Research article

From DK-STP to a set of Lie bracket

  • Published: 04 December 2025
  • In this paper, semi-tensor product (STP) and related properties of dimension keeping semi-tensor product (DK-STP) are analyzed. The commutativity and anticommutativity of DK-STP are studied by means of matrix mapping, and sufficient conditions for both are obtained. The structure matrix of the Lie bracket of non-square matrices (NSM) is discussed, and some properties are derived. The correspondences between the special Lie subalgebras of square matrix and Lie subalgebras of NSM are discussed through a homomorphism.

    Citation: Qi Qi, Jun-e Feng. From DK-STP to a set of Lie bracket[J]. Mathematical Modelling and Control, 2025, 5(4): 410-420. doi: 10.3934/mmc.2025029

    Related Papers:

  • In this paper, semi-tensor product (STP) and related properties of dimension keeping semi-tensor product (DK-STP) are analyzed. The commutativity and anticommutativity of DK-STP are studied by means of matrix mapping, and sufficient conditions for both are obtained. The structure matrix of the Lie bracket of non-square matrices (NSM) is discussed, and some properties are derived. The correspondences between the special Lie subalgebras of square matrix and Lie subalgebras of NSM are discussed through a homomorphism.



    加载中


    [1] F. Li, H. Yan, H. R. Karimi, Single-input pinning controller design for reachability of Boolean networks, IEEE Trans. Neural Netw. Learn. Syst., 29 (2018), 3264–3269. https://doi.org/10.1109/TNNLS.2017.2705109 doi: 10.1109/TNNLS.2017.2705109
    [2] H. Li, S. Wang, X. Li, G. Zhao, Perturbation analysis for controllability of logical control networks, SIAM J. Control Optim., 58 (2020), 3632–3657. https://doi.org/10.1137/19M1281332 doi: 10.1137/19M1281332
    [3] J. Lu, L. Sun, Y. Liu, D. W. C. Ho, J. Cao, Stabilization of Boolean control networks under aperiodic sampled-data control, SIAM J. Control Optim., 56 (2018), 4385–4404. https://doi.org/10.1137/18M1169308 doi: 10.1137/18M1169308
    [4] S. Zhu, J. Lu, L. Lin, Y. Liu, Minimum-time and minimum-triggering observability of stochastic Boolean networks, IEEE Trans. Automat. Control, 67 (2022), 1558–1565. https://doi.org/10.1109/TAC.2021.3069739 doi: 10.1109/TAC.2021.3069739
    [5] Y. Wang, Y. Yang, Y. Liu, J. Lou, Fault detection and pinning control of Boolean networks, Appl. Math. Comput., 429 (2022), 127232. https://doi.org/10.1016/j.amc.2022.127232 doi: 10.1016/j.amc.2022.127232
    [6] L. Wang, Y. Liu, Z. Wu, F. E. Alsaadi, Strategy optimization for static games based on STP method, Appl. Math. Comput., 316 (2018), 390–399. https://doi.org/10.1016/j.amc.2017.08.023 doi: 10.1016/j.amc.2017.08.023
    [7] H. Fan, J. Feng, M. Meng, B. Wang, General decomposition of fuzzy relations: semi-tensor product approach, Fuzzy Sets Syst., 384 (2020), 75–90. https://doi.org/10.1016/j.fss.2018.12.012 doi: 10.1016/j.fss.2018.12.012
    [8] D. Cheng, Z. Ji, On networks over finite rings, J. Franklin Inst., 359 (2022), 7562–7599. https://doi.org/10.1016/j.jfranklin.2022.07.039 doi: 10.1016/j.jfranklin.2022.07.039
    [9] W. Ding, Y. Li, D. Wang, A. Wei, Constrainted least squares solution of Sylvester equation, Math. Model. Control, 1 (2021), 112–120. https://doi.org/10.3934/mmc.2021009 doi: 10.3934/mmc.2021009
    [10] D. Cheng, Y. Li, J. Feng, J. Zhao, On numerical/non-numerical algebra: semi-tensor product method, Math. Model. Control, 1 (2021), 1–11. https://doi.org/10.3934/mmc.2021001 doi: 10.3934/mmc.2021001
    [11] D. Cheng, Z. Ji, J. Feng, S. Fu, J. Zhao, Perfect hypercomplex algebras: semi-tensor product approach, Math. Model. Control, 1 (2021), 177–187. https://doi.org/10.3934/mmc.2021017 doi: 10.3934/mmc.2021017
    [12] S. Fu, D. Cheng, J. Feng, J. Zhao, Matrix expression of finite Boolean-type algebras, Appl. Math. Comput., 395 (2020), 125880. https://doi.org/10.1016/j.amc.2020.125880 doi: 10.1016/j.amc.2020.125880
    [13] A. Figula, P. T. Nagy, Classification of a family of 4-dimensional anti-commutative algebras and their automorphisms, Linear Algebra Appl., 656 (2023), 385–408. https://doi.org/10.1016/j.laa.2022.10.010 doi: 10.1016/j.laa.2022.10.010
    [14] A. L. Agore, G. Militaru, On a type of commutative algebras, Linear Algebra Appl., 485 (2015), 222–249. https://doi.org/10.1016/j.laa.2015.07.035 doi: 10.1016/j.laa.2015.07.035
    [15] D. Burde, C. Ender, Commutative Post-Lie algebra structures on nilpotent Lie algebras and Poisson algebras, Linear Algebra Appl., 584 (2020), 107–126. https://doi.org/10.1016/j.laa.2019.09.010 doi: 10.1016/j.laa.2019.09.010
    [16] D. Cheng, From DK-STP to non-square general linear algebra and general linear group, Commun. Inf. Syst., 24 (2024), 1–60.
    [17] D. Cheng, R. Zhao, J. Feng, Axiomatized semi-tensor product of matrices, Control Theory Appl., 41 (2024), 1172–1180.
    [18] D. Cheng, Y. Zhao, Semi-tensor product of matrices a convenient new tool, Chin. Sci. Bull., 56 (2011), 2664–2674. https://doi.org/10.1360/972011-1262 doi: 10.1360/972011-1262
    [19] D. Cheng, H. Qi, Matrix semi-tensor product notes (1) Basic theory and multilinear operation, Beijing, Science Press, 2020.
    [20] Z. Wan, Lie algebra, 2 Eds., Beijing, Science Press, 2013.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(624) PDF downloads(57) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog