Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion

  • Received: 01 November 2013 Revised: 01 April 2014
  • 35B25, 35A01, 35K57, 35K65, 35M10.

  • We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.

    Citation: Alexander Mielke, Sina Reichelt, Marita Thomas. Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion[J]. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353

    Related Papers:

    [1] Alexander Mielke, Sina Reichelt, Marita Thomas . Two-scale homogenization of nonlinear reaction-diffusion systems with slow diffusion. Networks and Heterogeneous Media, 2014, 9(2): 353-382. doi: 10.3934/nhm.2014.9.353
    [2] Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028
    [3] Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
    [4] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
    [5] Oleh Krehel, Toyohiko Aiki, Adrian Muntean . Homogenization of a thermo-diffusion system with Smoluchowski interactions. Networks and Heterogeneous Media, 2014, 9(4): 739-762. doi: 10.3934/nhm.2014.9.739
    [6] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [7] Chaoqun Huang, Nung Kwan Yip . Singular perturbation and bifurcation of diffuse transition layers in inhomogeneous media, part I. Networks and Heterogeneous Media, 2013, 8(4): 1009-1034. doi: 10.3934/nhm.2013.8.1009
    [8] Claudio Canuto, Anna Cattani . The derivation of continuum limits of neuronal networks with gap-junction couplings. Networks and Heterogeneous Media, 2014, 9(1): 111-133. doi: 10.3934/nhm.2014.9.111
    [9] Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049
    [10] Toshiyuki Ogawa, Takashi Okuda . Oscillatory dynamics in a reaction-diffusion system in the presence of 0:1:2 resonance. Networks and Heterogeneous Media, 2012, 7(4): 893-926. doi: 10.3934/nhm.2012.7.893
  • We derive a two-scale homogenization limit for reaction-diffusion systems where for some species the diffusion length is of order 1 whereas for the other species the diffusion length is of the order of the periodic microstructure. Thus, in the limit the latter species will display diffusion only on the microscale but not on the macroscale. Because of this missing compactness, the nonlinear coupling through the reaction terms cannot be homogenized but needs to be treated on the two-scale level. In particular, we have to develop new error estimates to derive strong convergence results for passing to the limit.


    [1] G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084
    [2] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic Analysis for Periodic Structures, Studies in Mathematics and its Applications, 5, North-Holland Publishing Co., Amsterdam, 1978.
    [3] D. Bothe and D. Hilhorst, A reaction-diffusion system with fast reversible reaction, J. Math. Anal. Appl., 286 (2003), 125-135. doi: 10.1016/S0022-247X(03)00457-8
    [4] V. Chalupecký, T. Fatima and A. Muntean, Multiscale sulfate attack on sewer pipes: Numerical study of a fast micro-macro mass transfer limit, Journal of Math-for-Industry, 2B (2010), 171-181.
    [5] V. Chalupecký and A. Muntean, Semi-discrete finite difference multiscale scheme for a concrete corrosion model: A priori estimates and convergence, Jpn. J. Ind. Appl. Math., 29 (2012), 289-316. doi: 10.1007/s13160-012-0060-6
    [6] D. Cioranescu, A. Damlamian and G. Griso, Periodic unfolding and homogenization, C. R. Math. Acad. Sci. Paris, 335 (2002), 99-104. doi: 10.1016/S1631-073X(02)02429-9
    [7] D. Cioranescu, A. Damlamian and G. Griso, The periodic unfolding method in homogenization, SIAM J. Math. Anal., 40 (2008), 1585-1620. doi: 10.1137/080713148
    [8] D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford Lecture Series in Mathematics and its Applications, 17, The Clarendon Press Oxford University Press, New York, 1999.
    [9] D. Cioranescu, A. Damlamian and R. De Arcangelis, Homogenization of quasiconvex integrals via the periodic unfolding method, SIAM J. Math. Anal., 37 (2006), 1435-1453 (electronic). doi: 10.1137/040620898
    [10] A. Damlamian, An elementary introduction to periodic unfolding, Math. Sci. Appl., 24 (2005), 119-136.
    [11] Multiscale Model. Simul., 3 (2004/05), 1-27 (electronic). doi: 10.1137/S1540345903425177
    [12] J. Elstrodt, Ma$\beta$- und Integrationstheorie, 3rd edition, Springer, 2002.
    [13] E. K. Essel, K. Kuliev, G. Kulieva and L.-E. Persson, Homogenization of quasilinear parabolic problems by the method of Rothe and two scale convergence, Appl. Math., 55 (2010), 305-327. doi: 10.1007/s10492-010-0023-7
    [14] L. C. Evans, Partial Differential Equations, Graduate Studies in Mathematics, 19, American Mathematical Society, Providence, RI, 1998.
    [15] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992.
    [16] T. Fatima, A. Muntean and M. Ptashnyk, Unfolding-based corrector estimates for a reaction-diffusion system predicting concrete corrosion, Appl. Anal., 91 (2012), 1129-1154. doi: 10.1080/00036811.2011.625016
    [17] B. Fiedler and M. Vishik, Quantitative homogenization of analytic semigroups and reaction-diffusion equations with Diophantine spatial frequencies, Adv. Differential Equations, 6 (2001), 1377-1408.
    [18] B. Fiedler and M. Vishik, Quantitative homogenization of global attractors for reaction-diffusion systems with rapidly oscillating terms, Asymptot. Anal., 34 (2003), 159-185.
    [19] L. Flodén and M. Olsson, Reiterated homogenization of some linear and nonlinear monotone parabolic operators, Can. Appl. Math. Q., 14 (2006), 149-183.
    [20] A. Giacomini and A. Musesti, Two-scale homogenization for a model in strain gradient plasticity, ESAIM Control Optim. Calc. Var., 17 (2011), 1035-1065. doi: 10.1051/cocv/2010036
    [21] A. Glitzky and R. Hünlich, Global estimates and asymptotics for electro-reaction-diffusion systems in heterostructures, Appl. Anal., 66 (1997), 205-226. doi: 10.1080/00036819708840583
    [22] H. Hanke, Homogenization in gradient plasticity, Math. Models Meth. Appl. Sci. (M$^3$AS), 21 (2011), 1651-1684. doi: 10.1142/S0218202511005520
    [23] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, 840, Springer-Verlag, Berlin, 1981.
    [24] U. Hornung, W. Jäger and A. Mikelić, Reactive transport through an array of cells with semi-permeable membranes, RAIRO Modél. Math. Anal. Numér., 28 (1994), 59-94.
    [25] V. V. Jikov, S. M. Kozlov and O. A. Oleĭnik, Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, Berlin, Heidelberg, 1994.
    [26] D. Lukkassen, G. Nguetseng and P. Wall, Two-scale convergence, Int. J. Pure Appl. Math., 2 (2002), 35-86.
    [27] H. S. Mahato, Homogenization of a System of Nonlinear Multi-Species Diffusion-Reaction Equations in an $H^{1,p}$ Setting, Ph.D thesis, Universit\"at Bremen, 2013.
    [28] V. A. Marchenko and E. Y. Khruslov, Homogenization of Partial Differential Equations, Birkhäuser Boston Inc., Boston, MA, 2006.
    [29] P. A. Markowich, C. A. Ringhofer and C. Schmeiser, Semiconductor Equations, Springer-Verlag, Vienna, 1990. doi: 10.1007/978-3-7091-6961-2
    [30] A. Matache and C. Schwab, Two-scale FEM for homogenization problems, Math. Model. Numer. Anal. (M2AN), 36 (2002), 537-572. doi: 10.1051/m2an:2002025
    [31] S. A. Meier and A. Muntean, A two-scale reaction-diffusion system: Homogenization and fast-reaction limits, in Current Advances in Nonlinear Analysis and Related Topics, GAKUTO Internat. Ser. Math. Sci. Appl., 32, Gakkōtosho, Tokyo, 2010, 443-461.
    [32] A. Mielke, A gradient structure for reaction-diffusion systems and for energy-drift-diffusion systems, Nonlinearity, 24 (2011), 1329-1346. doi: 10.1088/0951-7715/24/4/016
    [33] A. Mielke, Thermomechanical modeling of energy-reaction-diffusion systems, including bulk-interface interactions, Discr. Cont. Dynam. Systems Ser. S, 6 (2013), 479-499. doi: 10.3934/dcdss.2013.6.479
    [34] A. Mielke and E. Rohan, Homogenization of elastic waves in fluid-saturated porous media using the Biot model, Math. Models Meth. Appl. Sci. (M$^3$AS), 23 (2013), 873-916. doi: 10.1142/S0218202512500637
    [35] A. Mielke and A. M. Timofte, Two-scale homogenization for evolutionary variational inequalities via the energetic formulation, SIAM J. Math. Analysis, 39 (2007), 642-668. doi: 10.1137/060672790
    [36] A. Muntean and M. Neuss-Radu, A multiscale Galerkin approach for a class of nonlinear coupled reaction-diffusion systems in complex media, J. Math. Anal. Appl., 371 (2010), 705-718. doi: 10.1016/j.jmaa.2010.05.056
    [37] F. Murat and L. Tartar, $H$-convergence, in Topics in the mathematical modelling of composite materials, Progr. Nonlinear Differential Equations Appl., 31, Birkhäuser, Boston, MA, 1997, 21-43.
    [38] J. D. Murray, Mathematical Biology. I. An Introduction, 3rd edition, Interdisciplinary Applied Mathematics, 17, Springer-Verlag, New York, 2002.
    [39] S. Nesenenko, Homogenization in viscoplasticity, SIAM J. Math. Anal., 39 (2007), 236-262. doi: 10.1137/060655092
    [40] M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720. doi: 10.1137/060665452
    [41] G. Nguetseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal., 20 (1989), 608-623. doi: 10.1137/0520043
    [42] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Applied Mathematical Sciences, 44, Springer-Verlag, New York, 1983. doi: 10.1007/978-1-4612-5561-1
    [43] J. Persson, Homogenization of monotone parabolic problems with several temporal scales, Appl. Math., 57 (2012), 191-214. doi: 10.1007/s10492-012-0013-z
    [44] M. A. Peter and M. Böhm, Different choices of scaling in homogenization of diffusion and interfacial exchange in a porous medium, Math. Meth. Appl. Sci., 31 (2008), 1257-1282. doi: 10.1002/mma.966
    [45] M. Pierre, Global existence in reaction-diffusion systems with control of mass: A survey, Milan J. Math., 78 (2010), 417-455. doi: 10.1007/s00032-010-0133-4
    [46] S. Reichelt, Multi-scale Analysis of Nonlinear Reaction-Diffusion Systems, in preparation, Ph.D thesis, Humboldt-Universität zu Berlin, 2014.
    [47] B. Schweizer, Homogenization of degenerate two-phase flow equations with oil trapping, SIAM J. Math. Anal., 39 (2008), 1740-1763. doi: 10.1137/060675472
    [48] B. Schweizer and M. Veneroni, Periodic homogenization of Prandtl-Reuss plasticity with hardening, J. Multiscale Model., 2 (2010), 69-106.
    [49] L. Tartar, The General Theory of Homogenization. A Personalized Introduction, Lecture Notes of the Unione Matematica Italiana, 7, Springer-Verlag, Berlin, 2009. doi: 10.1007/978-3-642-05195-1
    [50] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1988. doi: 10.1007/978-1-4684-0313-8
    [51] A. Visintin, Two-scale convergence of some integral functionals, Calc. Var. Partial Differential Equations, 29 (2007), 239-265. doi: 10.1007/s00526-006-0068-3
    [52] A. Visintin, Homogenization of a parabolic model of ferromagnetism, J. Differential Equations, 250 (2011), 1521-1552. doi: 10.1016/j.jde.2010.09.016
    [53] A. Visintin, Some properties of two-scale convergence, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 15 (2004), 93-107.
    [54] A. Visintin, Towards a two-scale calculus, ESAIM Control Optim. Calc. Var., 12 (2006), 371-397 (electronic). doi: 10.1051/cocv:2006012
    [55] A. Visintin, Homogenization of the nonlinear Maxwell model of viscoelasticity and of the Prandtl-Reuss model of elastoplasticity, Roy. Soc. Edinb. Proc. A, 138 (2008), 1363-1401. doi: 10.1017/S0308210506000709
    [56] J. L. Woukeng, Periodic homogenization of nonlinear non-monotone parabolic operators with three time scales, Ann. Mat. Pura Appl. (4), 189 (2010), 357-379. doi: 10.1007/s10231-009-0112-y
  • This article has been cited by:

    1. Alexander Mielke, Sina Reichelt, Traveling Fronts in a Reaction–Diffusion Equation with a Memory Term, 2022, 1040-7294, 10.1007/s10884-022-10133-6
    2. Vo Anh Khoa, Adrian Muntean, Asymptotic analysis of a semi-linear elliptic system in perforated domains: Well-posedness and correctors for the homogenization limit, 2016, 439, 0022247X, 271, 10.1016/j.jmaa.2016.02.068
    3. Stefan Neukamm, Mario Varga, Stochastic Unfolding and Homogenization of Spring Network Models, 2018, 16, 1540-3459, 857, 10.1137/17M1141230
    4. Alexander Mielke, Deriving amplitude equations via evolutionary $\Gamma$-convergence, 2015, 35, 1553-5231, 2679, 10.3934/dcds.2015.35.2679
    5. Matthias Liero, Sina Reichelt, Homogenization of Cahn–Hilliard-type equations via evolutionary \varvecΓ
    -convergence, 2018, 25, 1021-9722, 10.1007/s00030-018-0495-9
    6. Pavel Gurevich, Sina Reichelt, Pulses in FitzHugh--Nagumo Systems with Rapidly Oscillating Coefficients, 2018, 16, 1540-3459, 833, 10.1137/17M1143708
    7. Alexander Mielke, 2016, Chapter 12, 978-3-319-28027-1, 235, 10.1007/978-3-319-28028-8_12
    8. Anna Zubkova, 2019, Chapter 7, 978-3-030-25260-1, 45, 10.1007/978-3-030-25261-8_7
    9. V. A. KOVTUNENKO, A. V. ZUBKOVA, Existence and two-scale convergence of the generalised Poisson–Nernst–Planck problem with non-linear interface conditions, 2021, 32, 0956-7925, 683, 10.1017/S095679252000025X
    10. Sina Reichelt, Error estimates for nonlinear reaction-diffusion systems involving different diffusion length scales, 2016, 727, 1742-6588, 012013, 10.1088/1742-6596/727/1/012013
    11. Omar Anza Hafsa, Jean Philippe Mandallena, Gérard Michaille, Convergence and stochastic homogenization of a class of two components nonlinear reaction–diffusion systems, 2021, 121, 18758576, 259, 10.3233/ASY-201603
    12. Sina Reichelt, Corrector estimates for a class of imperfect transmission problems, 2017, 105, 18758576, 3, 10.3233/ASY-171432
    13. M. Gahn, I.S. Pop, Homogenization of a mineral dissolution and precipitation model involving free boundaries at the micro scale, 2023, 343, 00220396, 90, 10.1016/j.jde.2022.10.006
    14. Adrian Muntean, Sina Reichelt, Corrector Estimates for a Thermodiffusion Model with Weak Thermal Coupling, 2018, 16, 1540-3459, 807, 10.1137/16M109538X
    15. Martin Heida, Stefan Neukamm, Mario Varga, Stochastic two-scale convergence and Young measures, 2022, 17, 1556-1801, 227, 10.3934/nhm.2022004
    16. M. Gahn, M. Neuss-Radu, I.S. Pop, Homogenization of a reaction-diffusion-advection problem in an evolving micro-domain and including nonlinear boundary conditions, 2021, 289, 00220396, 95, 10.1016/j.jde.2021.04.013
    17. V. A. Kovtunenko, A. V. Zubkova, Homogenization of the generalized Poisson–Nernst–Planck problem in a two-phase medium: correctors and estimates, 2021, 100, 0003-6811, 253, 10.1080/00036811.2019.1600676
    18. G. V. Sandrakov, S. I. Lyashko, V. V. Semenov, Simulation of Filtration Processes for Inhomogeneous Media and Homogenization*, 2023, 1060-0396, 10.1007/s10559-023-00556-4
    19. Marc Graham, Sandra Klinge, Multiscale homogenisation of diffusion in enzymatically-calcified hydrogels, 2024, 149, 17516161, 106244, 10.1016/j.jmbbm.2023.106244
    20. Elkinn A. Calderón-Barreto, Julián Bravo-Castillero, José L. Aragón, Turing patterns in domains with periodic inhomogeneities; a homogenization approach, 2024, 179, 09600779, 114433, 10.1016/j.chaos.2023.114433
    21. Gennadiy V. Sandrakov, 2024, Chapter 2, 978-3-031-67347-4, 19, 10.1007/978-3-031-67348-1_2
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4928) PDF downloads(100) Cited by(21)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog