Reaction-diffusion waves with nonlinear boundary conditions

  • Received: 01 January 2012 Revised: 01 July 2012
  • Primary: 35K57; Secondary: 35J60.

  • A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method.

    Citation: Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions[J]. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23

    Related Papers:

    [1] Narcisa Apreutesei, Vitaly Volpert . Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
    [2] Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou . Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568. doi: 10.3934/nhm.2006.1.537
    [3] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
    [4] Arnaud Ducrot, Michel Langlais, Pierre Magal . Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8(1): 171-190. doi: 10.3934/nhm.2013.8.171
    [5] François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik . A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289. doi: 10.3934/nhm.2013.8.275
    [6] Mauro Garavello . Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11(1): 89-105. doi: 10.3934/nhm.2016.11.89
    [7] Linglong Du . Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks and Heterogeneous Media, 2018, 13(4): 549-565. doi: 10.3934/nhm.2018025
    [8] Shin-Ichiro Ei, Toshio Ishimoto . Effect of boundary conditions on the dynamics of a pulse solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8(1): 191-209. doi: 10.3934/nhm.2013.8.191
    [9] Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos . Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms. Networks and Heterogeneous Media, 2024, 19(3): 1085-1115. doi: 10.3934/nhm.2024048
    [10] Patrick Joly, Maryna Kachanovska, Adrien Semin . Wave propagation in fractal trees. Mathematical and numerical issues. Networks and Heterogeneous Media, 2019, 14(2): 205-264. doi: 10.3934/nhm.2019010
  • A reaction-diffusion equation with nonlinear boundary condition is considered in a two-dimensional infinite strip. Existence of waves in the bistable case is proved by the Leray-Schauder method.


    [1] A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, Am. J. Physiol. Cell. Physiol., 245 (1983), 1-14. doi: 10.1016/0022-2828(92)90114-F
    [2] A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Englwood Cliffs, 1964.
    [3] N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development, J. Math. Biol., 65 (2012), 349-374. doi: 10.1007/s00285-011-0461-1
    [4] M. Kyed, Existence of travelling wave solutions for the heat equation in infinite cylinders with a nonlinear boundary condition, Math. Nachr., 281 (2008), 253-271. doi: 10.1002/mana.200710599
    [5] A. Volpert, Vit. Volpert and Vl. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translation of Mathematical Monographs, 140, Amer. Math. Society, Providence, 1994.
    [6] V. Volpert and A. Volpert, Spectrum of elliptic operators and stability of travelling waves, Asymptotic Analysis, 23 (2000), 111-134.
    [7] V. Volpert, "Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains," Birkhäuser, Basel, 2011. doi: 10.1007/978-3-0346-0537-3
  • This article has been cited by:

    1. V. Volpert, V. Vougalter, Method of Monotone Solutions for Reaction-Diffusion Equations, 2021, 253, 1072-3374, 660, 10.1007/s10958-021-05260-2
    2. N. Apreutesei, A. Tosenberger, V. Volpert, Elaine Crooks, Fordyce Davidson, Bogdan Kazmierczak, Gregoire Nadin, Je-Chiang Tsai, Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions, 2013, 8, 0973-5348, 2, 10.1051/mmnp/20138302
    3. A.V. Panfilov, H. Dierckx, V. Volpert, (INVITED) Reaction–diffusion waves in cardiovascular diseases, 2019, 399, 01672789, 1, 10.1016/j.physd.2019.04.001
    4. N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, V. Volpert, Mathematical modelling of atherosclerosis, 2019, 14, 0973-5348, 603, 10.1051/mmnp/2019050
    5. Narcisa Apreutesei, Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models, 2014, 2, 2227-7390, 83, 10.3390/math2020083
    6. Amanda Matson, Michael C. Hicks, Uday G. Hegde, Peter V. Gordon, An elementary model for an advancing autoignition front in laminar reactive co-flow jets injected into supercritical water, 2024, 207, 08968446, 106210, 10.1016/j.supflu.2024.106210
    7. Bogdan Kazmierczak, Vitaly Volpert, Traveling waves in a model of calcium ions influx via mechanically stimulated membrane channels, 2024, 47, 0170-4214, 9769, 10.1002/mma.10093
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4319) PDF downloads(91) Cited by(7)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog