Homogenization of convection-diffusion equation in infinite cylinder

  • Received: 01 February 2010 Revised: 01 May 2010
  • Primary: 35B27, 35B40, 35K20; Secondary: 35B25.

  • The paper deals with a periodic homogenization problem for a non-stationary convection-diffusion equation stated in a thin infinite cylindrical domain with homogeneous Neumann boundary condition on the lateral boundary. It is shown that homogenization result holds in moving coordinates, and that the solution admits an asymptotic expansion which consists of the interior expansion being regular in time, and an initial layer.

    Citation: Iryna Pankratova, Andrey Piatnitski. Homogenization of convection-diffusion equation in infinite cylinder[J]. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111

    Related Papers:

    [1] Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111
    [2] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [3] Feiyang Peng, Yanbin Tang . Inverse problem of determining diffusion matrix between different structures for time fractional diffusion equation. Networks and Heterogeneous Media, 2024, 19(1): 291-304. doi: 10.3934/nhm.2024013
    [4] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [5] Robert Carlson . Myopic models of population dynamics on infinite networks. Networks and Heterogeneous Media, 2014, 9(3): 477-499. doi: 10.3934/nhm.2014.9.477
    [6] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [7] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [8] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [9] Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes . A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4(4): 755-788. doi: 10.3934/nhm.2009.4.755
    [10] Gaziz F. Azhmoldaev, Kuanysh A. Bekmaganbetov, Gregory A. Chechkin, Vladimir V. Chepyzhov . Homogenization of attractors to reaction–diffusion equations in domains with rapidly oscillating boundary: Critical case. Networks and Heterogeneous Media, 2024, 19(3): 1381-1401. doi: 10.3934/nhm.2024059
  • The paper deals with a periodic homogenization problem for a non-stationary convection-diffusion equation stated in a thin infinite cylindrical domain with homogeneous Neumann boundary condition on the lateral boundary. It is shown that homogenization result holds in moving coordinates, and that the solution admits an asymptotic expansion which consists of the interior expansion being regular in time, and an initial layer.


    [1] G. Allaire and A. Raphael, Homogenization of a convection-diffusion model with reaction in a porous medium, (English, French summary) C. R. Math. Acad. Sci. Paris, 344 (2007), 523-528.
    [2] D. G. Aronson and J. Serrin, Local behavior of solutions of quasilinear parabolic equations, Arch. Rational Mech. Anal., 25 (1967), 81-122. doi: 10.1007/BF00281291
    [3] D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa (3), 22 (1968), 607-694.
    [4] N. S. Bakhvalov and G. P. Panasenko, "Homogenization: Averaging Processes in Periodic Media," Kluwer, Dordrecht/Boston/London, 1989.
    [5] A. Bensoussan, J.-L. Lions and G. Papanicolaou, "Asymptotic Analysis for Periodic Structure," Studies in Mathematics and its Applications, 5. North-Holland Publishing Co., Amsterdam-New York, 1978.
    [6] P. Donato and A. Piatnitski, Averaging of nonstationary parabolic operators with large lower order terms, Multi Scale Problems and Asymptotic Analysis, GAKUTO Internat. Ser. Math. Sci. Appl., 24 (2005), 153-165.
    [7] M. V. Kozlova and G. P. Panasenko, Averaging a three-dimensional problem of elasticity theory in a nonhomogeneous rod, Comput. Math. Math. Phys., 31 (1992), 128-131.
    [8] O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, "Linear and Quasilinear Equations of Parabolic Type," Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I. 1967.
    [9] I. Pankratova and A. Piatnitski, On the behaviour at infinity of solutions to stationary convection-diffusion equation in a cylinder, DCDS-B, 11 (2009), 935-970. doi: 10.3934/dcdsb.2009.11.935
    [10] L. Trabucho and J. M. Viaño, Derivation of generalized models for linear elastic beams by asymptotic expansion methods, Applications of multiple scaling in mechanis (Paris, 1986), Rech. Math. Appl., 4, Masson, Paris (1987), 302-315.
    [11] Z. Tutek, A homogenized model of rod in linear elasticity, Applications of multiple scaling in mechanis (Paris, 1986), Rech. Math. Appl., 4, Masson, Paris (1987), 302-315.
    [12] V. V. Zhikov, S. M. Kozlov and O. A. Oleinik, "Homogenization of Differential Operators and Integral Functionals," Springer-Verlag, Berlin, 1994.
    [13] V. V. Zhikov, On an extension and an application of the two-scale convergence method, Sb. Math., 191 (2000), 973-1014. doi: 10.1070/SM2000v191n07ABEH000491
  • This article has been cited by:

    1. Yunbin Xu, Meihua Wei, Flux Transport Characteristics of Free Boundary Value Problems for a Class of Generalized Convection-Diffusion Equation, 2019, 2019, 1687-9120, 1, 10.1155/2019/7351042
    2. Irina Pettersson, Andrey Piatnitski, Stationary convection–diffusion equation in an infinite cylinder, 2018, 264, 00220396, 4456, 10.1016/j.jde.2017.12.015
    3. Рустем Рашитович Гадыльшин, Rustem Rashitovich Gadyl'shin, Андрей Львович Пятницкий, Andrey Lvovich Piatnitski, Григорий Александрович Чечкин, Gregory Aleksandrovich Chechkin, Об асимптотиках собственных значений краевой задачи в плоской области типа сита Стеклова, 2018, 82, 1607-0046, 37, 10.4213/im8674
    4. Vishnu Raveendran, Emilio Cirillo, Adrian Muntean, Upscaling of a reaction-diffusion-convection problem with exploding non-linear drift, 2022, 80, 0033-569X, 641, 10.1090/qam/1622
    5. R. R. Gadyl'shin, A. L. Piatnitskii, G. A. Chechkin, On the asymptotic behaviour of eigenvalues of a boundary-value problem in a planar domain of Steklov sieve type, 2018, 82, 1064-5632, 1108, 10.1070/IM8674
    6. Luca Giorleo, Elisabetta Ceretti, Claudio Giardini, Fe modeling of the apparent spot technique in circular laser hardening, 2013, 69, 0268-3768, 1961, 10.1007/s00170-013-5162-z
    7. Vishnu Raveendran, Ida de Bonis, Emilio Cirillo, Adrian Muntean, Homogenization of a reaction-diffusion problem with large nonlinear drift and Robin boundary data, 2024, 0033-569X, 10.1090/qam/1687
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4140) PDF downloads(77) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog