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Abstract: A model of fractional-order discontinuous impulsive delayed gene regulatory networks (GRNs) was investigated in this
paper. The impulsive perturbations were at fixed moments of time and measured the impulsive control effects which can be controlled
appropriately. A fractional-order modeling approach was applied and distributed delays were taken into account for greater model
flexibility. In this paper, rather than studying the classical Lyapunov-type stability of an equilibrium point, we addressed the extended
Lipschitz stability behavior of the considered GRNs. By applying the impulsive fractional Lyapunov functions technique, new criteria
were derived to ensure the global uniform Lipschitz stability for the fractional impulsive delayed GRNs. Furthermore, the effects of
considering uncertain parameters were also analyzed. Finally, an illustrating example was given to support the obtained theoretical
results.
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1. Introduction

Due to their importance as models in the fields of cell
and molecular biology and medicine, a particular class of
GRNs have gained popularity in recent years [1–4]. The use
of systems of differential equations is a common modeling
formalism that allows for the quantitative determination of
molecular concentrations. A classical ODE model of GRNs
is represented in the following form [1]:

Ṁk(t) = −akMk(t) +
n∑

j=1

wk j f j(P j(t)) + Bk,

Ṗk(t) = −ckPk(t) + dkMk(t), t ≥ 0,

(1.1)

whereMk(t) and Pk(t) represent the concentration of the k-
th mRNA molecule and k-th protein molecule, respectively;
ak and ck are the decay rates of mRNA and protein,
respectively; dk is the translation rate, f j(·) is the regulatory
function; wk j is the coupling coefficient; and Bk represents
the basal transcriptional rate of the repressor of gene k,

k = 1, 2, . . . , n.

A considerable amount of research results on integer-
order GRNs also considered time delay terms. In fact,
time-lag effects cannot be ignored in the process of
gene expression regulation and such effects can lead to
undesired dynamics, including oscillation, divergence, or
even instability of GRNs. Hence, numerous researches
take fixed delays and time-variable delays into consideration
when modeling GRNs [5–7]. There are also several
interesting results on the dynamics of GRNs with distributed
delays [8, 9]. Indeed, GRNs with distributed delays
account for variable time delays that occur in biological
processes like transcription and translation, which are more
biologically realistic than fixed or time-varying delays.
In addition, distributed time-delayed signals reflect the
distributed signal propagation in neurons during a time span
in parallel pathways including different axon lengths and
sizes [10].

Due to some sudden changes at certain times that usually
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exist in the process of interactions between genes (mRNA)
and proteins, impulsive phenomena are inevitable in GRNs.
Such short-term environmental changes are mainly due to
environmental changes and can affect the concentrations of
mRNA molecules and proteins. This explains the existing
number of investigations on integer-order GRNs with
impulsive conditions, as it is much more important to discuss
the dynamics of impulsive GRN models [11–13]. Note
that, the research results on impulsive GRNs with distributed
delays are very rare and very recent [14, 15]. Also, from
the perspective of control theory, research on impulsive
control strategies can provide in-depth insight into the
mechanism of implementing control signals at certain points
in time [16, 17]. Therefore, it is important to investigate
the influence of impulsive control strategies on the behavior
of GRNs [18, 19]. Impulsive differential equations [20, 21]
have been widely used to analyze impulsive and impulsively
controlled GRNs.

The fact that GRNs represent complex processes that
provide a powerful tool in the study of the gene regulatory
mechanism has led to the development of novel approaches
for modeling and analysis. Recently, the concept of
fractional calculus was applied in order to improve and
generalize the existing integer-order GRN models [22–
24]. The main motivations of using the fractional
calculus modeling approach are the generalizations and
the substantial degree of reliability and accuracy in the
fractional-order models [25–28]. Since most fractional-
order derivatives are non-local, and possess memory effects
and hereditary properties, very recently the fractional
calculus approach has been applied in the mathematical
modeling of impulsive fractional GRNs with and without
delays. The existence and uniqueness of the equilibrium
point of a fractional-order impulsive GRN with time
delays was investigated in [29] and an asymptotic stability
analysis was conducted. The paper [30] offers criteria for
the boundedness, existence, uniqueness, and asymptotic
stability of impulsive delayed fractional GRNs. In the
paper [31], a novel fractional-order GRN model was
proposed with a controller that involves saturated impulsive
control. The finite-time Mittag–Leffler stabilization problem
for the proposed model was studied. The existence of
an almost periodic solution of a factional-order impulsive

delayed reaction-diffusion GRN model and its perfect
Mittag–Leffler stability were the main subjects in the
paper [32]. An impulsive control strategy was proposed
in [33] for the Mittag–Leffler stability behavior of fractional
GRNs without delays.

However, to the best of the authors’ knowledge, there
are no corresponding results in the existing literature for
impulsive fractional GRNs with distributed delays, which is
one of the goals in this research.

As it is seen from the above cited references, the problem
of stability analysis of GRN models has been studied by
many researchers [4–6, 8, 9, 18, 19, 29, 30, 33]. It is also seen
that much of the existing research in the literature considers
stability, asymptotic stability, or exponential stability in the
Lyapunov sense. Recently, there has been renewed interest
in stability analysis in the sense of Lipschitz for numerous
applied systems [34–37], including some neural network
models [38, 39]. The Lipschitz stability notion has been
applied to impulsive systems [40] and to fractional-order
systems [41,42]. However, the concept of Lipschitz stability
has not been studied for GRNs. This extended stability
concept is very appropriate for biological neural network
models because it is important in determining the amount
of the output of the network that is changed in response
to the changes in the input. For robustness and stability, a
small Lipschitz constant is suggested. Hence, the Lipschitz
stability behavior is essential for security and robustness of a
neural network model. The concept was introduced in [43],
and for linear systems it is identical to the uniform stability
notion [40]. For nonlinear systems, rather than stability in
the Lyapunov sense, the Lipschitz stability refers to a neural
network system that is less susceptible to attacks. Therefore,
there is a need to study the Lipschitz stability behavior of
impulsive fractional-order GRNs, which is the main aim of
our paper.

In this research, we introduce and analyze the Lipschitz
stability of fractional-order impulsive GRNs with distributed
delays. Caputo fractional derivatives are used for the
formulated system. These fractional-order derivatives seem
to be more natural for models with delays and impulsive
perturbations, since they allow classical initial and impulsive
conditions to be included in the formulation of the problem.
The qualitative analysis is based on the use of the fractional

Mathematical Modelling and Control Volume 5, Issue 4, 421–431.



423

Lyapunov approach [44] applied to piecewise continuous
Lyapunov functions [21,28] together with some comparison
results for fractional-order systems [28]. Efficient criteria
for global uniform Lipschitz stability are proved. Also, the
uncertain case is considered and a robust Lipschitz stability
analysis is designed. Indeed, the robust stability is crucial for
GRN models as extrinsic and intrinsic noises and data errors
may lead to parameter uncertainties. The beneficial effects
of the analyzed Lipschitz stability concept and the results
obtained can be applied to other neural network models.

The significance of the present research is as follows:

(i) A hybrid GRN model is introduced that incorporates
distributed delays to account for phenomena like translation
and transcription, impulsive (short-term) effects to allow
for the application of impulsive control strategies, and
fractional-order derivatives to capture hereditary and
“intrinsic memory” effects [45];

(ii) The extended concept of Lipschitz stability is
introduced to discontinuous impulsive fractional GRNs with
distributed delays for the first time in the literature;

(iii) New criteria for global uniform Lipschitz stability are
provided.

In addition, a noteworthy reference for researchers
interested in impulsive and fractional GRN models
is provided describing the existing literature and
demonstrating the latest progress in their qualitative
research.

The plan of the rest of the paper is as follows. In
Section 2 some fractional calculus definitions are given.
Then, the fractional-order impulsive GRNs with distributed
delays are formulated. Definitions and lemmas related to the
global uniform Lipschitz stability notion and the Lyapunov
approach are also presented. The main Lipschitz stability
results are established in Section 3. The robust Lipschitz
stability case is studied in Section 4. Section 5 offers
an example. Section 6 is the conclusion section where a
brief review of the main results of our research and their
significance is presented and extensions of our work are
suggested.

2. Preliminaries

In this paper, the Euclidean space of dimension n will

be denoted by Rn, ||u|| =
n∑

k=1

|uk | denotes the norm of u =

(u1, u2, . . . , un)T in Rn, R+ = [0,∞), and Rn
+ = R+ × · · · ×R+.

Given an interval I ⊂ R, the class of all continuous functions
φ : I → R will be denoted by C[I,R], and C1[I,R] denotes
the class of continuously differentiable functions φ : I →

R. Next, the space of all piecewise continuous functions
φ : I → R with a finite number of points of discontinuity
ξ̃ ∈ I at which φ(ξ̃−) and φ(ξ̃+) exist and φ(ξ̃−) = φ(ξ̃)
will be denoted by PC[I,R], PC∞ = PC[(−∞, 0],Rn], and
PCB[(−∞, 0],Rn] denotes the space of all functions φ ∈
PC∞ that are bounded. The norm in PC∞ will be defined
by

||φ||∞ = sup
υ∈(−∞,0]

||φ(υ)||.

2.1. Fractional calculus definitions

Let ξ0 ∈ R+, φ ∈ C1[[ξ0, ω],R], φ = φ(t), t ∈ [ξ0, ω], and
ω > ξ0.

Definition 2.1. The Caputo fractional derivative of order q,

0 < q < 1, with the lower limit ξ0 for the function φ, is given

by
C
ξ0

D
q

t
φ(t) =

1
Γ(1 − q)

∫ t

ξ0

φ′(h)
(t − h)q dh,

where Γ denotes the Gamma function.

For ξ0 = 0, we denote

C D
q
t φ(t) = C

0 D
q
t φ(t) =

1
Γ(1 − q)

∫ t

0

φ′(h)
(t − h)q dh.

The standard Mittag–Leffler function with one parameter

is defined as Eq(z) =
∞∑
κ=0

zκ

Γ(qκ + 1)
, where q > 0 and z is a

complex variable.
More in-depth information on the theory of fractional

calculus is available in the books [26–28] and some of the
references cited therein.

2.2. The GRN model’s formulation

Let the moments ξ1, ξ2, . . . , ξi, · · · ∈ R be such that

0 = ξ0 < ξ1 < ξ2 < · · · < ξi < ξi+1 < . . . , lim
i→∞

ξi = ∞.
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We introduce the following impulsive control fractional
GRNs given by

C D
q
t um

k (t) = −αkum
k (t) +

n∑
l=1

βkl

∫ t

−∞

Kl(t − σ) fl(u
p
l (σ))dσ

+ Θk, t , ξi,

C
0 D

q
t up

k (t) = −γkup
k (t) + δk

∫ t

−∞

Kk(t − σ)um
k (σ)dσ, t , ξi,

um
k (ξ+i ) = um

k (ξi) + Ωki(um
k (ξi)),

up
k (ξ+i ) = up

k (ξi) + Πki(u
p
k (ξi)),

(2.1)

where the concentration of the k-th mRNA molecule and k-
th protein molecule are denoted by um

k and up
k , respectively,

um = (um
1 , u

m
2 , . . . , u

m
n )T , up = (up

1 , u
p
2 , . . . , u

p
n )T , the positive

real constants αk and γk represent the decay rates of mRNA
and protein, respectively, the translation rates are denotes by
the positive real constants δk, the regulatory functions fl are
of the Hill form:

fl(ω) =
(ω/χl)Hl

1 + (ω/χl)Hl
, l = 1, 2, . . . , n,

in which χl are real positive constants, Hl denote the Hill
coefficients, the connecting parameters are the real constants
βkl, given as

βkl =


ζkl, if l is an activator of gene k,

−ζkl, if l is a repressor of gene k,

0, if there is no link between the node l

and the gene k,

the basal level of the repressor of gene k is denoted asΘk and
Θk =

∑
l∈Jk

ζkl, Jk denotes the collection of all the l which
are repressors of the gene k,Kl is the delay kernel, and k, l =

1, 2, . . . , n. Also, the variables um
k (ξi) = um

k (ξ−i ) and up
k (ξi) =

up
k (ξ−i ) denote the concentration of the k-th mRNA and k-th

protein at the instance ξi (before any impulsive perturbation),
respectively, the amounts um

k (ξ+i ) and up
k (ξ+i ) represent the

concentration of the k-th mRNA and k-th protein after an
impulsive disruption at the moment ξi, respectively, the
continuous inR functionsΩki andΠki measure the amount of
abrupt changes of um

k (t) and up
k (t) at the impulsive moments

ξi, and we have ∆um
k (ξi) = um

k (ξ+i ) − um
k (ξi) = Ωki(um

k (ξi)) and
∆up

k (ξi) = up
k (ξ+i ) − up

k (ξi) = Πki(u
p
k (ξi)), k = 1, 2, . . . , n, i =

1, 2, . . . .

Remark 2.1. The proposed impulsive fractional GRN

model (2.1) generalizes several recently introduced neural

network models in the theory of gene regulations. For

example, it generalizes the model proposed in [8] to the

impulsive and fractional-order settings. It also extends the

impulsive models with distributed delays studied in [14, 15,

18] to the fractional-order case. In addition, the model (2.1)

extends the impulsive fractional GRN model investigated

in [33] considering distributed delays. This significantly

increases the flexibility in terms of delays and includes many

specific cases. Hence, the suggested model is new. It is a

hybrid model that includes more general distributed delays,

impulsive perturbations, and fractional-order derivatives.

Remark 2.2. The impulsive functions Ωki and Πki, k =

1, 2, . . . , n, i = 1, 2, . . . , in (2.1) can be used for controlling

the qualitative behavior of the concentration of the k-

th mRNA molecule and k-th protein molecule during the

process of regulation.

We consider the impulsive fractional GRN model (2.1)
under the initial conditions

um
k (υ; 0, ψm) = ψm

k (υ), −∞ < υ ≤ 0,
up

k (υ; 0, ψp) = ψp
k (υ), −∞ < υ ≤ 0,

um
k (0+; 0, ψm) = ψm

k (0), up
k (0+; 0, ψp) = ψp

k (0),

(2.2)

where k = 1, 2, . . . , n, ψm, ψp ∈ PCB[(−∞, 0],Rn], ψm =

(ψm
1 , ψ

m
2 , . . . , ψ

m
n )T , ψp = (ψp

1 , ψ
p
2 , . . . , ψ

p
n )T .

The solution of the initial value problem (IVP) (2.1), (2.2)
will be denoted by u(t; 0, ψ), i.e.,

u(t; 0, ψ) = (um(t; 0, ψm), up(t; 0, ψp))T .

We will consider the following assumption throughout
this work:

(A) The delay kernel functions Kl defined on R are
nonnegative, continuous, and satisfy the estimate∫ t

−∞

Kl(σ)dσ ≤ Kl

for some positive constants Kl and all l = 1, 2, . . . , n.
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Also, the form of the considered regulatory functions fl
guarantees that for all l = 1, 2, . . . , n and any v, v̄ ∈ R, v , v̄,
there exist constants f L

l such that [24, 33]

0 ≤
fl(v) − fl(v̄)

v − v̄
≤ f L

l . (2.3)

2.3. Lipschitz stability definitions

Consider an equilibrium of the model (2.1) (um∗ , up∗ )T =

(um∗
1 , um∗

2 , . . . , um∗
n , up∗

1 , u
p∗

2 , . . . , u
p∗
n )T , i.e., a constant solution

that satisfies the following system:

αkum∗
k =

n∑
l=1

βkl

∫ t

−∞

Kl(t − σ) fl(u
p∗

l )dσ + Θk, t , ξi,

γkup∗

k (t) = δk

∫ t

−∞

Kk(t − σ)um∗
k dσ, t , ξi,

Ωki(um∗
k ) = 0,

Πki(u
p∗

k ) = 0,
(2.4)

k = 1, 2, . . . , n, i = 1, 2, . . . .
The Lipschitz stability concept will be adopted to

system (2.1) by the next definition.

Definition 2.2. The equilibrium (um∗ , up∗ )T of system (2.1) is

said to be globally uniformly Lipschitz stable if there exists

a constant A > 0 such that for ψm, ψp ∈ PCB[(−∞, 0],Rn],
we have ||um(t) − um∗ || + ||up(t) − up∗ || ≤ A(||ψm − um∗ ||∞ +

||ψp − up∗ ||∞) for t ≥ 0.

2.4. Lyapunov approach definitions and lemmas

The application of the Lyapunov analysis approach to
impulsive systems requires the use of piecewise continuous
Lyapunov-type functions Λ : R+ × R2n → R+, Λ =
Λ(t, um, up) such that:

(i)Λ(t, um, up) is continuous in (ξi−1, ξi)×R2n, i = 1, 2, . . . ,
locally Lipschitz continuous with respect to the arguments
(um, up), and Λ(t, 0, 0) = 0 for t ≥ 0,

(ii) For each i = 1, 2, . . . and (um, up)T ∈ R2n, there exist
the finite limits

Λ(ξ−i , u
m, up) = lim

t→ξi
t<ξi

Λ(t, um, up),

Λ(ξ+i , u
m, up) = lim

t→ξi
t>ξi

Λ(t, um, up),

and Λ(ξ−i , u
m, up) = Λ(ξi, um, up).

The class of all the functionsΛ = Λ(t, um, up) of the above
type will be denoted by Λ0.

Consider the following impulsive fractional-order system:


C D

q
t u(t) = F (t, ut) , t , ξi,

∆u(t) = Pi(u(t)), t = ξi, i = 1, 2, . . . ,

(2.5)

where ut(σ) = u(t + σ), −∞ < σ ≤ 0, F : R+ ×
PCB[(−∞, 0],R2n] → R2n, Pi : R2n → R2n, ξi < ξi+1,
i = 1, 2, . . . , and lim

i→∞
ξi = ∞.

Let the functionΛ ∈ Λ0 and ϕ = (ϕ1, ϕ2)T , ϕ j ∈ PC∞, j =
1, 2. For t , ξi, i = 1, 2, . . . , we will use the derivative
C DqΛ(t, ϕ) of the function Λ of order q, 0 < q < 1, with
respect to model (2.5) defined by

C DqΛ(t, ϕ(0)) = lim
h→0+

sup
1
hq

[
Λ(t, ϕ(0))−Λ(t−h, ϕ(0)−hqF(t, ϕ))

]
.

The following lemmas are crucial for the proof of our
main results.

Lemma 2.1. [28] Assume that the function Λ ∈ Λ0 is such

that for t ∈ R+, ϕ = (ϕ1, ϕ2)T , ϕ j ∈ PC∞, j = 1, 2,

Λ(t+, ϕ(0) + Pi(ϕ)) ≤ R̃i (Λ(t, ϕ(0))) , t = ξi, i = 1, 2, . . . ,

for continuous and non-decreasing functions R̃i(χ) = χ +

Ri(χ), Ri ∈ C[R+,R+], i = 1, 2, . . . , and the inequality

C DqΛ(t, ϕ(0)) ≤ Φ(t,Λ(t, ϕ(0))), t , ξi, i = 1, 2, . . . ,

holds whenever Λ(t+σ, ϕ(σ)) ≤ Λ(t, ϕ(0)) for −∞ < σ ≤ 0,
Φ ∈ PC[R+ × R+,R].

Then, sup−∞<σ≤0 Λ(0+, ψ(σ)) ≤ χ0 implies

Λ(t, u(t; 0, ψ)) ≤ χ+(t; 0, χ0), t ∈ R+,

where χ+(t; 0, χ0) is the maximal solution of the scalar

comparison equation C D
q
t χ(t) = Φ(t, χ), t , ξi, ∆χ(ξi) =

χ(ξ+i ) − χ(ξi) = Ri(χ(ξi)), i = 1, 2, . . . , χ(0) = χ0.

Lemma 2.2. [44] If φ ∈ C1[R+,R], φ = φ(t), then the
inequality

C D
q
t φ

2(t) ≤ 2φ(t)C D
q
t φ(t), 0 < q ≤ 1,

holds for all t ∈ R+.
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3. Main Lipschitz stability results

Denote ũm(t) = um(t) − um∗ , ũp(t) = up(t) − up∗ , t ∈ R+,
and consider the system

C D
q
t ũm

k (t) = −αkũm
k (t) +

n∑
l=1

βkl

∫ t

−∞

Kl(t − σ) f̃l(ũ
p
l (σ))dσ,

t , ξi,

C
0 D

q
t ũp

k (t) = −γkũp
k (t) + δk

∫ t

−∞

Kk(t − σ)ũm
k (σ)dσ, t , ξi,

ũm
k (ξ+i ) = ũm

k (ξi) + Ω̃ki(ũm
k (ξi)),

ũp
k (ξ+i ) = ũp

k (ξi) + Π̃ki(ũ
p
k (ξi)),

(3.1)

where f̃lũ
p
l (t)) = fl(ũ

p
l (t) + up∗

l ) − fl(u
p∗

l ), Ω̃ki(ũm
k (ξi)) =

Ωki(ũm
k (ξi) + um∗

k ), Π̃ki(ũ
p
k (ξi)) = Πki(ũ

p
k (ξi)) + up∗

k ), k =

1, 2, . . . , n, i = 1, 2, . . . .

Theorem 3.1. Let the assumption (A) be satisfied, and:

(1) The model’s parameters, are such that

min
1≤k≤n

2αk −

n∑
l=1

|βkl|Kl f L
l , 2γk − δkKk


≥ max

1≤k≤n

δkKk, Kk f L
k

n∑
l=1

|βlk |

 + µ, µ > 0;

(2) The impulsive functions Ω̃ki and Π̃ki are such that

Ω̃ki(ũm
k (ξi)) = −ζm

ki ũ
m
k (ξi), 0 < ζm

ki < 2,

Π̃ki(ũ
p
k (ξi)) = −ζ

p
kiũ

p
k (ξi), 0 < ζ p

ki < 2,

k = 1, 2, . . . , n, i = 1, 2, . . . .

Then, the equilibrium (um∗ , up∗ )T of the model (2.1) is

globally uniformly Lipschitz stable.

Proof. Given t ∈ R+, let u(t; 0, ψ),

u(t; 0, ψ) = (um(t; 0, ψm), up(t; 0, ψp))T ,

be the solution of the IVP (2.1), (2.2) with ψm, ψp ∈

PCB[(−∞, 0],Rn], ψm = (ψm
1 , ψ

m
2 , . . . , ψ

m
n )T , ψp =

(ψp
1 , ψ

p
2 , . . . , ψ

p
n )T . Consider the equilibrium (um∗ , up∗ )T .

Construct a Lyapunov-type function

Λ1(t, ũm, ũp) =

√√ n∑
k=1

(um
k (t) − um∗

k )2 +

n∑
k=1

(up
k (t) − up∗

k )2,

(3.2)
and consider the function Λ(t) = Λ1(t, ũm(t), ũp(t)).

For any t , ξi, i = 1, 2, . . . , using (A), (2.3), (3.1), and
condition 1 of Theorem 3.1, the following estimate holds:

C Dq
tΛ(t)

≤

n∑
k=1

[
− 2αk(ũm

k (t))2 + 2
n∑

l=1

|βkl| f L
l Kl sup

−∞<σ≤0
|ũp

l (σ)||ũm
k (t)|
]

+

n∑
k=1

[
− 2γk(ũp

k (t))2 + 2δkKk sup
−∞<σ≤0

|ũm
k (σ)||ũp

k (t)|
]

≤

n∑
k=1

[
− 2αk(ũm

k (t))2 +

n∑
l=1

|βkl| f L
l Kl( sup

−∞<σ≤0
(ũp

l (σ))2 + (ũm
k (t))2)

]
+

n∑
k=1

[
− 2γk(ũp

k (t))2 + δkKk( sup
−∞<σ≤0

(ũm
k (σ))2 + (ũp

k (t))2)
]

≤ − min
1≤k≤n

2αk −

n∑
l=1

|βkl|Kl f L
l , 2γk − δkKk

Λ(t)

+ max
1≤k≤n

δkKk, Kk f L
k

n∑
l=1

|βlk |

 sup
−∞<σ≤0

Λ(t + σ).

Thus, for ϕ = (ϕ1, ϕ2)T , ϕ j ∈ PC∞, j = 1, 2, it can be
derived that the inequality

C DqΛ1(t, ϕ(0)) ≤ −µΛ1(t, ϕ(0)), t , ξi, i = 1, 2, . . . (3.3)

holds whenever Λ1(t + σ, ϕ(σ)) ≤ Λ1(t, ϕ(0)) for −∞ < σ ≤

0.
At the instances t = ξi, i = 1, 2, . . . , we have

Λ(ξ+i ) =

√√
n∑

k=1

(ũm
k (ξi) + Ω̃ki(ũm

k (ξi)))2 +

n∑
k=1

(ũp
k (ξi) + Π̃ki(ũ

p
k (ξi)))2.

Using condition 2 of Theorem 3.1, we obtain

Λ(ξ+i ) =

√√ n∑
k=1

(1 − γ̃m
ki)

2(ũm
k (ξi))2 +

n∑
k=1

(1 − γ̃p
ki)

2(ũp
k (ξi))2

<

√√ n∑
k=1

(ũm
k (ξi))2 +

n∑
k=1

(ũp
k (ξi))2 = Λ(ξi).

The last estimate implies that for t = ξi, i = 1, 2, . . . , and
ϕ = (ϕ1, ϕ2)T , ϕ j ∈ PC∞, j = 1, 2, we have

Λ1(t+, ϕ(0) + ∆(ϕ)) ≤ Λ1(t, ϕ(0)). (3.4)

Hence, from (3.3) and (3.4), applying Lemma 2.1, we
derive

Λ1(t, ũ(t; 0, ψ)) ≤ χ+(t; 0, χ0), t ∈ R+, (3.5)
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where χ+(t; 0, χ0) is the maximal solution of the scalar
comparison equation

C D
q
t χ(t) = −µχ(t), t , ξi, ∆χ(ξi) = 0, i = 1, 2, . . . , (3.6)

χ(0) = χ0 = sup−∞<σ≤0 Λ1(0+, ψ(σ)).
Since the zero solution of the scalar comparison Eq (3.6)

is globally uniformly Lipschitz stable [39], then, there exists
a constant A > 0 such that for χ0 > 0, we have χ+(t; 0, χ0) ≤
Aχ0 for t ≥ 0.

Hence, in view of (3.5) and using the Cauchy–Schwarz
inequality, we obtain

||um(t) − um∗ || + ||up(t) − up∗ ||

=

n∑
k=1

|um
k (t) − um∗

k | +

n∑
k=1

|up
k (t) − up∗

k |

≤

√∑n
k=1(um

k (t) − um∗
k )2 +

∑n
k=1(up

k (t) − up∗
k )2
√

n

= Λ1(t, ũ(t; 0, ψ))
√

n

≤ χ+(t; 0, χ0)
√

n.

The global uniform Lipschitz stability of the zero solution
of (3.6) implies that for χ0 = sup−∞<σ≤0 Λ1(0+, ψ(σ)) < η,
we have

||um(t) − um∗ || + ||up(t) − up∗ || ≤ A
√

n sup
−∞<σ≤0

Λ1(0+, ψ(σ)).

Finally, we apply the Minkowski inequality to derive

||um(t)−um∗ ||+||up(t)−up∗ || ≤ A
√

n(||ψm−um∗ ||∞+||ψ
p−up∗ ||∞)

for t ≥ 0, ψm, ψp ∈ PCB[(−∞, 0],Rn], ||ψm − um∗ ||∞ +

||ψp − up∗ ||∞ < η, which proves the global uniform Lipschitz
stablity of the equilibrium (um∗ , up∗ )T of the model (2.1). □

Remark 3.1. Theorem 3.1 provides the first, in the

existing literature, global uniform Lipschitz stability criteria

for a GRN model that involves impulsive perturbations,

fractional-order derivatives, and distributed delay. Hence,

the result established contributes to the development of their

theory. Also, as in some practical cases where classical

Lyapunov-type stability concepts considered in [29–31, 33]

are not appropriate, the Lipschitz stability is an option. The

Lipschitz stability implies that the model’s solution changes

more gradually and predictably in response to initial data

changes. In addition, since the model considered is very

general, the obtained criteria can be applied to models with

constant and time-varying delays, as well as to integer-order

models and models without impulsive perturbations.

Remark 3.2. From the perspectives of impulsive control,

the result obtained can be applied in the investigations of

Lipschitz-type synchronization of the impulsive fractional

GRN model (2.1) to an impulse free fractional GRN model.

The functions Ωm
ki and Πp

ki characterize the controllers’

effects of synchronizing impulses at the instances ξi, i =

1, 2, . . . , k = 1, 2, . . . , n.

Remark 3.3. More Lipschitz stability criteria, similar to

those offered in Theorem 3.1, can be obtained using different

norms and different Lyapunov-type functions. For example,

in the use of the Lyapunov-type function Λ2(t, ũm, ũp) =
||um(t) − um∗ || + ||up(t) − up∗ ||, the smallest Lipschitz constant

A is obtained.

4. Robust Lipschitz stability analysis

As uncertain parameters often exist in the real-world
models [6, 8, 15, 22, 46] and, in addition, the concept of
Lipschitz stability is closely related to robustness, in this
section we will study the robust Lipschitz stability behavior
of the model (2.1). To this end we consider the uncertain
model

C D
q
t um

k (t) = −(αk + α̃k)um
k (t)

+

n∑
l=1

(βkl + β̃kl)
∫ t

−∞

Kl(t − σ) fl(u
p
l (σ))dσ

+ Θk + Θ̃k, t , ξi,

C
0 D

q
t up

k (t) = −(γk + γ̃k)up
k (t)

+ (δk + δ̃k)
∫ t

−∞

Kk(t − σ)um
k (σ)dσ, t , ξi,

um
k (ξ+i ) = um

k (ξi) + Ωki(um
k (ξi)) + Ω1

ki(u
m
k (ξi)),

up
k (ξ+i ) = up

k (ξi) + Πki(u
p
k (ξi)) + Π1

ki(u
p
k (ξi)),

(4.1)
where the positive real constants α̃k, γ̃k, δ̃k, the real constants
β̃kl and Θ̃k, k, l = 1, 2, . . . , n, are the uncertain parameters
in the continuous part, and Ω1

ki, Π
1
ki, k = 1, 2, . . . , n, i =

1, 2, . . . , are uncertainties in the impulsive control functions.

Definition 4.1. The equilibrium (um∗ , up∗ )T of the impulsive
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control fractional delayed GRN model (2.1) is robustly

globally uniformly Lipschitz stable if for ψm, ψp ∈

PCB[(−∞, 0],Rn], the uncertain model (4.1) is globally

uniformly Lipschitz stable for uncertain parameters α̃k, γ̃k,

δ̃k, β̃kl, Θ̃k, k, l = 1, 2, . . . , n, Ω1
ki, Π

1
ki, k = 1, 2, . . . , n,

i = 1, 2, . . . , taking values in some bounded sets.

Theorem 4.1. Let the assumption (A) and condition 2 of

Theorem 3.1 be satisfied:

(1) The model’s parameters are such that

min
1≤k≤n

{(αk + α̃k), (γk + γ̃k)}

≥ max
1≤k≤n

(δk + δ̃k)Kk, Kk f L
k

n∑
l=1

(|βlk | + |β̃lk |)

 > 0;

(2) The uncertain functions Ω1
ki, Π

1
ki, k = 1, 2, . . . , n, i =

1, 2, . . . , are such that

Ω1
ki(u

m
k (ξi)) = −νm

kiu
m
k (ξi), 0 < νm

ki < 2 − ζm
ki ,

Π1
ki(u

p
k (ξi)) = −ν

p
kiu

p
k (ξi), 0 < νp

ki < 2 − ζ p
ki,

k = 1, 2, . . . , n, i = 1, 2, . . . .
Then, the equilibrium (um∗ , up∗ )T of the model (2.1) is

robustly globally uniformly Lipschitz stable.

Proof. The Lyapunov proof strategy is similar to that in
the proof of Theorem 3.1. The Lyapunov-type function
Λ2(t, um, up) = ||um(t) − um∗ || + ||up(t) − up∗ || is used. □

5. An example

We consider the impulsive fractional delayed GRN
model (2.1) with n = 2, and the following parameters
α1 = α2 = 2, Θ1 = Θ2 = 0, γ1 = γ2 = 0.6, δ1 = 0.2,

δ2 = 0.1, fl(u
p
l ) = (up

l )
2

1+(up
l )

2 , Kl(s) = e−s, l = 1, 2, βkl = β11 β12

β21 β22

 =  0.5 −0.4
−0.3 0.4

 , Ωki(um
k (ξi)) = − 1

4 um
k (ξi),

Πki(u
p
k (ξi)) = − 1

3 up
k (ξi), k = 1, 2, i = 1, 2, . . . .

We can check that f L
k = 1, Kk = 1, k = 1, 2, and

1 = min1≤k≤n

{
2αk −

∑n
l=1 |βkl|Kl f L

l , 2γk − δkKk

}
≥ max1≤k≤n

{
δkKk, Kk f L

k
∑n

l=1 |βlk |
}
+ µ = 0.8 + µ.

Hence, condition 1 of Theorem 3.1 is met for 0 ≤ µ ≤

0.2. Since the zero solution of (3.6) is globally uniformly

Lipschitz stable, then by Theorem 3.1, we conclude that the
zero equilibrium of the model (2.1) is globally uniformly
Lipschitz stable.

In addition, we consider the model (2.1) as a “nominal”
model for the uncertain model (4.1). If the uncertain
parameters satisfy the boundedness condition

min
1≤k≤n

{(1 + α̃k), (0.6 + γ̃k)}

≥ max
1≤k≤n

(0.2 + δ̃k)Kk, Kk f L
k

n∑
l=1

(0.8 + |β̃lk |)

 > 0

and the uncertainties in the impulsive functions Ω1
ki, Π

1
ki, k =

1, 2, . . . , n, i = 1, 2, . . . satisfy condition 2 of Theorem 4.1
with 0 < νm

ki <
3
4 , 0 < ν

p
ki <

5
3 , k = 1, 2, . . . , n, i = 1, 2, . . . ,

then according to Theorem 4.1 the zero equilibrium of the
model (2.1) is robustly globally uniformly Lipschitz stable.

6. Conclusions

In this paper, a hybrid modeling approach is applied
to extend the class of GRNs. The extended model has
all the advantages of impulsive models with distributed
delays applied as frameworks for the modeling of such
systems [18]. In addition, it has the flexibility provided
by the use of fractional-order derivatives. The extended
concept of Lipschitz stability is introduced into the model,
and new criteria that guarantee the global uniform Lipschitz
stability of the model’s equilibrium are established. Robust
stability analysis is also provided considering the effect of
uncertain parameters. The results obtained are of interest
to applied researchers when a Lyapunov stability strategy
cannot be used. Hence, the concept of Lipschitz stability
can be applied to other models studied in mathematical
biology. A future direction of our investigations is also
related to some extensions of the introduced model applying
the conformable calculus approaches. In addition, since
the computer simulation, experimentation, and practical
implementation of the obtained stability criteria require
a discretization of the proposed fractional-order neural
network model, the study of its discrete analogous form
becomes very important.
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