This study examines a quasistatic frictional contact problem involving a thermo-viscoelastic body interacting with a thermally conductive foundation. The constitutive behavior is described by a fractional Kelvin–Voigt model utilizing the Caputo derivative. Heat conduction is modeled through time-fractional displacement and temperature parameters. The contact, friction, and heat exchange are governed by Clarke's subdifferential boundary conditions. The problem is weakly formulated as a system of two coupled time-fractional hemivariational inequalities. The existence of solutions is established by reducing the system to a single time-fractional hemivariational inequality, leveraging recent advances in the theory of time-fractional hemivariational inequalities.
Citation: Abdelhafid Ouaanabi, Mohammed Alaoui, Mustapha Bouallala, El Hassan Essoufi. Coupled time-fractional hemivariational inequalities in frictional thermo-viscoelastic contact problem[J]. Mathematical Modelling and Control, 2025, 5(4): 400-409. doi: 10.3934/mmc.2025028
This study examines a quasistatic frictional contact problem involving a thermo-viscoelastic body interacting with a thermally conductive foundation. The constitutive behavior is described by a fractional Kelvin–Voigt model utilizing the Caputo derivative. Heat conduction is modeled through time-fractional displacement and temperature parameters. The contact, friction, and heat exchange are governed by Clarke's subdifferential boundary conditions. The problem is weakly formulated as a system of two coupled time-fractional hemivariational inequalities. The existence of solutions is established by reducing the system to a single time-fractional hemivariational inequality, leveraging recent advances in the theory of time-fractional hemivariational inequalities.
| [1] |
M. Bouallala, E. H. Essoufi, Analysis results for a dynamic contact problem with friction in thermo-viscoelasticity, Methods Funct. Anal. Topol., 26 (2020), 317–326. https://doi.org/10.31392/MFAT-npu26_4.2020.03 doi: 10.31392/MFAT-npu26_4.2020.03
|
| [2] |
O. Abdelhafid, A. Mohammed, E. El Hassan, B. Mustapha, Existence and uniqueness of solutions for a dynamic thermoviscoelastic contact problem governed by an evolutionary variational hemivariational inequality with unilateral constraints, Comput. Appl. Math., 44 (2025), 311. https://doi.org/10.1007/s40314-025-03264-1 doi: 10.1007/s40314-025-03264-1
|
| [3] |
A. Ouaanabi, M. Alaoui, M. Bouallala, E. H. Essoufi, Continuous dependence result for a class of evolutionary variational-hemivariational inequalities with application to a dynamic thermo-viscoelastic contact problem, Acta Appl. Math., 195 (2025), 2. https://doi.org/10.1007/s10440-025-00707-z doi: 10.1007/s10440-025-00707-z
|
| [4] |
A. Mohammed, B. Mustapha, E. El Hassan, O. Abdelhafid, Optimal control for a dynamic contact problem governed by a system of hemivariational inequalities in thermo-electro-viscoelasticity, SeMA J., 2025, 1–24. https://doi.org/10.1007/s40324-025-00374-y doi: 10.1007/s40324-025-00374-y
|
| [5] |
M. Bouallala, E. H. Essoufi, A thermo-viscoelastic fractional contact problem with normal compliance and Coulomb's friction, J. Math. Phys. Anal. Geom., 17 (2021), 280–294. https://doi.org/10.15407/mag17.03.280 doi: 10.15407/mag17.03.280
|
| [6] |
S. Zeng, S. Migórski, A class of time-fractional hemivariational inequalities with application to frictional contact problems, Commun. Nonlinear Sci. Numer. Simul., 56 (2018), 34–48. https://doi.org/10.1016/j.cnsns.2017.07.016 doi: 10.1016/j.cnsns.2017.07.016
|
| [7] | E. G. Bazhlekova, Fractional evolution equations in Banach spaces, Phd Thesis, Technische Universiteit Eindhoven, 2001. https://doi.org/10.6100/IR549476 |
| [8] | A. H. Paulian, Analyse des infiniment petits, Chez le veuve Girard & François Seguin, 1768. |
| [9] | B. Riemann, Versuch einer allgemeinen Auffassung der integration und differentiation. (1847.), In: R. Dedekind, H. M. Weber, Bernhard Riemann's gesammelte mathematische werke und wissenschaftlicher Nachlass, Cambridge University Press, London, 2013,331–344. https://doi.org/10.1017/CBO9781139568050.020 |
| [10] | M. Kostic, Abstract Volterra integro-differential equations, Boca Raton: CRC Press, 2015. https://doi.org/10.1201/b18463 |
| [11] | R. Herrmann, Fractional calculus: an introduction for physicists, Singapore: World Scientific, 2011. https://doi.org/10.1142/8079 |
| [12] | I. Podlubny, Fractional differential equations, San Diego: Academic Press, 1998. |
| [13] |
J. Han, S. Migórski, H. Zeng, Weak solvability of a fractional viscoelastic frictionless contact problem, Appl. Math. Comput., 303 (2017), 1–18. https://doi.org/10.1016/j.amc.2017.01.009 doi: 10.1016/j.amc.2017.01.009
|
| [14] |
K. A. Abro, Q. M. Al‐Mdallal, I. Q. Memon, Sinusoidal heating on convective heat transfer of nanofluid under differential technique, ZAMM–Z. Angew. Math. Mech., 104 (2024), e202300895. https://doi.org/10.1002/zamm.202300895 doi: 10.1002/zamm.202300895
|
| [15] |
K. A. Abro, A. Atangana, Mathematical modeling of neuron model through fractal-fractional differentiation based on maxwell electromagnetic induction: application to neurodynamics, Neural Comput. Appl., 36 (2024), 18377–18385. https://doi.org/10.1007/s00521-024-10047-y doi: 10.1007/s00521-024-10047-y
|
| [16] |
K. A. Abro, I. Q. Memon, K. S. Mohamed, K. Aldwoah, Neurobiological transition of magnetized and demagnetized dynamism for fractional Hindmarsh–Rose neuron model via fractal numerical simulations, J. Comput. Electron., 24 (2025), 33. https://doi.org/10.1007/s10825-024-02243-9 doi: 10.1007/s10825-024-02243-9
|
| [17] | A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, 2006. |
| [18] |
A. Amassad, K. L. Kuttler, M. Rochdi, M. Shillor, Quasi-static thermoviscoelastic contact problem with slip-dependent friction coefficient, Math. Comput. Model., 36 (2002), 839–854. https://doi.org/10.1016/S0895-7177(02)00231-5 doi: 10.1016/S0895-7177(02)00231-5
|
| [19] | W. Han, M. Sofonea, Quasistatic contact problems in viscoelasticity and viscoplasticity, In: Studies in advanced mathematics, Vol. 30, American Mathematical Society, Providence, RI, International Press, Somerville, MA, 2002. |
| [20] |
S. Migórski, Dynamic hemivariational inequality modeling viscoelastic contact problems with normal damped response and friction, Appl. Anal., 84 (2005), 669–699. https://doi.org/10.1080/00036810500048129 doi: 10.1080/00036810500048129
|
| [21] |
S. Migórski, A. Ochal, A unified approach to dynamic contact problems in viscoelasticity, J. Elasticity, 83 (2006), 247–275. https://doi.org/10.1007/s10659-005-9034-0 doi: 10.1007/s10659-005-9034-0
|
| [22] | S. Migórski, A. Ochal, M. Sofonea, Nonlinear inclusions and hemivariational inequalities: models and analysis of contact problems, Advances in Mechanics and Mathematics, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-4232-5 |
| [23] |
P. Szafraniec, Analysis of an elasto-piezoelectric system of hemivariational inequalities with thermal effects, Acta Math. Sci., 37 (2017), 1048–1060. https://doi.org/10.1016/S0252-9602(17)30057-7 doi: 10.1016/S0252-9602(17)30057-7
|
| [24] | Z. Denkowski, S. Migórski, N. S. Papageorgiou, An introduction to nonlinear analysis: theory, Springer New York, 2003. https://doi.org/10.1007/978-1-4419-9158-4 |