Loading [Contrib]/a11y/accessibility-menu.js

The derivation of continuum limits of neuronal networks with gap-junction couplings

  • Received: 01 April 2013 Revised: 01 March 2014
  • Primary: 34C60, 35K57; Secondary: 92C42, 05C90.

  • We consider an idealized network, formed by $N$ neurons individually described by the FitzHugh-Nagumo equations and connected by electrical synapses. The limit for $N \to \infty$ of the resulting discrete model is thoroughly investigated, with the aim of identifying a model for a continuum of neurons having an equivalent behaviour. Two strategies for passing to the limit are analysed: i) a more conventional approach, based on a fixed nearest-neighbour connection topology accompanied by a suitable scaling of the diffusion coefficients; ii) a new approach, in which the number of connections to any given neuron varies with $N$ according to a precise law, which simultaneously guarantees the non-triviality of the limit and the locality of neuronal interactions. Both approaches yield in the limit a pde-based model, in which the distribution of action potential obeys a nonlinear reaction-convection-diffusion equation; convection accounts for the possible lack of symmetry in the connection topology. Several convergence issues are discussed, both theoretically and numerically.

    Citation: Claudio Canuto, Anna Cattani. The derivation of continuum limits of neuronal networks with gap-junction couplings[J]. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111

    Related Papers:

    [1] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [2] Marco Cicalese, Antonio DeSimone, Caterina Ida Zeppieri . Discrete-to-continuum limits for strain-alignment-coupled systems: Magnetostrictive solids, ferroelectric crystals and nematic elastomers. Networks and Heterogeneous Media, 2009, 4(4): 667-708. doi: 10.3934/nhm.2009.4.667
    [3] Victor A. Eremeyev . Anti-plane interfacial waves in a square lattice. Networks and Heterogeneous Media, 2025, 20(1): 52-64. doi: 10.3934/nhm.2025004
    [4] Mathias Schäffner, Anja Schlömerkemper . On Lennard-Jones systems with finite range interactions and their asymptotic analysis. Networks and Heterogeneous Media, 2018, 13(1): 95-118. doi: 10.3934/nhm.2018005
    [5] Avner Friedman . PDE problems arising in mathematical biology. Networks and Heterogeneous Media, 2012, 7(4): 691-703. doi: 10.3934/nhm.2012.7.691
    [6] Luca Placidi, Julia de Castro Motta, Rana Nazifi Charandabi, Fernando Fraternali . A continuum model for the tensegrity Maxwell chain. Networks and Heterogeneous Media, 2024, 19(2): 597-610. doi: 10.3934/nhm.2024026
    [7] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [8] Pedro Aceves-Sanchez, Benjamin Aymard, Diane Peurichard, Pol Kennel, Anne Lorsignol, Franck Plouraboué, Louis Casteilla, Pierre Degond . A new model for the emergence of blood capillary networks. Networks and Heterogeneous Media, 2021, 16(1): 91-138. doi: 10.3934/nhm.2021001
    [9] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [10] Steinar Evje, Aksel Hiorth, Merete V. Madland, Reidar I. Korsnes . A mathematical model relevant for weakening of chalk reservoirs due to chemical reactions. Networks and Heterogeneous Media, 2009, 4(4): 755-788. doi: 10.3934/nhm.2009.4.755
  • We consider an idealized network, formed by $N$ neurons individually described by the FitzHugh-Nagumo equations and connected by electrical synapses. The limit for $N \to \infty$ of the resulting discrete model is thoroughly investigated, with the aim of identifying a model for a continuum of neurons having an equivalent behaviour. Two strategies for passing to the limit are analysed: i) a more conventional approach, based on a fixed nearest-neighbour connection topology accompanied by a suitable scaling of the diffusion coefficients; ii) a new approach, in which the number of connections to any given neuron varies with $N$ according to a precise law, which simultaneously guarantees the non-triviality of the limit and the locality of neuronal interactions. Both approaches yield in the limit a pde-based model, in which the distribution of action potential obeys a nonlinear reaction-convection-diffusion equation; convection accounts for the possible lack of symmetry in the connection topology. Several convergence issues are discussed, both theoretically and numerically.


    [1] R. B. Bapat, D. Kalita and S. Pati, On weighted directed graphs, Linear Algebra Appl., 436 (2012), 99-111. doi: 10.1016/j.laa.2011.06.035
    [2] A. Cattani, "Multispecies'' Models to Describe Large Neuronal Networks, Ph.D. Thesis Polytechnic University of Turin, 2014.
    [3] P. Colli Franzone and G. Savaré, Degenerate evolution systems modeling the cardiac electric field at micro- and macroscopic level, in Evolution Equations, Semigroups and Functional Analysis (Milano, 2000), Progress in Nonlinear Differential Equations and their Applications, 50, Birkhäuser, Basel, 2002, 49-78.
    [4] G. B. Ermentrout and D. H Terman, Mathematical Foundations of Neuroscience, 1st edition, Springer, New York, 2010. doi: 10.1007/978-0-387-87708-2
    [5] R. FitzHugh, Impulses and physiological states in theoretical models of nerve membrane, Biophysical Journal, 1 (1961), 445-466. doi: 10.1016/S0006-3495(61)86902-6
    [6] R. FitzHugh, Motion picture of nerve impulse propagation using computer animation, J. Appl. Physiol., 25 (1968), 628-630.
    [7] M. Galarreta and S. Hestrin, Electrical synapses between Gaba-Releasing interneurons, Nature Reviews Neuroscience, 2 (2001), 425-433. doi: 10.1038/35077566
    [8] A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application in conduction and excitation in nerve, J. Physiol., 117 (1952), 500-544. doi: 10.1016/S0092-8240(05)80004-7
    [9] J. Keener and J. Sneyd, Mathematical Physiology, 1st edition, Springer-Verlag, New York, 1998.
    [10] E. Marder, Electrical synapses: rectification demystified, Current Biology: CB, 19 (2009), R34-R35. doi: 10.1016/j.cub.2008.11.008
    [11] J. D. Murray, Mathematical Biology I, An Introduction, 3rd edition, Springer-Verlag, New York, 2002.
    [12] S. Sanfelici, Convergence of the Galerkin approximation of a degenerate evolution problem in electrocardiology, Numer. Methods Partial Differential Equations, 18 (2002), 218-240. doi: 10.1002/num.1000
    [13] A. C. Scott, The electrophysics of a nerve fiber, Review of Modern Physics, 47 (1975), 487-533.
    [14] J. Smoller, Shock Waves and Reaction-Diffusion Equations, 2nd edition, Springer-Verlag, New York, 1994. doi: 10.1007/978-1-4612-0873-0
    [15] P. Wallisch, M. Lusignan, M. Benayoun, T. I. Baker, A. S. Dickey and N. G. Hatsopoulos, Matlab for Neuroscientists, Elsevier/Academic Press, Amsterdam, 2009.
    [16] Y. C. Yu, S. He, S. Chen, Y. Fu, K. N. Brown, X.-H. Yao, J. Ma, K. P. Gao, G. E. Sosinsky, K. Huang and S. H. Shi, Preferential electrical coupling regulates neocortical lineage-dependent microcircuit assembly, Nature, 486 (2012), 113-117. doi: 10.1038/nature10958
  • This article has been cited by:

    1. Anna Cattani, Sergio Solinas, Claudio Canuto, A Hybrid Model for the Computationally-Efficient Simulation of the Cerebellar Granular Layer, 2016, 10, 1662-5188, 10.3389/fncom.2016.00030
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3660) PDF downloads(110) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog