In this paper, semi-tensor product (STP) and related properties of dimension keeping semi-tensor product (DK-STP) are analyzed. The commutativity and anticommutativity of DK-STP are studied by means of matrix mapping, and sufficient conditions for both are obtained. The structure matrix of the Lie bracket of non-square matrices (NSM) is discussed, and some properties are derived. The correspondences between the special Lie subalgebras of square matrix and Lie subalgebras of NSM are discussed through a homomorphism.
Citation: Qi Qi, Jun-e Feng. From DK-STP to a set of Lie bracket[J]. Mathematical Modelling and Control, 2025, 5(4): 410-420. doi: 10.3934/mmc.2025029
In this paper, semi-tensor product (STP) and related properties of dimension keeping semi-tensor product (DK-STP) are analyzed. The commutativity and anticommutativity of DK-STP are studied by means of matrix mapping, and sufficient conditions for both are obtained. The structure matrix of the Lie bracket of non-square matrices (NSM) is discussed, and some properties are derived. The correspondences between the special Lie subalgebras of square matrix and Lie subalgebras of NSM are discussed through a homomorphism.
| [1] |
F. Li, H. Yan, H. R. Karimi, Single-input pinning controller design for reachability of Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 3264–3269. https://doi.org/10.1109/TNNLS.2017.2705109 doi: 10.1109/TNNLS.2017.2705109
|
| [2] |
H. Li, S. Wang, X. Li, G. Zhao, Perturbation analysis for controllability of logical control networks, SIAM J. Control Optim., 58 (2020), 3632–3657. https://doi.org/10.1137/19M1281332 doi: 10.1137/19M1281332
|
| [3] |
J. Lu, L. Sun, Y. Liu, D. W. C. Ho, J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control, SIAM J. Control Optim., 56 (2018), 4385–4404. https://doi.org/10.1137/18M1169308 doi: 10.1137/18M1169308
|
| [4] |
S. Zhu, J. Lu, L. Lin, Y. Liu, Minimum-time and minimum-triggering observability of stochastic Boolean networks, IEEE Trans. Automat. Control, 67 (2022), 1558–1565. https://doi.org/10.1109/TAC.2021.3069739 doi: 10.1109/TAC.2021.3069739
|
| [5] |
Y. Wang, Y. Yang, Y. Liu, J. Lou, Fault detection and pinning control of Boolean networks, Appl. Math. Comput., 429 (2022), 127232. https://doi.org/10.1016/j.amc.2022.127232 doi: 10.1016/j.amc.2022.127232
|
| [6] |
L. Wang, Y. Liu, Z. Wu, F. E. Alsaadi, Strategy optimization for static games based on STP method, Appl. Math. Comput., 316 (2018), 390–399. https://doi.org/10.1016/j.amc.2017.08.023 doi: 10.1016/j.amc.2017.08.023
|
| [7] |
H. Fan, J. Feng, M. Meng, B. Wang, General decomposition of fuzzy relations: semi-tensor product approach, Fuzzy Sets Syst., 384 (2020), 75–90. https://doi.org/10.1016/j.fss.2018.12.012 doi: 10.1016/j.fss.2018.12.012
|
| [8] |
D. Cheng, Z. Ji, On networks over finite rings, J. Franklin Inst., 359 (2022), 7562–7599. https://doi.org/10.1016/j.jfranklin.2022.07.039 doi: 10.1016/j.jfranklin.2022.07.039
|
| [9] |
W. Ding, Y. Li, D. Wang, A. Wei, Constrainted least squares solution of Sylvester equation, Math. Model. Control, 1 (2021), 112–120. https://doi.org/10.3934/mmc.2021009 doi: 10.3934/mmc.2021009
|
| [10] |
D. Cheng, Y. Li, J. Feng, J. Zhao, On numerical/non-numerical algebra: semi-tensor product method, Math. Model. Control, 1 (2021), 1–11. https://doi.org/10.3934/mmc.2021001 doi: 10.3934/mmc.2021001
|
| [11] |
D. Cheng, Z. Ji, J. Feng, S. Fu, J. Zhao, Perfect hypercomplex algebras: semi-tensor product approach, Math. Model. Control, 1 (2021), 177–187. https://doi.org/10.3934/mmc.2021017 doi: 10.3934/mmc.2021017
|
| [12] |
S. Fu, D. Cheng, J. Feng, J. Zhao, Matrix expression of finite Boolean-type algebras, Appl. Math. Comput., 395 (2020), 125880. https://doi.org/10.1016/j.amc.2020.125880 doi: 10.1016/j.amc.2020.125880
|
| [13] |
A. Figula, P. T. Nagy, Classification of a family of 4-dimensional anti-commutative algebras and their automorphisms, Linear Algebra Appl., 656 (2023), 385–408. https://doi.org/10.1016/j.laa.2022.10.010 doi: 10.1016/j.laa.2022.10.010
|
| [14] |
A. L. Agore, G. Militaru, On a type of commutative algebras, Linear Algebra Appl., 485 (2015), 222–249. https://doi.org/10.1016/j.laa.2015.07.035 doi: 10.1016/j.laa.2015.07.035
|
| [15] |
D. Burde, C. Ender, Commutative Post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras, Linear Algebra Appl., 584 (2020), 107–126. https://doi.org/10.1016/j.laa.2019.09.010 doi: 10.1016/j.laa.2019.09.010
|
| [16] | D. Cheng, From DK-STP to non-square general linear algebra and general linear group, Commun. Inf. Syst., 24 (2024), 1–60. |
| [17] | D. Cheng, R. Zhao, J. Feng, Axiomatized semi-tensor product of matrices, Control Theory Appl., 41 (2024), 1172–1180. |
| [18] |
D. Cheng, Y. Zhao, Semi-tensor product of matrices a convenient new tool, Chin. Sci. Bull., 56 (2011), 2664–2674. https://doi.org/10.1360/972011-1262 doi: 10.1360/972011-1262
|
| [19] | D. Cheng, H. Qi, Matrix semi-tensor product notes (1) Basic theory and multilinear operation, Beijing, Science Press, 2020. |
| [20] | Z. Wan, Lie algebra, 2 Eds., Beijing, Science Press, 2013. |