A model of fractional-order discontinuous impulsive delayed gene regulatory networks (GRNs) was investigated in this paper. The impulsive perturbations were at fixed moments of time and measured the impulsive control effects which can be controlled appropriately. A fractional-order modeling approach was applied and distributed delays were taken into account for greater model flexibility. In this paper, rather than studying the classical Lyapunov-type stability of an equilibrium point, we addressed the extended Lipschitz stability behavior of the considered GRNs. By applying the impulsive fractional Lyapunov functions technique, new criteria were derived to ensure the global uniform Lipschitz stability for the fractional impulsive delayed GRNs. Furthermore, the effects of considering uncertain parameters were also analyzed. Finally, an illustrating example was given to support the obtained theoretical results.
Citation: Ivanka Stamova, Cvetelina Spirova, Gani Stamov. Lipschitz stability analysis of fractional-order gene regulatory networks with impulsive perturbations and distributed delays[J]. Mathematical Modelling and Control, 2025, 5(4): 421-431. doi: 10.3934/mmc.2025030
A model of fractional-order discontinuous impulsive delayed gene regulatory networks (GRNs) was investigated in this paper. The impulsive perturbations were at fixed moments of time and measured the impulsive control effects which can be controlled appropriately. A fractional-order modeling approach was applied and distributed delays were taken into account for greater model flexibility. In this paper, rather than studying the classical Lyapunov-type stability of an equilibrium point, we addressed the extended Lipschitz stability behavior of the considered GRNs. By applying the impulsive fractional Lyapunov functions technique, new criteria were derived to ensure the global uniform Lipschitz stability for the fractional impulsive delayed GRNs. Furthermore, the effects of considering uncertain parameters were also analyzed. Finally, an illustrating example was given to support the obtained theoretical results.
| [1] |
R. Barbuti, R. Gori, P. Milazzo, L. Nasti, A survey of gene regulatory networks modelling methods: from differential equations, to Boolean and qualitative bioinspired models, J. Membrane Comput., 2 (2020), 207–226. https://doi.org/10.1007/s41965-020-00046-y doi: 10.1007/s41965-020-00046-y
|
| [2] | M. L. Bulyk, A. J. M. Walhout, Gene regulatory networks, In: A. J. M. Walhout, M. Vidal, J. Dekke, Handbook of systems biology, 1 Ed., New York: Academic Press, 2013, 65–88. |
| [3] |
B. Grammaticos, A. S. Carstea, A. Ramani, On the dynamics of a gene regulatory network, J. Phys. A-Math. Gen., 39 (2006), 2965–2971. https://doi.org/10.1088/0305-4470/39/12/007 doi: 10.1088/0305-4470/39/12/007
|
| [4] |
L. Wu, K. Liu, J. Lü, H. Gu, Finite-time adaptive stability of gene regulatory networks stability, Neurocomputing, 338 (2019), 222–232. https://doi.org/10.1016/j.neucom.2019.02.011 doi: 10.1016/j.neucom.2019.02.011
|
| [5] |
Z. Li, D. Chen, Y. Liu, Y. Zhao, New delay-dependent stability criteria of genetic regulatory networks subject to time-varying delays, Neurocomputing, 207 (2016), 763–771. https://doi.org/10.1016/j.neucom.2016.05.066 doi: 10.1016/j.neucom.2016.05.066
|
| [6] |
P. L. Liu, Robust stability analysis of genetic regulatory network with time delays, ISA Trans., 52 (2013), 326–334. https://doi.org/10.1016/j.isatra.2013.01.003 doi: 10.1016/j.isatra.2013.01.003
|
| [7] | X. Zhang, Y. Wang, L. Wu, Analysis and design of delayed genetic regulatory networks, 1 Ed., Cham: Springer, 2019. https://doi.org/10.1007/978-3-030-17098-1 |
| [8] |
W. He, J. Cao, Robust stability of genetic regulatory networks with distributed delay, Cogn. Neurodyn., 2 (2008), 355–361. https://doi.org/10.1007/s11571-008-9062-0 doi: 10.1007/s11571-008-9062-0
|
| [9] |
S. Logeswari, R. Sriraman, Exponential stability of gene regulatory networks with distributed delays, J. Math. Comput. Sci., 38 (2024), 252–262. https://doi.org/10.22436/jmcs.038.02.07 doi: 10.22436/jmcs.038.02.07
|
| [10] |
M. S. Ali, R. Saravanakumar, C. K. Ahn, H. R. Karimi, Stochastic $H_{\infty}$ filtering for neural networks with leakage delay and mixed time-varying delays, Inf. Sci., 388-389 (2017), 118–134. https://doi.org/10.1016/j.ins.2017.01.010 doi: 10.1016/j.ins.2017.01.010
|
| [11] |
B. Cao, Q. Zhang, M. Ye, Exponential stability of impulsive stochastic genetic regulatory networks with time-varying delays and reaction-diffusion, Adv. Differ. Equ., 2016 (2016), 307. https://doi.org/10.1186/s13662-016-1033-x doi: 10.1186/s13662-016-1033-x
|
| [12] |
J. Qiu, K. Sun, C. Yang, X. Chen, X. Chen, A. Zhang, Finite-time stability of genetic regulatory networks with impulsive effects, Neurocomputing, 219 (2017), 9–14. https://doi.org/10.1016/j.neucom.2016.09.017 doi: 10.1016/j.neucom.2016.09.017
|
| [13] |
S. Senthilraj, R. Raja, Q. Zhu, R. Samidurai, H. Zhou, Delay-dependent asymptotic stability criteria for genetic regulatory networks with impulsive perturbations, Neurocomputing, 214 (2016), 981–990. https://doi.org/10.1016/j.neucom.2016.07.018 doi: 10.1016/j.neucom.2016.07.018
|
| [14] |
S. Logeswari, R. Sriraman, Impulsive gene regulatory networks with distributed delays: a global exponential stability approach, Int. J. Inf. Techol., 17 (2025), 3055–3063. https://doi.org/10.1007/s41870-025-02515-y doi: 10.1007/s41870-025-02515-y
|
| [15] | S. Pandiselvi, R. Ramachandran, J. Cao, G. Rajchakit, A. R. Seadawy, A. Alsaedi, An advanced delay-dependent approach of impulsive genetic regulatory networks besides the distributed delays, parameter uncertainties and time-varying delays, Nonlinear Anal.-Model. Control, 23 (2018), 803–829. |
| [16] | T. Yang, Impulsive control theory, 1 Ed., Berlin: Springer, 2001. https://doi.org/10.1007/3-540-47710-1 |
| [17] |
X. Yang, D. Peng, X. Lv, X. Li, Recent progress in impulsive control systems, Math. Comput. Simul., 155 (2019), 244–268. https://doi.org/10.1016/j.matcom.2018.05.003 doi: 10.1016/j.matcom.2018.05.003
|
| [18] |
J. Cao, T. Stamov, G. Stamov, I. Stamova, Impulsive controllers design for the practical stability analysis of gene regulatory networks with distributed delays, Fractal Fract., 7 (2023), 847. https://doi.org/10.3390/fractalfract7120847 doi: 10.3390/fractalfract7120847
|
| [19] |
F. Li, J. Sun, Asymptotic stability of a genetic network under impulsive control, Phys. Lett. A, 374 (2010), 3177–3184. https://doi.org/10.1016/j.physleta.2010.05.054 doi: 10.1016/j.physleta.2010.05.054
|
| [20] | X. Li, S. Song, Impulsive systems with delays: stability and control, 1 Ed., Singapore: Science Press & Springer, 2022. https://doi.org/10.1007/978-981-16-4687-4 |
| [21] | I. Stamova, G. Stamov, Applied impulsive mathematical models, 1 Ed., Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-28061-5 |
| [22] |
S. Chen, J. Yang, Z. Li, H. L. Li, C. Hu, New results for dynamical analysis of fractional-order gene regulatory networks with time delay and uncertain parameters, Chaos, Soliton. Fract., 175 (2023), 114041. https://doi.org/10.1016/j.chaos.2023.114041 doi: 10.1016/j.chaos.2023.114041
|
| [23] |
C. Huang, J. Cao, M. Xiao, Hybrid control on bifurcation for a delayed fractional gene regulatory network, Chaos, Soliton. Fract., 87 (2016), 19–29. https://doi.org/10.1016/j.chaos.2016.02.036 doi: 10.1016/j.chaos.2016.02.036
|
| [24] |
F. Ren, F. Cao, J. Cao, Mittag–Leffler stability and generalized Mittag–Leffler stability of fractional-order gene regulatory networks, Neurocomputing, 160 (2015), 185–190. https://doi.org/10.1016/j.neucom.2015.02.049 doi: 10.1016/j.neucom.2015.02.049
|
| [25] |
M. S. Ali, G. Narayanan, S. Nahavandi, J. L. Wang, J. Cao, Global dissipativity analysis and stability analysis for fractional-order quaternion-valued neural networks with time delays, IEEE T. Syst. Man, Cybern. Syst., 52 (2022), 4046–4056. https://doi.org/10.1109/TSMC.2021.3065114 doi: 10.1109/TSMC.2021.3065114
|
| [26] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, 1 Ed., Singapore: World Scientific, 2012. |
| [27] | T. Sandev, Ž. Tomovski, Fractional equations and models: theory and applications, 1 Ed., Cham: Springer, 2019. |
| [28] | I. M. Stamova, G. T. Stamov, Functional and impulsive differential equations of fractional order: qualitative analysis and applications, 1 Ed., Boca Raton: CRC Press, 2017. https://doi.org/10.1201/9781315367453 |
| [29] |
M. M. Arjunan, T. Abdeljawad, P. Anbalagan, Impulsive effects on fractional order time delayed gene regulatory networks: asymptotic stability analysis, Chaos, Soliton. Fract., 154 (2022), 111634. https://doi.org/10.1016/j.chaos.2021.111634 doi: 10.1016/j.chaos.2021.111634
|
| [30] |
M. M. Arjunan, T. Abdeljawad, A. Pratap, A. Yousef, Impulsively fractional-order time-delayed gene regulatory networks: existence and asymptotic stability, Asian J. Control, 26 (2024), 1165–1177. https://doi.org/10.1002/asjc.3269 doi: 10.1002/asjc.3269
|
| [31] |
G. Narayanan, M. S. Ali, R. Karthikeyan, G. Rajchakit, A. Jirawattanapanit, Impulsive control strategies of mRNA and protein dynamics on fractional-order genetic regulatory networks with actuator saturation and its oscillations in repressilator model, Biomed. Signal Process. Control, 82 (2023), 104576. https://doi.org/10.1016/j.bspc.2023.104576 doi: 10.1016/j.bspc.2023.104576
|
| [32] |
T. Stamov, G. Stamov, I. Stamova, Fractional-order impulsive delayed reaction-diffusion gene regulatory networks: almost periodic solutions, Fractal Fract., 7 (2023), 384. https://doi.org/10.3390/fractalfract7050384 doi: 10.3390/fractalfract7050384
|
| [33] |
T. Stamov, I. Stamova, Design of impulsive controllers and impulsive control strategy for the Mittag–Leffler stability behavior of fractional gene regulatory networks, Neurocomputing, 424 (2021), 54–62. https://doi.org/10.1016/j.neucom.2020.10.112 doi: 10.1016/j.neucom.2020.10.112
|
| [34] |
E. Beretta, E. Francini, Global Lipschitz stability estimates for polygonal conductivity inclusions from boundary measurements, Appl. Anal., 101 (2022), 3536–3549. https://doi.org/10.1080/00036811.2020.1775819 doi: 10.1080/00036811.2020.1775819
|
| [35] |
B. Harrach, H. Meftahi, Global uniqueness and Lipschitz stability for the inverse Robin transmission problem, SIAM J. Appl. Math., 79 (2019), 525–550. https://doi.org/10.1137/18M1205388 doi: 10.1137/18M1205388
|
| [36] |
E. M. A. B. Hassi, S. E. Chorfi, L. Maniar, O. Oukdach, Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions, Evol. Equ. Control Theory, 10 (2021), 837–859. https://doi.org/10.3934/eect.2020094 doi: 10.3934/eect.2020094
|
| [37] |
A. Kawamoto, M. Machida, Lipschitz stability in inverse source and inverse coefficient problems for a first- and half-order time-fractional diffusion equation, SIAM J. Appl. Math., 52 (2020), 967–1005. https://doi.org/10.1137/18M1235776 doi: 10.1137/18M1235776
|
| [38] |
K. Gupta, F. Kaakai, B. Pesquet-Popescu, J. C. Pesquet, F. D. Malliaros, Multivariate Lipschitz analysis of the stability of neural networks, Front. Signal Process., 2 (2022), 794469. https://doi.org/10.3389/frsip.2022.794469 doi: 10.3389/frsip.2022.794469
|
| [39] |
I. Stamova, T. Stamov, G. Stamov, Lipschitz stability analysis of fractional-order impulsive delayed reaction-diffusion neural network models, Chaos, Soliton. Fract., 162 (2022), 112474. https://doi.org/10.1016/j.chaos.2022.112474 doi: 10.1016/j.chaos.2022.112474
|
| [40] |
G. K. Kulev, D. D. Bainov, Lipschitz stability of impulsive systems of differential equations, Dyn. Stab. Syst., 8 (1993), 1–17. https://doi.org/10.1080/02681119308806145 doi: 10.1080/02681119308806145
|
| [41] |
A. Kawamoto, M. Machida, Global Lipschitz stability for a fractional inverse transport problem by Carleman estimates, Appl. Anal., 100 (2021), 752–771. https://doi.org/10.1080/00036811.2019.1620931 doi: 10.1080/00036811.2019.1620931
|
| [42] |
I. Stamova, G. Stamov, Lipschitz stability criteria for functional differential systems of fractional order, J. Math. Phys., 54 (2013), 043502. https://doi.org/10.1063/1.4798234 doi: 10.1063/1.4798234
|
| [43] |
F. M. Dannan, S. Elaydi, Lipschitz stability of nonlinear systems of differential equations, J. Math. Anal. Appl., 113 (1986), 562–577. https://doi.org/10.1016/0022-247X(86)90325-2 doi: 10.1016/0022-247X(86)90325-2
|
| [44] |
N. Aguila–Camacho, M. A. Duarte–Mermoud, J. A. Gallegos, Lyapunov functions for fractional order systems, Commun. Nonlinear Sci. Numer. Simul., 19 (2014), 2951–2957. https://doi.org/10.1016/j.cnsns.2014.01.022 doi: 10.1016/j.cnsns.2014.01.022
|
| [45] |
G. Stamov, I. Stamova, Extended stability and control strategies for impulsive and fractional neural networks: a review of the recent results, Fractal Fract., 7 (2023), 289. https://doi.org/10.3390/fractalfract7040289 doi: 10.3390/fractalfract7040289
|
| [46] |
M. S. Ali, P. Balasubramaniam, Robust stability of uncertain fuzzy Cohen–Grossberg BAM neural networks with time-varying delays, Expert Syst. Appl., 36 (2009), 10583–10588. https://doi.org/10.1016/j.eswa.2009.02.058 doi: 10.1016/j.eswa.2009.02.058
|