Reaction-diffusion waves with nonlinear boundary conditions
-
1.
Department of Mathematics, "Gheorghe Asachi" Technical University, Bd. Carol. I, 700506 Iasi
-
2.
Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, 69622 Villeurbanne
-
Received:
01 January 2012
Revised:
01 July 2012
-
-
Primary: 35K57; Secondary: 35J60.
-
-
A reaction-diffusion equation with nonlinear boundary condition is
considered in a two-dimensional infinite strip. Existence of
waves in the bistable case is proved by the Leray-Schauder
method.
Citation: Narcisa Apreutesei, Vitaly Volpert. Reaction-diffusion waves with nonlinear boundary conditions[J]. Networks and Heterogeneous Media, 2013, 8(1): 23-35. doi: 10.3934/nhm.2013.8.23
Related Papers:
[1] |
Narcisa Apreutesei, Vitaly Volpert .
Reaction-diffusion waves with nonlinear boundary conditions. Networks and Heterogeneous Media, 2013, 8(1): 23-35.
doi: 10.3934/nhm.2013.8.23
|
[2] |
Hiroshi Matano, Ken-Ichi Nakamura, Bendong Lou .
Periodic traveling waves in a two-dimensional cylinder with saw-toothed boundary and their homogenization limit. Networks and Heterogeneous Media, 2006, 1(4): 537-568.
doi: 10.3934/nhm.2006.1.537
|
[3] |
Serge Nicaise, Cristina Pignotti .
Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813.
doi: 10.3934/nhm.2008.3.787
|
[4] |
Arnaud Ducrot, Michel Langlais, Pierre Magal .
Multiple travelling waves for an $SI$-epidemic model. Networks and Heterogeneous Media, 2013, 8(1): 171-190.
doi: 10.3934/nhm.2013.8.171
|
[5] |
François Hamel, James Nolen, Jean-Michel Roquejoffre, Lenya Ryzhik .
A short proof of the logarithmic Bramson correction in Fisher-KPP equations. Networks and Heterogeneous Media, 2013, 8(1): 275-289.
doi: 10.3934/nhm.2013.8.275
|
[6] |
Mauro Garavello .
Boundary value problem for a phase transition model. Networks and Heterogeneous Media, 2016, 11(1): 89-105.
doi: 10.3934/nhm.2016.11.89
|
[7] |
Linglong Du .
Long time behavior for the visco-elastic damped wave equation in $\mathbb{R}^n_+$ and the boundary effect. Networks and Heterogeneous Media, 2018, 13(4): 549-565.
doi: 10.3934/nhm.2018025
|
[8] |
Shin-Ichiro Ei, Toshio Ishimoto .
Effect of boundary conditions on the dynamics of a pulse
solution for reaction-diffusion systems. Networks and Heterogeneous Media, 2013, 8(1): 191-209.
doi: 10.3934/nhm.2013.8.191
|
[9] |
Dilip Sarkar, Shridhar Kumar, Pratibhamoy Das, Higinio Ramos .
Higher-order convergence analysis for interior and boundary layers in a semi-linear reaction-diffusion system networked by a $ k $-star graph with non-smooth source terms. Networks and Heterogeneous Media, 2024, 19(3): 1085-1115.
doi: 10.3934/nhm.2024048
|
[10] |
Patrick Joly, Maryna Kachanovska, Adrien Semin .
Wave propagation in fractal trees. Mathematical and numerical issues. Networks and Heterogeneous Media, 2019, 14(2): 205-264.
doi: 10.3934/nhm.2019010
|
-
Abstract
A reaction-diffusion equation with nonlinear boundary condition is
considered in a two-dimensional infinite strip. Existence of
waves in the bistable case is proved by the Leray-Schauder
method.
References
[1]
|
A. Fabiato, Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum, Am. J. Physiol. Cell. Physiol., 245 (1983), 1-14. doi: 10.1016/0022-2828(92)90114-F
|
[2]
|
A. Friedman, "Partial Differential Equations of Parabolic Type," Prentice-Hall, Englwood Cliffs, 1964.
|
[3]
|
N. El Khatib, S. Genieys, B. Kazmierczak and V. Volpert, Reaction-diffusion model of atherosclerosis development, J. Math. Biol., 65 (2012), 349-374. doi: 10.1007/s00285-011-0461-1
|
[4]
|
M. Kyed, Existence of travelling wave solutions for the heat equation in infinite cylinders with a nonlinear boundary condition, Math. Nachr., 281 (2008), 253-271. doi: 10.1002/mana.200710599
|
[5]
|
A. Volpert, Vit. Volpert and Vl. Volpert, "Traveling Wave Solutions of Parabolic Systems," Translation of Mathematical Monographs, 140, Amer. Math. Society, Providence, 1994.
|
[6]
|
V. Volpert and A. Volpert, Spectrum of elliptic operators and stability of travelling waves, Asymptotic Analysis, 23 (2000), 111-134.
|
[7]
|
V. Volpert, "Elliptic Partial Differential Equations. Volume 1. Fredholm Theory of Elliptic Problems in Unbounded Domains," Birkhäuser, Basel, 2011. doi: 10.1007/978-3-0346-0537-3
|
-
-
This article has been cited by:
1.
|
V. Volpert, V. Vougalter,
Method of Monotone Solutions for Reaction-Diffusion Equations,
2021,
253,
1072-3374,
660,
10.1007/s10958-021-05260-2
|
|
2.
|
N. Apreutesei, A. Tosenberger, V. Volpert, Elaine Crooks, Fordyce Davidson, Bogdan Kazmierczak, Gregoire Nadin, Je-Chiang Tsai,
Existence of Reaction-Diffusion Waves with Nonlinear Boundary Conditions,
2013,
8,
0973-5348,
2,
10.1051/mmnp/20138302
|
|
3.
|
A.V. Panfilov, H. Dierckx, V. Volpert,
(INVITED) Reaction–diffusion waves in cardiovascular diseases,
2019,
399,
01672789,
1,
10.1016/j.physd.2019.04.001
|
|
4.
|
N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, V. Volpert,
Mathematical modelling of atherosclerosis,
2019,
14,
0973-5348,
603,
10.1051/mmnp/2019050
|
|
5.
|
Narcisa Apreutesei,
Traveling Wave Solutions of Reaction-Diffusion Equations Arising in Atherosclerosis Models,
2014,
2,
2227-7390,
83,
10.3390/math2020083
|
|
6.
|
Amanda Matson, Michael C. Hicks, Uday G. Hegde, Peter V. Gordon,
An elementary model for an advancing autoignition front in laminar reactive co-flow jets injected into supercritical water,
2024,
207,
08968446,
106210,
10.1016/j.supflu.2024.106210
|
|
7.
|
Bogdan Kazmierczak, Vitaly Volpert,
Traveling waves in a model of calcium ions influx via mechanically stimulated membrane channels,
2024,
47,
0170-4214,
9769,
10.1002/mma.10093
|
|
-
-