eq. (3.2.5) with the help of Eq. (2.2.5) into Eq. (3.2.4), we obtain a polynomial in $(d + D_\xi ^\alpha G/G)$. Equating each term of this polynomial to zero gives a set of algebraic equations for ${a_0}, \, \, {a_1}, \, \, {b_0}, \, \, {b_1}, \, \, $and $\omega $. Solving these equations by Maple gives the following set of solutions:
$
Set−1:a0=±(2dψ+B)A√3(l2+m2+n2)−2δ,a1=±ψδA√−6δ(l2+m2+n2),b1=0,ω=−l(l2+m2+n2)(4Eψ+B)2A2
$
|
(3.2.6) |
$
Set−2:a0=±(2dψ+B)2δA√−6δ(l2+m2+n2),ω=−l(l2+m2+n2)(4Eψ+B)2A2,a1=0,b1=∓(d2ψ+Bd−E)δA√−6δ(l2+m2+n2)
$
|
(3.2.7) |
Utilizing Eqs. (3.2.6), (3.2.7) into Eq. (3.2.5) yields the following general expressions for solutions:
$ {U_1}(\xi ) = \mp \frac{{\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{2A\delta }}(B - 2\psi D_\xi ^\alpha G/G) $ | (3.2.8) |
$ {U_2}(\xi ) = \pm \frac{{\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{2A\delta }}\{ 2d\psi + B - 2({d^2}\psi + Bd - E){(d + D_\xi ^\alpha G/G)^{ - 1}}\}, $ | (3.2.9) |
where $\xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{l({l^2} + {m^2} + {n^2})(4E\psi + B)}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t$.
Eq. (3.2.8) along with Eqs. (2.2.7)–(2.2.11) provides the following solutions in terms of hyperbolic, trigonometric and rational:
When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi > 0$,
$ {U_1}^1(\xi ) = \pm \frac{{\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{2A\delta }}\sqrt \Omega \frac{{{C_1}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} $ | (3.2.10) |
The choices for arbitrary constants as ${C_1} \ne 0$, ${C_2} = 0$, reduces Eq. (3.2.10) to
$ {U_1}^1(\xi ) = \pm \frac{{\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{2A\delta }}\sqrt \Omega \tanh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) $ | (3.2.11) |
where $\xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{l({l^2} + {m^2} + {n^2})(4E\psi + B)}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t$.
When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi < 0$,
$ {U_1}^2(\xi ) = \pm \frac{{\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{2A\delta }}\sqrt { - \Omega } \frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} $ | (3.2.12) |
The choices for arbitrary constants as ${C_1} \ne 0$, ${C_2} = 0$, reduces Eq. (3.2.12) to
$ {U_1}^2(\xi ) = \mp \frac{{\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{2A\delta }}\sqrt { - \Omega } \tan \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right), $ | (3.2.13) |
where $\xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{l({l^2} + {m^2} + {n^2})(4E\psi + B)}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t$.
When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi = 0$,
$ {U_1}^3(\xi ) = \pm \frac{{\psi \alpha \, {C_2}\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} }}{{A\delta ({C_1}\alpha + {C_2}{\xi ^\alpha })}} $ | (3.2.14) |
In particular, if ${C_1} = 0$, ${C_2} \ne 0$, then
$ {U_1}^3(\xi ) = \pm \frac{{\psi \alpha }}{{A\delta {\xi ^\alpha }}}\sqrt { - 6\delta ({l^2} + {m^2} + {n^2})} $ | (3.2.15) |
where $\xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{l({l^2} + {m^2} + {n^2})(4E\psi + B)}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t$.
When $B = 0$, $\psi = A - C$ and $\Delta = \psi E > 0$,
$ {U_1}^4(\xi ) = \pm \frac{{\sqrt { - 6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\left\{ {\frac{{{C_1}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}} \right\} $ | (3.2.16) |
For ${C_1} \ne 0$, ${C_2} = 0$, Eq. (3.2.16) becomes
$ {U_1}^4(\xi ) = \pm \frac{{\sqrt { - 6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\tanh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) $ | (3.2.17) |
where $\xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{4E\psi \, l({l^2} + {m^2} + {n^2})}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t$.
When $B = 0$, $\psi = A - C$ and $\Delta = \psi E < 0$,
$ {U_1}^5(\xi ) = \pm \frac{{\sqrt {6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\left\{ {\frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}} \right\} $ | (3.2.18) |
If ${C_1} \ne 0$, ${C_2} = 0$, Eq. (3.2.18) becomes
$ {U_1}^5(\xi ) = \mp \frac{{\sqrt {6\Delta \delta ({l^2} + {m^2} + {n^2})} }}{{A\delta }}\tan \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) $ | (3.2.19) |
where $\xi = {l^{1/\alpha }}\, x + {m^{1/\alpha }}\, y + {n^{1/\alpha }}\, z - {\left\{ { - \frac{{4E\psi \, l({l^2} + {m^2} + {n^2})}}{{2{A^2}}}} \right\}^{1/\alpha }}\, t$.
Making use of Eq. (3.2.9) as above will also provide further new and general exact traveling wave solutions in terms of hyperbolic, trigonometric and rational. For convenience of readers we have not record these all solutions in this study. Guner et al. [45] obtained only four solutions by $(G'/G)$-expansion method where as our applied fractional generalized $(D_\xi ^\alpha G/G)$-expansion method has ensured many solutions which are further new and general. To the best of our knowledge, these solutions have not been visible in any earlier study.
The following nonlinear space-time fractional modified regularized long-wave equation is considered to be examined for further exact traveling wave solutions:
$ D_t^\alpha u + \delta \, D_x^\alpha u + \tau \, {u^2}D_x^\alpha u - \eta \, D_t^\alpha D_x^{2\alpha }u = 0, 0 < \alpha \leqslant 1 $ | (3.3.1) |
where $\delta, \, \, \tau $and $\eta $ are constants. This equation proposed by Benjamin et al. to describe approximately the unidirectional propagation of long waves in certain dispersive systems is supposed to be alternative to the modified KdV equation. Eq. (3.3.1) has been modeled to demonstrate some physical phenomena like transverse waves in shallow water and magneto hydrodynamic waves in plasma and photon packets in nonlinear crystals [46,47,48].
The fractional complex transformation
$ u(x, \, t) = U\, (\xi ), \, \, \, \, \xi = x - {v^{1/\alpha }}\, t, $ | (3.3.2) |
reduces Eq. (3.3.1) to the ODE
$ (\delta - v)D_\xi ^\alpha U + \tau {U^2}D_\xi ^\alpha U + v\eta D_\xi ^{3\alpha }U = 0 $ | (3.3.3) |
Integrating Eq. (3.3.3) and setting integral constant to zero gives
$ (\delta - v)U + \frac{\tau }{3}{U^3} + \eta vD_\xi ^{2\alpha }U = 0 $ | (3.3.4) |
Taking homogeneous balance between highest order linear term and highest nonlinear term from Eq. (3.3.4) yields $n = 1$ and the solution Eq. (2.2.4) is reduced to
$ U(\xi ) = {a_0} + {a_1}(d + D_\xi ^\alpha G/G) + {b_1}{(d + D_\xi ^\alpha G/G)^{ - 1}} $ | (3.3.5) |
where at least one of ${a_1}$ and ${b_1}$ is nonzero.
Eq. (3.3.4) with the help of Eq. (2.2.5) and Eq. (3.3.5) makes a polynomial in $(d + D_\xi ^\alpha G/G)$. Set each coefficient of this polynomial to zero and obtain a system of equations for ${a_0}, \, \, {a_1}, \, \, {b_1}$ and $v$. Calculating these equations by Maple gives the following solutions:
$
Set−1:a0=±3lηδ(2dψ+B)√−3τηδ(2A2+4l2ηEψ+l2ηB2),a1=∓6lηδψ√−3τηδ(2A2+4l2ηEψ+l2ηB2),b1=0,v=2lδA22A2+4l2ηEψ+l2ηB2
$
|
(3.3.6) |
$
Set−2:a0=±3lηδ(2dψ+B)√−3τηδ(2A2+4l2ηEψ+l2ηB2),b1=∓6lηδ(d2ψ+Bd−E)√−3τηδ(2A2+4l2ηEψ+l2ηB2),a1=0,v=2lδA22A2+4l2ηEψ+l2ηB2
$
|
(3.3.7) |
Inserting the values appearing in Eq. (3.3.6) and Eq. (3.3.7) into Eq. (3.3.5) possesses the following expressions for solutions:
$ {U_1}(\xi ) = \pm \frac{{3l\eta \delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }}(B - 2\psi \, D_\xi ^\alpha G/G) $ | (3.3.8) |
$ {U_2}(\xi ) = \pm 3l\eta \delta \frac{{(2d\psi + B) - 2({d^2}\psi + Bd - E){{(d + D_\xi ^\alpha G/G)}^{ - 1}}}}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} $ | (3.3.9) |
where $\xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t$.
Eq. (3.3.8) with the help of Eqs. (2.2.7)–(2.2.11) provides the following solutions:
Case 1: When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi > 0$,
$ {U_1}^1(\xi ) = \mp \frac{{3l\eta \delta \sqrt \Omega }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \frac{{{C_1}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} $ | (3.3.10) |
Since ${C_1}$ and ${C_2}$ are arbitrary constants, one may choose${C_1} \ne 0$, ${C_2} = 0$ and under simplification Eq. (3.3.10) becomes
$ {U_1}^1(\xi ) = \mp \frac{{3l\eta \delta \sqrt \Omega }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \tanh \left( {\frac{{\sqrt \Omega \, {\xi ^\alpha }}}{{2A\alpha }}} \right) $ | (3.3.11) |
where $\xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t$.
Case 2: When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi < 0$,
$ {U_1}^2(\xi ) = \mp \frac{{3l\eta \delta \sqrt { - \Omega } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \frac{{ - {C_1}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right)}} $ | (3.3.12) |
In particular, if we choose ${C_1} \ne 0$, ${C_2} = 0$, then under simplification Eq. (3.3.12) reduces to
$ {U_1}^2(\xi ) = \pm \frac{{3l\eta \delta \sqrt { - \Omega } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \tan \left( {\frac{{\sqrt { - \Omega } \, {\xi ^\alpha }}}{{2A\alpha }}} \right) $ | (3.3.13) |
where $\xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t$.
Case 3: When $B \ne 0$, $\psi = A - C$ and $\Omega = {B^2} + 4E\psi = 0$,
$ {U_1}^3(\xi ) = \mp \frac{{3l\eta \delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \frac{{2\psi \alpha \, {C_2}}}{{{C_1}\alpha + {C_2}{\xi ^\alpha }}} $ | (3.3.14) |
If ${C_1} = 0$, ${C_2} \ne 0$, Eq. (3.3.14) is simplified to
$ {U_1}^3(\xi ) = \mp \frac{{6\psi \alpha l\eta \delta }}{{{\xi ^\alpha }\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} $ | (3.3.15) |
where $\xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2}}}} \right)^{1/\alpha }}\, t$.
Case 4: When $B = 0$, $\psi = A - C$ and $\Delta = \psi E > 0$,
$ {U_1}^4(\xi ) = \mp \frac{{6l\eta \delta \sqrt \Delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi )} }} \times \, \frac{{{C_1}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cosh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sinh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right)}} $ | (3.3.16) |
For particular values of the arbitrary constants as ${C_1} \ne 0$, ${C_2} = 0$, Eq. (3.3.16) possesses
$ {U_1}^4(\xi ) = \mp \frac{{6l\eta \delta \sqrt \Delta }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi )} }} \times \, \tanh \left( {\frac{{\sqrt \Delta \, {\xi ^\alpha }}}{{A\alpha }}} \right) $ | (3.3.17) |
where $\xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi }}} \right)^{1/\alpha }}\, t$.
Case 5: When $B = 0$, $\psi = A - C$ and $\Delta = \psi E < 0$,
$ {U_1}^5(\xi ) = \pm \frac{{6l\eta \delta \sqrt { - \Delta } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi )} }} \times \frac{{{C_1}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}}{{{C_1}\cos \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) + {C_2}\sin \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right)}} $ | (3.3.18) |
The choice of the arbitrary constants as ${C_1} \ne 0$, ${C_2} = 0$ forces Eq. (3.3.18) to turn into
$ {U_1}^5(\xi ) = \pm \frac{{6l\eta \delta \sqrt { - \Delta } }}{{\sqrt { - 3\tau \eta \delta (2{A^2} + 4{l^2}\eta E\psi + {l^2}\eta {B^2})} }} \times \tan \left( {\frac{{\sqrt { - \Delta } \, {\xi ^\alpha }}}{{A\alpha }}} \right) $ | (3.3.19) |
where $\xi = x - {\left({\frac{{2l\delta {A^2}}}{{2{A^2} + 4{l^2}\eta E\psi }}} \right)^{1/\alpha }}\, t$.
The obtained solutions in terms of hyperbolic function, trigonometric function and rational function are new and more general. In similar way, much more new and general solutions of the closed form can be constructed by using Eq. (3.3.9) along with Eqs. (2.2.7)–(2.2.11). The solutions obtained by modified simple equation method [49] and the improved fractional Riccati expansion method [50] are only in terms of hyperbolic, where as we achieved those in terms of hyperbolic function, trigonometric function and rational function in explicitly general form. We have not recorded these results to avoid the annoyance of the readers. On comparison, our solutions are general and much more in number than those of [49,50].
The complex physical mechanism of real world can be illustrated by means of graphical representations. The graphs (Figures 1–3) drown for the exact solutions obtained in this study has been appeared in different shape like kink type soliton, bell shape soliton, singular bell shape soliton, anti bell shape soliton, periodic solution, singular periodic solution etc. We have recorded here only few graphs rather than all for making it easily readable.
This article has been put in writing further new and general traveling wave solutions in closed form to the space time fractional (2+1)-dimensional dispersive long wave equations, the (3+1)-dimensional space time fractional mKdV-ZK equation and the space time fractional modified regularized long-wave equation. The solutions have successfully constructed in terms of hyperbolic function, trigonometric function and rational function by the newly established fractional generalized $(D_\xi ^\alpha G/G)$-expansion method. To the best of our knowledge, these results are not available in the literature. The obtained solutions might play important roles to analyze the mechanisms of complex physical phenomena of the real world. The performance of the suggested method is highly appreciable for its easiest productive behavior and worthy for revealing rare solutions to more fractional order nonlinear evolution equations. Since each nonlinear equation has its own anomalous characteristic, the future research might be how the suggested method is compatible for revealing the solutions to other fractional nonlinear evolution equations.
All authors have contributed to the manuscript equally. We all discussed the outcomes of the proposed method and approved the final manuscript.
[1] |
Flat flow is motion by crystalline curvature for curves with crystalline energies. J. Differential Geometry (1995) 42: 1-22. ![]() |
[2] |
Homogenization of fronts in highly heterogeneous media. SIAM J. Math. Anal. (2011) 43: 212-227. ![]() |
[3] | Approximation to driven motion by crystalline curvature in two dimensions. Adv. Math. Sci. and Appl. (2000) 10: 467-493. |
[4] |
Characterization of facet breaking for nonsmooth mean curvature flow in the convex case. Interfaces Free Bound. (2001) 3: 415-446. ![]() |
[5] |
On a crystalline variational problem, part Ⅰ: First variation and global $L^∞$ regularity. Arch. Rational Mech. Anal (2001) 57: 165-191. ![]() |
[6] |
On a crystalline variational problem, part Ⅱ: $BV$ regularity and structure of minimizers on facets. Arch. Rational Mech. Anal. (2001) 157: 193-217. ![]() |
[7] |
A. Braides,
$Γ$-convergence for Beginners, Oxford University Press, 2002. doi: 10.1093/acprof:oso/9780198507840.001.0001
![]() |
[8] |
A. Braides, Local Minimization, Variational Evolution and Γ–convergence, Lecture Notes in
Mathematics, Springer, Berlin, 2014. doi: 10.1007/978-3-319-01982-6
![]() |
[9] |
Crystalline Motion of Interfaces Between Patterns. J. Stat. Phys. (2016) 165: 274-319. ![]() |
[10] |
Motion and pinning of discrete interfaces. Arch. Ration. Mech. Anal. (2010) 195: 469-498. ![]() |
[11] |
A. Braides, A. Malusa and M. Novaga, Crystalline evolutions with rapidly oscillating forcing
terms, to appear on Ann. Scuola Norm. Sci. doi: 10.2422/2036-2145.201707_011
![]() |
[12] |
Motion of discrete interfaces in periodic media. Interfaces Free Bound. (2013) 15: 451-476. ![]() |
[13] |
Motion of discrete interfaces through mushy layers. J. Nonlinear Sci. (2016) 26: 1031-1053. ![]() |
[14] |
Homogenization of a semilinear heat equation. J. Éc. polytech. Math. (2017) 4: 633-660. ![]() |
[15] |
Curve shortening flow in heterogeneous media. Interfaces and Free Bound. (2011) 13: 485-505. ![]() |
[16] |
Existence and uniqueness for a crystalline mean curvature flow. Comm. Pure Appl. Math. (2017) 70: 1084-1114. ![]() |
[17] | A. Chambolle, M. Morini, M. Novaga and M. Ponsiglione, Existence and uniqueness for anisotropic and crystalline mean curvature flows, preprint, arXiv: 1702.03094. |
[18] |
Approximation of the anisotropic mean curvature flow. Math. Models Methods Appl. Sci. (2007) 17: 833-844. ![]() |
[19] |
Discontinuous Dynamical Systems: A tutorial on solutions, nonsmooth analysis, and stability. IEEE Control Systems Magazine (2008) 28: 36-73. ![]() |
[20] |
A. F. Filippov,
Differential Equations with Discontinuous Righthand Sides, vol. 18 of Mathematics and Its Applications. Dordrecht, The Netherlands, Kluwer Academic Publishers, 1988. doi: 10.1007/978-94-015-7793-9
![]() |
[21] | Y. Giga, Surface Evolution Equations. A Level Set Approach, vol. 99 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 2006. |
[22] |
A comparison theorem for crystalline evolution in the plane. Quarterly of Applied Mathematics (1996) 54: 727-737. ![]() |
[23] |
Facet bending in the driven crystalline curvature flow in the plane. J. Geom. Anal. (2008) 18: 109-147. ![]() |
[24] |
Facet bending driven by the planar crystalline curvature with a generic nonuniform forcing term. J. Differential Equations (2009) 246: 2264-2303. ![]() |
[25] | M. E. Gurtin, Thermomechanics of Evolving Phase Boundaries in the Plane, Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1993. |
[26] |
Closed curves of prescribed curvature and a pinning effect. Netw. Heterog. Media (2011) 6: 77-88. ![]() |
[27] |
Crystalline variational problems. Bull. Amer. Math. Soc. (1978) 84: 568-588. ![]() |
[28] | Geometric Models of Crystal Growth. Acta Metall. Mater. (1992) 40: 1443-1474. |
1. | Rajeev Ranjan, Mirko Hansen, Pablo Mendoza Ponce, Lait Abu Saleh, Dietmar Schroeder, Martin Ziegler, Hermann Kohlstedt, Wolfgang H. Krautschneider, 2018, Integration of Double Barrier Memristor Die with Neuron ASIC for Neuromorphic Hardware Learning, 978-1-5386-4881-0, 1, 10.1109/ISCAS.2018.8350996 | |
2. | Finn Zahari, Eduardo Pérez, Mamathamba Kalishettyhalli Mahadevaiah, Hermann Kohlstedt, Christian Wenger, Martin Ziegler, Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices, 2020, 10, 2045-2322, 10.1038/s41598-020-71334-x | |
3. | Geoffrey W. Burr, Robert M. Shelby, Abu Sebastian, Sangbum Kim, Seyoung Kim, Severin Sidler, Kumar Virwani, Masatoshi Ishii, Pritish Narayanan, Alessandro Fumarola, Lucas L. Sanches, Irem Boybat, Manuel Le Gallo, Kibong Moon, Jiyoo Woo, Hyunsang Hwang, Yusuf Leblebici, Neuromorphic computing using non-volatile memory, 2017, 2, 2374-6149, 89, 10.1080/23746149.2016.1259585 | |
4. | Chen Wang, Huaqiang Wu, Bin Gao, Teng Zhang, Yuchao Yang, He Qian, Conduction mechanisms, dynamics and stability in ReRAMs, 2018, 187-188, 01679317, 121, 10.1016/j.mee.2017.11.003 | |
5. | Sven Dirkmann, Mirko Hansen, Martin Ziegler, Hermann Kohlstedt, Thomas Mussenbrock, The role of ion transport phenomena in memristive double barrier devices, 2016, 6, 2045-2322, 10.1038/srep35686 | |
6. | Rajeev Ranjan, Pablo Mendoza Ponce, Anirudh Kankuppe, Bibin John, Lait Abu Saleh, Dietmar Schroeder, Wolfgang H. Krautschneider, 2016, Programmable memristor emulator ASIC for biologically inspired memristive learning, 978-1-5090-1288-6, 261, 10.1109/TSP.2016.7760874 | |
7. | Dong Won Kim, Woo Seok Yi, Jin Young Choi, Kei Ashiba, Jong Ung Baek, Han Sol Jun, Jae Joon Kim, Jea Gun Park, Double MgO-Based Perpendicular Magnetic Tunnel Junction for Artificial Neuron, 2020, 14, 1662-453X, 10.3389/fnins.2020.00309 | |
8. | Krishna Kanth Neelisetty, Sebastian Gutsch, Falk von Seggern, Alan Molinari, Alexander Vahl, Xiaoke Mu, Torsten Scherer, Chakravadhanula VS Kiran, Christian Kübel, Electron Beam Effects on Silicon Oxide Films – Structure and Electrical Properties, 2018, 24, 1431-9276, 1810, 10.1017/S1431927618009534 | |
9. | Sagarvarma Sayyaparaju, Md Musabbir Adnan, Sherif Amer, Garrett S. Rose, Device-aware Circuit Design for Robust Memristive Neuromorphic Systems with STDP-based Learning, 2020, 16, 1550-4832, 1, 10.1145/3380969 | |
10. | Mirko Hansen, Finn Zahari, Martin Ziegler, Hermann Kohlstedt, Double-Barrier Memristive Devices for Unsupervised Learning and Pattern Recognition, 2017, 11, 1662-453X, 10.3389/fnins.2017.00091 | |
11. | Mirko Hansen, Finn Zahari, Hermann Kohlstedt, Martin Ziegler, Unsupervised Hebbian learning experimentally realized with analogue memristive crossbar arrays, 2018, 8, 2045-2322, 10.1038/s41598-018-27033-9 | |
12. | Hugh G. Manning, Fabio Niosi, Claudia Gomes da Rocha, Allen T. Bellew, Colin O’Callaghan, Subhajit Biswas, Patrick F. Flowers, Benjamin J. Wiley, Justin D. Holmes, Mauro S. Ferreira, John J. Boland, Emergence of winner-takes-all connectivity paths in random nanowire networks, 2018, 9, 2041-1723, 10.1038/s41467-018-05517-6 | |
13. | Emilio Pérez-Bosch Quesada, Rocío Romero-Zaliz, Eduardo Pérez, Mamathamba Kalishettyhalli Mahadevaiah, John Reuben, Markus Andreas Schubert, Francisco Jiménez-Molinos, Juan Bautista Roldán, Christian Wenger, Toward Reliable Compact Modeling of Multilevel 1T-1R RRAM Devices for Neuromorphic Systems, 2021, 10, 2079-9292, 645, 10.3390/electronics10060645 | |
14. | Sven Dirkmann, Martin Ziegler, Mirko Hansen, Hermann Kohlstedt, Jan Trieschmann, Thomas Mussenbrock, Kinetic simulation of filament growth dynamics in memristive electrochemical metallization devices, 2015, 118, 0021-8979, 214501, 10.1063/1.4936107 | |
15. | Rajeev Ranjan, Alexandros Kyrmanidis, Wolf Lukas Hellweg, Pablo Mendoza Ponce, Lait Abu Saleh, Dietmar Schroeder, Wolfgang H. Krautschneider, 2016, Integrated circuit with memristor emulator array and neuron circuits for neuromorphic pattern recognition, 978-1-5090-1288-6, 265, 10.1109/TSP.2016.7760875 | |
16. | Krishna Kanth Neelisetty, Xiaoke Mu, Sebastian Gutsch, Alexander Vahl, Alan Molinari, Falk von Seggern, Mirko Hansen, Torsten Scherer, Margit Zacharias, Lorenz Kienle, VS Kiran Chakravadhanula, Christian Kübel, Electron Beam Effects on Oxide Thin Films—Structure and Electrical Property Correlations, 2019, 25, 1431-9276, 592, 10.1017/S1431927619000175 | |
17. | Eduardo Pérez, Antonio Javier Pérez-Ávila, Rocío Romero-Zaliz, Mamathamba Kalishettyhalli Mahadevaiah, Emilio Pérez-Bosch Quesada, Juan Bautista Roldán, Francisco Jiménez-Molinos, Christian Wenger, Optimization of Multi-Level Operation in RRAM Arrays for In-Memory Computing, 2021, 10, 2079-9292, 1084, 10.3390/electronics10091084 | |
18. | Sven Dirkmann, Jan Trieschmann, Thomas Mussenbrock, 2024, Chapter 6, 978-3-031-36704-5, 159, 10.1007/978-3-031-36705-2_6 | |
19. | Baki Gökgöz, Fatih Gül, Tolga Aydın, An overview memristor based hardware accelerators for deep neural network, 2024, 36, 1532-0626, 10.1002/cpe.7997 | |
20. | Finn Zahari, Martin Ziegler, Pouya Doerwald, Christian Wenger, Hermann Kohlstedt, 2024, Chapter 2, 978-3-031-36704-5, 43, 10.1007/978-3-031-36705-2_2 |