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Abstract: This study examines a quasistatic frictional contact problem involving a thermo-viscoelastic body interacting with a thermally
conductive foundation. The constitutive behavior is described by a fractional Kelvin–Voigt model utilizing the Caputo derivative. Heat
conduction is modeled through time-fractional displacement and temperature parameters. The contact, friction, and heat exchange are
governed by Clarke’s subdifferential boundary conditions. The problem is weakly formulated as a system of two coupled time-fractional
hemivariational inequalities. The existence of solutions is established by reducing the system to a single time-fractional hemivariational
inequality, leveraging recent advances in the theory of time-fractional hemivariational inequalities.
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1. Introduction

Contact problems involving friction, deformation, and
heat exchange are of significant interest in the study
of materials and mechanical systems. These problems
become particularly complex when the interacting bodies
exhibit time-dependent behaviors, such as viscoelasticity,
and when thermal effects play a crucial role in the overall,
dynamics. In many real-world applications, materials
exhibit not only elastic but also viscoelastic responses, with
frictional and thermal interactions significantly influencing
the system’s performance and stability. Consequently,
the mathematical modeling and analysis of such systems
are both challenging and essential for understanding and
predicting their behavior.

In the literature, several theoretical results have been
established, particularly in [1–3], using the theory of
variational or hemivariational inequalities combined with

fixed–point arguments. More recent advancements, as seen
in [4], have incorporated the piezoelectric effect. In this
study, we extend these works by employing a fractional
Kelvin–Voigt constitutive law, which is expressed as

σ(t) = Aε(C
0 Dαt u(t)) + F ε(u(t)) − θ(t)M, (1.1)

where 0 < α < 1 is a material constant, and σ, A,
F , and M represent the stress, viscosity, elasticity, and
thermal expansion tensors, respectively. Here, C

0 Dαt u denotes
the Caputo fractional derivative of order α applied to the
displacement u. For a better understanding of how the
Eq (1.1) is derived from the following classical form:

σ(t) = Aε(u̇(t)) + F ε(u(t)) − θ(t)M, (1.2)

we refer the reader to [5, 6]. Additionally, we model heat
conduction using a time-fractional version of Fourier’s law
for the temperature field θ, given by:

C
0 Dαt θ(t) + div q(t) = R

(
C
0 Dαt u(t)

)
+ qth(t), (1.3)
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where R is a linear function.

The origins of fractional calculus can be traced back
to the late 17th century, with contributions from Gottfried
Leibniz, Guillaume de l’Hôpital, and Johann Bernoulli,
laying the foundation for this field [7, 8]. Significant
developments occurred in the mid-19th century following
the works of Joseph Liouville and Bernhard Riemann,
which spurred various advancements in the theory [9].
These developments have since been extensively explored
in modern research, as evidenced by Bazhlekova’s study
on fractional evolution equations in Banach spaces [7]
and Kostić’s contributions to abstract Volterra integro-
differential equations [10]. One notable application of
fractional calculus is in the mechanical modeling of rubber-
like materials. References [11, 12] highlight models that
incorporate specific viscoelastic materials, where fractional
constitutive laws such as the Kelvin–Voigt and the fractional
Maxwell models are considered. In [13], the authors
examined a general quasistatic frictionless contact problem
for a viscoelastic body governed by the fractional Kelvin–
Voigt law, with the contact condition expressed via the
Clarke subdifferential of a nonconvex and nonsmooth
functional.

However, the domain of fractional calculus extends far
beyond contact mechanics, the subject of this article. For
instance, these operators have been successfully applied in
diverse fields such as fluid dynamics, diffusion processes,
and materials science. The Caputo and Caputo-Fabrizio
time fractional operators have gained significant attention in
heat transfer analysis due to their ability to model memory
effects and non-local behaviors in thermal processes. These
operators generalize classical time derivatives, offering a
more accurate representation of complex systems where past
history influences the present state, which is particularly
useful in anomalous diffusion and fractional heat conduction
problems. Recent studies, such as those in [14–16],
underscore their relevance in various applications, including
thermal conductivity in materials and heat distribution
in heterogeneous media. The growing body of work
in this field highlights the increasing importance of
fractional calculus in enhancing our understanding of
thermal processes and improving predictive models in heat
transfer analysis.

This paper focuses on the analysis of a quasistatic
frictional contact problem involving a thermo-viscoelastic
body, governed by the constitutive relation (1.1). The
contact, friction, and heat exchange processes are modeled
using subgradients of nonconvex and nonsmooth potentials.
We present a weak formulation of the problem, expressed
in terms of displacement and temperature fields, leading
to a system of two coupled time-fractional hemivariational
inequalities. Subsequently, we establish the existence and
regularity of weak solutions.

While previous research on similar models has often
employed the Banach fixed point theorem to prove
the existence of weak solutions (see, e.g., [5]), the
key contribution of this paper lies in introducing a
new approach that avoids the use of fixed point
arguments. Specifically, we combine the two inequalities
from the variational formulation into a single fractional
hemivariational inequality. This is then solved using
an abstract result for time-fractional hemivariational
inequalities, by constructing suitable product spaces, which
represents the main novelty of this work.

The remainder of the paper is organized as follows.
Section 2 introduces some notation and preliminary
material, including an abstract result on the existence
of solutions for an elliptic time-fractional hemivariational
inequality. In Section 3, we present the mechanical
model for a thermo-viscoelastic fractional contact problem.
Section 4 introduces additional notation, outlines the
assumptions on the problem’s data, derives the variational
formulation, and states our main existence result. Finally, in
Section 5, we provide proof of the main result.

2. Preliminaries on fractional calculus

In this section, we present some well-known results
related to fractional calculus, which can be found in many
monographs and papers, such as [12, 17].

For a real Banach space (B, ∥ · ∥B), we denote its dual
space by B∗, and the duality pairing between B∗ and B is
represented as (·, ·)B∗×B. For 1 ≤ p ≤ ∞ and m = 1, 2, . . .,
we use the standard notation for the spaces Lp(0, T ;B) and
Wm,p(0, T ;B), where 0 < T < +∞. We also use the notation
L(B,B∗) to denote the space of bounded linear operators
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from space B to its dual space B∗, equipped with the
standard norm ∥ · ∥L(B,B∗). Finally, we denote by C(0, T ;B)
the space of continuous functions from [0, T ] to B.

2.1. Riemann–Liouville fractional integral

The Riemann–Liouville fractional integral is an important
tool in fractional calculus. It is defined for a function f ∈

L1(0, T ; X), where X is a Banach space and (0, T ) is a finite
time interval.

Definition 2.1 (Riemann–Liouville fractional integral). Let

X be a Banach space and (0, T ) be a finite time interval. The

Riemann–Liouville fractional integral of order α > 0 for a

given function f ∈ L1(0, T ; X) is defined as follows:

0Iαt f (t) =
1
Γ(α)

∫ t

0
(t − s)α−1 f (s) ds, for a.e. t ∈ (0,T ),

where Γ denotes the Gamma function, which is defined by

Γ(α) =
∫ +∞

0
tα−1e−t dt.

To complement the definition, we set 0I0
t = I, where I is the

identity operator, which means that

0I0
t f (t) = f (t) for a.e. t ∈ (0, T ).

2.2. Caputo fractional derivative

The Caputo fractional derivative is another essential
concept in fractional calculus, which is widely used
in various applications, especially in the modeling of
anomalous diffusion and viscoelastic materials.

Definition 2.2 (Caputo derivative of order 0 < α ≤ 1). Let

X be a Banach space, 0 < α ≤ 1, and (0, T ) be a finite time

interval. For a given function f ∈ AC(0,T ; X), the Caputo

fractional derivative of f is defined by

C
0 Dαt f (t) = 0I1−α

t f ′(t) =
1

Γ(1 − α)

∫ t

0
(t − s)−α f ′(s) ds,

for a.e. t ∈ (0, T ). The notation AC(0, T ; X) refers to

the space of all absolutely continuous functions from (0,T )
into X.

It is clear that if α = 1, the Caputo derivative reduces to

the classical first-order derivative:

C
0 D1

t f (t) = I f ′(t) = f ′(t), for a.e. t ∈ (0, T ).

2.3. Properties of fractional calculus operators

We present some well-known properties related to
the Riemann–Liouville fractional integral and the Caputo
derivative, which are essential in understanding the behavior
of these operators.

Proposition 2.3. Let X be a Banach space. If α, β > 0 and

0 < γ ≤ 1, we have the following properties:

(1) 0Iαt 0Iβt u(t) = 0Iα+βt u(t) if u ∈ L1(0, T ; X).
(2) 0Iγt

C
0 Dγt u(t) = u(t) − u(0) if u ∈ AC(0,T ; X).

(3) C
0 Dγt 0Iγt u(t) = u(t) if u ∈ L1(0, T ; X).

2.4. Generalized time-fractional hemivariational inequality

Let (B, ∥ · ∥B) be a Banach space, and let Ψ : B −→ R
be a locally Lipschitz function. The (Clarke) generalized
directional derivative of Ψ at x ∈ B in the direction λ ∈ B,
denoted by Ψ0(x; λ), is defined as

Ψ0(x; λ) = lim sup
y−→x,ω↓0

Ψ(y + ωλ) − Ψ(y)
ω

.

The (Clarke) generalized gradient of Ψ at x, denoted by
∂Ψ(x), is a subset of B∗ defined by

∂Ψ(x) = {ζ ∈ B∗ | Ψ0(x; λ) ≥ (ζ, λ)B∗×B for all λ ∈ B}.

We now introduce a general elliptic time-fractional
hemivariational inequality within the framework of an
evolution triple of spaces. For this inequality, we will
present a result regarding the existence of solutions. LetV ⊂
H ⊂ V∗ be an evolution triple of spaces, where (V, ∥ · ∥V)
is a reflexive and separable Banach space, (H , ∥ · ∥H ) is a
separable Hilbert space, and the embedding V → H is
dense and continuous. We denote the embedding operator
between V and H by i, and assume that it is compact.
The dual mapping i∗ : H → V∗ associated with i is also
linear, continuous, and compact. Given 0 < T < +∞,
we consider the standard Bochner-Lebesgue function space
V = L2(0, T ;V). The reflexivity of V ensures that both V
and its dual space V

∗
= L2(0, T ;V∗) are reflexive Banach

spaces. Furthermore, let H = L2(0, T ;H). By identifying
H with its dual, we obtain the continuous embeddingsV ⊂
H ⊂ V

∗
. Let X be another separable and reflexive Banach

space, with X = L2(0, T ;X) and X
∗
= L2(0, T ;X∗). Given
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bounded linear operators A, B : V → V∗, M : V → X,
a locally Lipschitz functional J : X → R, F ∈ V

∗
,

and u0 ∈ V, we consider the generalized hemivariational
inequality of the following form.

Problem 2.4. Find u ∈ V such that for all v ∈ V, a.e.

t ∈ (0,T ),

(AC
0 Dαt u(t), v)V∗×V + (Bu(t), v)V∗×V + J0(Mu(t); Mv)

≥(F(t), v)V∗×V, u(0) = u0.

To study this problem, we need the following hypotheses
on the data.

H(A) A ∈ L(V,V∗) is coercive, i.e., there exists a constant
mA > 0 such that

(Av, v)V∗×V ≥ mA∥v∥2V for all v ∈ V.

H(B) B ∈ L(V,V∗).
H(J) J : X → R is locally Lipschitz, and there exists mJ > 0

such that

∥∂J(v)∥X∗ ≤ mJ(1 + ∥v∥X) for all v ∈ X.

H(M) M ∈ L(V,X) is compact.

H(F) F ∈ C(0,T ;V∗).

Under all these considerations, we have the following
existence result.

Theorem 2.5. Under the hypotheses H(A), H(B), H(J),
H(M), and H(F), Problem 2.4 has at least one solution

u ∈ W1,2(0, T ;V).

This theorem was established in [6]. While we do
not present the proof details here, we highlight that it
is based on the Rothe method and a result concerning a
class of nonlinear evolutionary abstract inclusions with a
pseudononmonotone multivalued term characterized by the
Clarke generalized gradient.

3. Physical setting and classical formulation

Consider a thermo-viscoelastic body that initially
occupies a bounded domain Ω ⊂ Rd (d = 2, 3) with a

smooth boundary Γ = ∂Ω. The body is subjected to body
forces with density f0 and a heat source qth in Ω, along with
mechanical and thermal boundary conditions. To specify
these conditions, we partition Γ into three measurable,
disjoint subsets: ΓD, ΓN , and ΓC , with meas(ΓD) > 0. The
body is assumed to be clamped on ΓD, and the temperature
is set to zero on ΓD ∪ ΓN . Additionally, surface tractions of
density fN are applied on ΓN . On the contact surface ΓC ,
the body may experience frictional contact with a thermally
conductive obstacle, referred to as the foundation.

Let T > 0, and denote by [0, T ] the time interval of
interest, with x ∈ Ω ∪ Γ and t ∈ [0, T ] representing the
spatial and temporal variables, respectively. For simplicity,
we occasionally omit the explicit dependence of various
functions on x. Throughout this paper, the indices i and
j range from 1 to d, and the summation convention for
repeated indices is adopted.

The space of symmetric second-order tensors in Rd is
denoted by Sd. In addition, we define the inner product and
its associated norm on Rd and Sd by

u · v = uivi, ∥v∥ =
√

v · v, ∀u, v ∈ Rd,

σ · τ = σi jτi j, ∥τ∥ =
√
τ · τ, ∀σ, τ ∈ Sd.

We denote by ν the unit outward normal on the boundary
Γ, and we shall adopt the usual notation for normal and
tangential components of vectors and tensors.

u = uνν + uτ, uν = u · ν, ∀u ∈ Rd,

σν = σνν + στ, σν = (σν) · ν, ∀σ ∈ Sd.

To define our problem, we introduce the following
notations: u : Ω × (0, T ) → Rd represents the displacement
field, θ : Ω × (0, T ) → R the temperature field, σ :
Ω×(0, T )→ Sd the stress tensor, and q : Ω×(0, T )→ Rd the
heat flux vector. Additionally, let ε(u) = (ui, j+u j,i)/2 denote
the linearized strain tensor, where a comma in the subscript
indicates differentiation with respect to the corresponding
spatial variable.

The classical model for the fractional contact problem
with Coulomb friction in thermo-viscoelasticity over the
finite time interval (0, T ) is given as follows:

Problem 3.1. Find a displacement field u : Ω×(0, T ) −→ Rd

and a temperature field θ : Ω× (0, T ) −→ R such that for all
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t ∈ (0,T )

σ(t) = Aε(C
0 Dαt u(t)) + F ε(u(t)) − θ(t)M in Ω, (3.1)

q(t) = −K∇θ(t) in Ω, (3.2)

− Divσ(t) = f0(t) in Ω, (3.3)

C
0 Dαt θ(t) + divq(t) = R(C

0 Dαt u(t)) + qth(t) in Ω, (3.4)

u(t) = 0 on ΓD, (3.5)

σ(t)ν = fN(t) on ΓN , (3.6)

θ(t) = 0 on ΓD ∪ ΓN ,

(3.7)

− σν(t) ∈ ∂ jν(uν(t)) on ΓC , (3.8)

− στ(t) ∈ ∂ jτ(uτ(t)) on ΓC , (3.9)

q(t) · ν ∈ ∂ jc(θ(t)) on ΓC , (3.10)

u(0) = u0, θ(0) = θ0 in Ω. (3.11)

We now explain the equations and boundary conditions
from (3.1) to (3.11). Equations (3.1) and (3.2) represent the
constitutive laws for thermo-viscoelastic materials, whereA
denotes the viscosity tensor, F the elasticity tensor, M the
thermal expansion tensor, and K the thermal conductivity
tensor. Equations (3.3) and (3.4) describe the equation
of motion and the equilibrium condition for the heat flux
field, respectively. The operators Div and div represent the
divergence for tensor and vector fields, respectively, defined
as:

Divσ = (σi j, j) and divD = Di,i.

The linear function R captures the effect of the displacement
field on temperature; in [18], the following form was used:
R(ζ) = −M · ζ. Conditions (3.5)–(3.7) represent the
mechanical and thermal boundary conditions, respectively,
with their physical interpretations discussed in the second
paragraph of this section. The contact condition (3.8) is
known as the multivalued normal compliance condition,
governed by the subdifferential of a nonconvex potential jν,
which has been addressed in several papers; see, e.g., [19–
21]. (3.9) is the friction condition where jτ is a prescribed
function. For a thorough discussion on the friction law (3.9),
we refer to [22, Section 6.3]. The relation in (3.10)
represents the heat exchange between ΓC and the foundation,
where jc is a prescribed function. For examples of frictional

models leading to subdifferential boundary conditions of the
form (3.10), we refer to [23]. Finally, (3.11) specifies the
initial conditions of the problem, where u0 and θ0 are given
functions representing the initial displacement and initial
temperature, respectively.

4. Variational formulation and main existence result

In this section, we derive a weak formulation of
Problem 3.1. In order to achieve this, we must introduce
some notations.

Let us denote by H, H1(Ω), andH the following spaces:

H = [L2(Ω)]d,

H1(Ω) = [H1(Ω)]d,

D =
{
σ = (σi j); σi j = σ ji ∈ L2(Ω)

}
.

The spaces H, H1(Ω), and D are real Hilbert spaces
endowed with the following inner products:

(u, v)H =

∫
Ω

uividx, ∀u, v ∈ H,

(σ, τ)D =
∫
Ω

σi jτi jdx, ∀σ, τ ∈ D,

(u, v)H1(Ω) = (u, v)H + (ε(u), ε(v))D, ∀u, v ∈ H1(Ω).

The associated norms in H,D, and H1(Ω) are denoted by
∥·∥H , ∥·∥D and ∥·∥H1(Ω), respectively.

Keeping in mind the condition (3.5), we introduce the
closed subspace of H1(Ω)

V = {v ∈ H1(Ω) | v = 0 on ΓD}.

Over the space V , we define the following inner product:

(u, v)V = (ε(u), ε(v))D, ∀u, v ∈ V,

and its associated norm

∥v∥V = ∥ε(v)∥D . (4.1)

Since meas(ΓD) > 0, the following Korn’s inequality holds:
There exists ck > 0 depending only on Ω and ΓD such that

∥ε(v)∥D ≥ ck ∥v∥H1(Ω) , ∀v ∈ V. (4.2)
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It follows from (4.1) and (4.2) that ∥·∥V is equivalent to V to
the usual norm ∥·∥H1(Ω), therefore (V, ∥·∥V ) is a real Hilbert
space.

For simplicity, for an element ω ∈ H1(Ω), we still denote
by ω its trace γ(ω) on Γ. By the trace theorem, there exists a
constant c0 > 0 depending only on Ω, ΓD, and ΓC such that

∥v∥[L2(ΓC )]d ≤ c0 ∥v∥V , ∀v ∈ V.

Next, for the temperature field, keeping in mind (3.7) we
introduce the closed functions subspace of H1(Ω)

Q = {η ∈ H1(Ω) | η = 0 on ΓD ∪ ΓN}.

Over Q, we consider the following inner product:

(θ, η)Q = (∇θ,∇η)H , ∀θ, η ∈ Q, (4.3)

and the associated norm

∥η∥Q = ∥∇η∥H . (4.4)

Since meas(ΓD) > 0, Friedrichs-Poincaré inequality holds;
therefore, there exists a constant cp > 0 such that

∥∇η∥H ≥ cp ∥η∥H1(Ω) , ∀η ∈ Q. (4.5)

It follows from (4.4)-(4.5) that ∥·∥Q is equivalent on Q to the
usual norm ∥·∥H1(Ω) and then (Q, ∥·∥Q) is a real Hilbert space.
Moreover, by the trace theorem, there exists a constant c1 >

0 depending only on Ω, ΓD and ΓC such that

∥η∥L2(ΓC ) ≤ c1 ∥η∥Q , ∀η ∈ Q. (4.6)

Finally, we recall the Gelfand triples V ⊂ H ⊂ V∗ and Q ⊂

L2(Ω) ⊂ Q∗, Let us denote

(u, v)V∗×V = (u, v)H , ∀u ∈ H, v ∈ V, (4.7)

(θ, η)Q∗×Q = (θ, η)L2(Ω), ∀θ ∈ L2(Ω), η ∈ Q. (4.8)

To study Problem 3.1, we need the following assumptions
on its data.

(HA) The viscosity tensorA : Ω × Sd −→ Sd satisfies

(1) A(x, ζ) = Ā(x)ζ for all ζ ∈ Sd and a.e. x ∈ Ω.
(2) Ā(x) = (Āi jkl(x)) with Āi jkl ∈ L∞(Ω).

(3) There exists mA > 0 such that (A(x, ζ), ζ) ≥
mA ∥ζ∥2 for all ζ ∈ Sd and a.e. x ∈ Ω.

(HF ) The elasticity tensor F : Ω × Sd −→ Sd satisfies

(1) F (x, ζ) = F̄ (x)ζ for all ζ ∈ Sd and a.e. x ∈ Ω.
(2) F̄ (x) = (F̄i jkl(x)) with F̄i jkl ∈ L∞(Ω).

(HK ) The thermal conductivity tensor K : Ω × Rd −→

Rd satisfies

(1) K(x, ζ) = K̄(x)ζ for all ζ ∈ Rd and a.e. x ∈ Ω.
(2) K̄(x) = (K̄i j(x)) with K̄i j ∈ L∞(Ω).

(HM) The thermal expansion tensorM : Ω × R −→ Sd

satisfies

(1) M(x, ζ) = M̄(x)ζ for all ζ ∈ R and a.e. x ∈ Ω.
(2) M̄(x) = (M̄i j(x)) with M̄i j ∈ L∞(Ω).

(HR) The function R : Rd −→ R satisfies

(1) R(ζ) ∈ L2(Ω) for all ζ ∈ Rd.
(2) There exists MR such that |R(ζ)| ≤ MR for all ζ ∈
Rd.

(3) There exists LR > 0 such that |R(ζ1) − R(ζ2)| ≤
LR ∥ζ1 − ζ2∥ for all ζ1, ζ2 ∈ Rd.

(H jν ) The functional jν : ΓC × R −→ R satisfies

(1) jν(·, r) is measurable on ΓC for all r ∈ R.
(2) There exists eν ∈ L2(ΓC) such that jν(·, eν(·)) ∈

L1(ΓC).
(3) jν(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC .
(4) There exist c0ν ≥ 0 and c1ν such that |∂ jν(x, r)| ≤

c0ν + c1ν|r| for all r ∈ R and a.e. x ∈ ΓC .

(H jτ ) The functional jτ : ΓC × R
d −→ R satisfies

(1) jτ(·, r) is measurable on ΓC for all r ∈ Rd.
(2) There exists eτ ∈ [L2(ΓC)]d such that jτ(·, eτ(·)) ∈

L1(ΓC).
(3) jτ(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC .
(4) There exist c0τ ≥ 0 and c1τ ≥ 0 such that
∥∂ jτ(x, r)∥ ≤ c0ν + c1τ∥r∥ for all r ∈ Rd and a.e.
x ∈ ΓC .

(H jc ) The functional jc : ΓC × R −→ R satisfies

(1) jc(·, r) is measurable on ΓC for all r ∈ R.
(2) There exists ec ∈ L2(ΓC) such that jc(·, ec(·)) ∈

L1(ΓC).
(3) jc(x, ·) is locally Lipschitz on R for a.e. x ∈ ΓC .
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(4) There exists c0c ≥ 0 such that |∂ jc(x, r)| ≤ c0c for
all r ∈ R and a.e. x ∈ ΓC .

(HD) The forces, the traction, the heat source density,
and the initial conditions are assumed to satisfy the
following regularity conditions.

f0 ∈ C(0,T ; H), fN ∈ C(0,T ; [L2(ΓN)]d),

qth ∈ C(0,T ; L2(Ω)), u0 ∈ V, θ0 ∈ Q.

Next, we define the elements f (t) ∈ V∗ and qc(t) ∈ Q∗ by

( f (t),w)V∗×V = ( f0(t),w)H + ( fN(t),w)[L2(ΓN )]d , (4.9)

(qc(t), η)Q∗×Q = (qth(t), η)L2(Ω), (4.10)

for all w ∈ V and η ∈ Q.
Now, by utilizing Green’s formula and the definition

of the Clarke subdifferential, we obtain the following
variational formulation of Problem 3.1 expressed in terms
of displacement and temperature fields.

Problem 4.1. Find a displacement field u : (0, T ) −→ V

and a temperature field θ : (0, T ) −→ Q such that for a.e.

t ∈ (0,T ) and all w ∈ V, η ∈ Q

(Aε(C
0 Dαt u(t)), ε(w))D + (F ε(u(t)), ε(w))D − (θ(t)M, ε(w))D

+

∫
ΓC

j0ν(uν(t); wν)dΓ +
∫
ΓC

j0τ(uτ(t); wτ)dΓ ≥ ( f (t),w)V∗×V ,

(4.11)
(C
0 Dαt θ(t), η)Q∗×Q + (K∇θ(t),∇η)H − (R(C

0 Dαt u(t)), η)L2(Ω)

+

∫
ΓC

j0c(θ(t); η)dΓ ≥ (qc(t), η)Q∗×Q,

(4.12)
u(0) = u0, θ(0) = θ0. (4.13)

Our primary result concerning the existence of solutions
is as follows:

Theorem 4.2. Assume that conditions (HA), (HF ), (HM),
(HK ), (HR), (H jν ), (H jτ ), (H jc ), and (HD) are satisfied, along

with the following smallness condition:

min
{

2mA − LR

2
,

2 − LR

2

}
> 0. (4.14)

Then, Problem 4.1 has at least one solution (u, θ) that

satisfies the following regularity conditions:

u ∈ W1,2(0, T ; V) and θ ∈ W1,2(0, T ; Q). (4.15)

It is important to note that once the displacement field
u and the temperature field θ are determined by solving
Problem 4.1, the stressσ and the heat flux q can be computed
using the thermo-viscoelastic constitutive laws (3.1)-(3.2).

5. Proof of Theorem 4.2

To solve Problem 4.1, we will utilize Theorem 2.5 within
the following functional framework: V = V × Q, H = H ×

L2(Ω), and X = [L2(ΓC)]d+1, equipped with the canonical
inner products.

We introduce operators A : V −→ V∗ and B : V −→ V∗

given by

(AX, Y)V∗×V =(Aε(u), ε(w))D + (θ, η)Q∗×Q − (R(u), η)Q,

(5.1)

(BX, Y)V∗×V =(F ε(u), ε(w))D + (K∇θ,∇η)H − (θM,w)D,

(5.2)

for all X = (u, θ) ∈ V and Y = (w, η) ∈ V. Let the function
J : ΓC × X −→ R be defined by

J(x, X) =
3∑

i=1

∫
ΓC

ji(x, X)dΓ, (5.3)

where

j1(x, X) = jν(x, uν),

j2(x, X) = jτ(x, uτ),

j3(x, X) = jc(x, θ),

for all X = (u, θ) ∈ X and a.e. x ∈ ΓC . Moreover, let M = γ,
where γ : V → X represents the trace operator. We also
define the elements X0 ∈ V and F(t) ∈ V∗ by

X0 = (u0, θ0), (5.4)

(F(t), Y)V∗×V = ( f (t),w)V∗×V + (qc(t), η)Q∗×Q, (5.5)

for all Y = (w, η) ∈ V and a.e. t ∈ (0,T ). We have the
following equivalence result.

Lemma 5.1. The pair X(t) = (u(t), θ(t)) ∈ V is a solution of

Problem 4.1 if and only if for all Y ∈ V and a.e. t ∈ (0, T )

(AC
0 Dαt X(t), Y)V∗×V + (BX(t), Y)V∗×V + J0(MX(t); MY) ≥ (F(t), Y)V∗×V ,

(5.6)

X(0) = X0. (5.7)
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Proof. Let u(t) ∈ V and θ(t) ∈ Q be the solutions of (4.11)
and (4.12) combined with the initial conditions u(0) = u0

and θ(0) = θ0, respectively, for a.e. t ∈ (0,T ). We add (4.11)
to (4.12) to find that (u(t), θ(t)) ∈ V is a solution of (5.6)-
(5.7). Conversely, let X(t) = (u(t), θ(t)) be a solution of
the fractional hemivariational inequality (5.6) coupled with
the initial condition (5.7) for a.e. t ∈ (0, T ). By choosing
Y = (w, 0) in (5.6), where w is an arbitrary element of V , we
obtain that u(t) ∈ V is a solution to (4.11) for a.e. t ∈ (0,T ).
Moreover, if we choose Y = (0, η) in (5.6), where η is an
arbitrary element of Q, we find that θ(t) ∈ Q is the solution
of (4.12) for a.e. t ∈ (0,T ), which finishes the proof. □

We will now proceed to demonstrate the existence of
solutions for the problem described by (5.6)-(5.7). To
accomplish this, we will check that the hypotheses H(A),
H(B), H(J), H(M), and H(F) are satisfied. Given that the
tensor A and the function R are both bounded and linear,
we can assert that the operator A ∈ L(V,V∗). Additionally,
under the smallness assumption stated in (4.14), we assert
that A is coercive. Indeed, let X = (u, θ) ∈ V. It follows
from (HA) and (HR) that for a.e. t ∈ (0,T )

(AX, X)V∗×V ≥ mA ∥u∥2V + ∥θ∥
2
Q − LR ∥u∥V ∥θ∥Q . (5.8)

Therefore, by the inequality ab ≤
1

2
(a2 + b2) for all a, b ∈ R,

we obtain

(AX, X)V∗×V ≥mA ∥u∥2V + ∥θ∥
2
Q −

LR

2
∥u∥2V −

LR

2
∥θ∥2Q .

(5.9)

Then

(AX, X)V∗×V ≥
2mA − LR

2
∥u∥2V +

2 − LR

2
∥θ∥2Q .

(5.10)

Hence we deduce the coercivity of A with

mA = min

2mA − LR

2
,

2 − LR

2

 .
On the other hand, since the tensors F andK are bounded

and linears, the operator B ∈ L(V,V∗).

Next, it is clear that ji(x, ·) is locally Lipschitz on X for
almost every x ∈ ΓC with i = 1, 2, 3. Therefore, J(x, ·) is also

locally Lipschitz. Given the regularity of jν(x, ·), jτ(x, ·), and
jc(x, ·), we can conclude that ji(x, ·) is regular for i = 1, 2, 3.
By using this regularity and applying Proposition 5.6.33
from [22], we have

∂ ji(x, X) ⊆ ∂u ji(x, X) × ∂θ ji(x, X), (5.11)

for all X = (u, θ) ∈ X and almost every x ∈ ΓC , where
∂u ji and ∂θ ji denote the partial generalized gradients of
ji(x, (·, θ)) and ji(x, (u, ·)), respectively, for i = 1, 2, 3. Next,
by utilizing [20, Proposition 2] and [24, Proposition 5.6.23],
we derive from (5.11):

∂ j1(x, X) ⊆ ∂ jν(x, uν)ν × {0}, (5.12)

∂ j2(x, X) ⊆ ∂ jτ(x, uτ)τ × {0}, (5.13)

∂ j3(x, X) ⊆ {0} × ∂ jc(x, θ), (5.14)

∂J(x, X) ⊆
∫
ΓC

(∂ jν(x, uν)ν + ∂ jτ(x, uτ)τ) × ∂ jc(x, θ) dΓ,

(5.15)

for all X = (u, θ) ∈ X and almost every x ∈ ΓC . From (5.12)–
(5.14) and the hypotheses (H jν ), (H jτ ) and (H jc ) we have:

∥∂ j1(x, X)∥X ≤ |∂ jν(x, uν)| ≤ c0ν + c1ν|uν| ≤ c0ν + c1ν∥X∥X,

∥∂ j2(x, X)∥X ≤ ∥∂ jτ(x, uτ)∥ ≤ c0τ + c1τ∥uτ∥ ≤ c0τ + c1τ∥X∥X,

∥∂ j3(x, X)∥X ≤ |∂ jc(x, θ)| ≤ c0c,

for all X = (u, θ) ∈ X and almost every x ∈ ΓC . From
the above, we deduce that the functional J defined in (5.3)
satisfies H(J) with

mJ =max
{
c0c meas(ΓC)2(c0ν + c0τ), c0c0c

√
meas(ΓC)3(c1ν + c1τ)

}
.

From the regularity assumption (HD), we can deduce that
F satisfies H(F). Additionally, it is evident, as shown in [24,
Theorem 3.9.34], that the trace operator fulfills H(M).

All the assumptions in Theorem 2.5 have been verified.
Therefore, we can confidently state that the time-fractional
hemivariational inequality (5.6) combined with initial
condition (5.7) has at least one solution X that satisfies the
regularity

X ∈ W1,2(0, T ;V). (5.16)

By exploiting the equivalence result stated in Lemma 5.1, we
conclude that (u, θ) is a solution to Problem 4.1 that satisfies
the regularity conditions (4.15), which finishes the proof.
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6. Conclusions

In this work, we have investigated a quasistatic
frictional contact problem for a thermo-viscoelastic body
whose material behavior incorporates fractional time
effects through the Caputo derivative. The model
couples mechanical and thermal processes and includes
nonmonotone contact, friction, and heat-exchange laws
expressed via Clarke’s subdifferential. By formulating
the problem as a system of two coupled time-fractional
hemivariational inequalities, we captured both the hereditary
nature of the material and the nonsmooth features of the
contact conditions.

A key contribution of this study is the reduction of
the coupled weak formulation to a single time-fractional
hemivariational inequality. This reformulation enabled
the use of recent developments in the theory of time-
fractional hemivariational inequalities to establish the
existence of weak solutions. The results obtained extend
classical frameworks of contact mechanics to fractional
viscoelasticity and provide a rigorous mathematical
foundation for future analytical and numerical studies of
fractional thermo-mechanical systems with nonmonotone
boundary behavior.
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22. S. Migórski, A. Ochal, M. Sofonea, Nonlinear

inclusions and hemivariational inequalities: models

and analysis of contact problems, Advances in
Mechanics and Mathematics, New York: Springer, 2013.
https://doi.org/10.1007/978-1-4614-4232-5

23. P. Szafraniec, Analysis of an elasto-piezoelectric
system of hemivariational inequalities with thermal
effects, Acta Math. Sci., 37 (2017), 1048–1060.
https://doi.org/10.1016/S0252-9602(17)30057-7
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