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Abstract: In this paper, semi-tensor product (STP) and related properties of dimension keeping semi-tensor product (DK-STP) are
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1. Introduction

The semi-tensor product (STP) of matrices is a
generalization of conventional matrix product. It has
become a necessary tool in the study of finite value systems,
such as Boolean networks [1–5], finite games [6] and control
systems [7, 8]. In addition, it is also a powerful tool to
deal with multilinear mappings. Constrained least square
solutions to Sylvester equations have been obtained via
STP method in [9]. STP was used to investigate finite
algebra extensions of R [10, 11] and general Boolean-type
algebras [12]. In [13, 14], commutativity of algebras are
discussed. For a finite dimensional algebra, commutativity
is a problem that we have been exploring. As a special
kind of algebra, Lie algebra is also often discussed, such as
commutativity [15].

In the study of STP, defining the Lie bracket of
nonsquare matrices (NSM) poses significant challenges
due to the dimensional changes of matrices resulting
from STP operations, which prevents the satisfaction of
algebraic closure. Previously, we were limited to defining
the Lie bracket for square matrices to meet the closure

requirement of the algebra. To address this issue, we
introduce a new matrix multiplication method based on
STP, termed dimension-keeping semi-tensor product (DK-
STP) [16, 17]. It is demonstrated that this operation
maintains dimensionality and satisfies the closure of the
algebra. The Lie bracket for NSM can be defined, allowing
for the establishment of a structure matrix. This research
contributes to the understanding of the Lie bracket of NSM
and enhances the theoretical framework in this area. For
the new DK-STP, a significant feature is that it can make
two n × m matrices after the operation, and the obtained
is still a n × m matrix. This leads us to consider how it
is similar to normal matrix product properties. To begin,
there is obviously no way to satisfy commutativity in the
broad sense. Therefore, we consider if we can add some
conditions that make commutativity true. We then refer to
the matrix mapping, starting from the bridge matrix to obtain
a sufficient condition, under which the commutativity is true.
Then, we can give a counterexample to show that necessity
is not true.

The treatment of Lie brackets was historically confined
to operations involving square matrices. However, with
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the integration of the innovative DK-STP framework, we
have now expanded the realm of applicability to encompass
NSM, enabling the execution of Lie bracket operations
that transcend conventional dimensional constraints. By
arranging the resulting Lie bracket in a matrix format with
a column-wise organization, we obtain a structure matrix
that encapsulates the essential algebraic features of this
operation. Consequently, we embark on an analysis of
the algebraic properties inherent in this structural matrix,
thereby contributing to the mathematical discourse on
Lie algebra and its extensions beyond traditional matrix
domains.

The rest of this paper is organized as follows: Section 2
reviews some necessary preliminaries, including (i) STP
and DK-STP of matrices; (ii) Structure matrix of a finite
dimensional algebra; (iii) Structure matrix of Lie bracket
and matrix mapping. Section 3 introduces sufficient
conditions about (anti) commutativity of DK-STP. Section 4
discusses some properties of dimension keeping Lie bracket
by its structure matrix and special Lie subalgebras under
the dimension keeping Lie bracket. Section 5 introduces
homomorphisms of Lie algebras for NSM and square
matrices. Section 6 is a brief conclusion with suggestions
of some problems for further study.

Before ending this section, a list of notations is presented
as follows:
•Rn: n dimensional Euclidean space.
•Mm×n: the set of m × n real matrices.
•In: the identity matrix.
•δi

n: the i-th column of In.
•[δi1

n , δ
i2
n , · · · , δ

in
n ] is briefly denoted by δn[i1, i2, · · · , in].

•1n := (1, 1, · · · , 1︸      ︷︷      ︸
n

)T .

2. Preliminaries

The section will be divided into four parts. The first part
introduces the basic definitions and some basic properties of
STP and DK-STP. The second part introduces the structure
matrix of finite dimensional algebras. The third part presents
the construction process of the structure matrix of square
matrix with Lie bracket. In the fourth part, we give the
concept of matrix mapping, which will help us to analyze
the construction process of Lie bracket in NSM.

2.1. STP and DK-STP

On the basis of classical matrix multiplication, we use the
Kronecker product to define STP. This allows us to obtain its
definition. The next definition will introduce the concept of
STP in [10,18]. One advantage of STP is that commutativity
can be overcome to a certain extent by defining a swap
matrix.

Definition 2.1. Let A ∈ Mn×m and B ∈ Mp×q, and t =

lcm(n, p) be the least common multiple of n and p. The STP

of A and B, denoted by A ⋉ B, is defined as

A ⋉ B := (A ⊗ It/n)(B ⊗ It/p),

where ⊗ is the Kronecker product.

Definition 2.2. Define a swap matrix W[m,n] ∈ Mmn×mn

as follows W[n,p] := δnp[1, n + 1, · · · , (p − 1)n + 1, 2, n +
2, · · · , (p − 1)n + 2, · · · , n, 2n, · · · , pn].

It can also be expressed as

W[n,p] = [Ip ⊗ δ
1
n, Ip ⊗ δ

2
n, · · · , Ip ⊗ δ

n
n].

Record briefly as W[n] = W[n,n]. The following lemma shows

how to swap a vector with a vector.

Lemma 2.1. [10] Let x ∈ Rn, y ∈ Rp. The swap matrix can

be used to achieve the commutativity

W[n,p]x ⋉ y = y ⋉ x.

In [16], a new STP is proposed, called DK-STP and
denoted by ⋉ . Dimension keeping means if both matrices
are of the same dimension, then their product remains to be
of the same dimension. Due to this special property, we can
expand the matrix operation further. The definition of DK-
STP is expressed as follows:

Definition 2.3. The DK-STP of A and B is A ⋉ B, and it is

expressed as follows

A ⋉ B := (A ⊗ 1T
t/n)(B ⊗ 1t/p),

where A ∈ Mm×n, B ∈ Mp×q, t = lcm(n, p).

We rewrite the definition of DK-STP and introduce a
bridge matrix. This allows for easier calculation of DK-STP
and can also be used to prove some algebraic properties. The
proposal of the bridge matrix will play an important role in
our later proof of (anti) commutativity. The results in this
section build upon the work of [16].
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Definition 2.4. Let A ∈ Mm×n, B ∈ Mp×q, t = lcm(n, p).
Then

A ⋉ B := Aψn×pB,

where

ψn×p = (In ⊗ 1T
t/n)(Ip ⊗ 1t/p) ∈ Mn×p,

is called a bridge matrix of dimension n × p.

Remark 2.1. Regarding bridge matrices, when multiplying

matrices of different dimensions, the bridge matrix depends

solely on the dimensions. For operations involving matrices

of the same dimension, the bridge matrix remains the same.

Next, we provide the following supplementary information

regarding the properties of bridge matrices.

• ψT
n×p = ψp×n.

• ||ψp×n||
2
F = ||ψn×p||

2
F .

The norm referred to here is the Frobenius norm. The above

two properties can be easily derived from their definitions,

which aids in our further understanding of bridge matrices.

Additionally, all elements within the bridge matrix are

positive values.

From Definition 2.4, Proposition 2.1 can be derived.

Proposition 2.1. Let A, B,C ∈ Mm×n, we can calculate the

following proposition by the bridge matrix.

(i) Distributivity

A ⋉ (B +C) = A ⋉ B + A ⋉ C,

(B +C) ⋉ A = B ⋉ A +C ⋉ A.

(ii) Associativity

(A ⋉ B) ⋉ C = A ⋉ (B ⋉ C).

In the previous research, we usually use STP operation
to perform matrix operation, which is a special kind of
matrix operation. It does not need to satisfy the dimensional
compatibility of the matrix, which provides convenience for
our calculation. In this article, we introduce the DK-STP
operation. DK-STP is a specialized variant of the standard
STP operation. While STP employs the identity matrix
to increase dimensionality, DK-STP utilizes a row vector
for this purpose. This distinction leads to differences in
how dimensions are altered during the operations. In STP,

calculations can be performed across different dimensions.
Consequently, when two matrices of the same dimension are
operated upon, the resulting dimension cannot be preserved.
In DK-STP, the dimensionality remains unchanged after
operations involving matrices of the same dimension, which
facilitates the subsequent satisfaction of algebraic closure.

2.2. Finite dimensional algebra and Lie algebra

Next, we will define finite dimensional algebras using the
structure matrix of a finite dimensional algebra to analyze
their properties. This approach relies on STP and is detailed
in reference [19].

Definition 2.5. A n-dimensional algebra A = (V, ∗) is

defined in n-dimensional vector space V, and it is defined

a multiplication: V ∗ V = V, which satisfies the distributive

law for vectors, i.e.,x, y, x ∈ V, a, b ∈ R

(ax + by) ∗ z = a(x ∗ z) + b(y ∗ z),

z ∗ (ax + by) = a(z ∗ x) + b ∗ (z ∗ y).

We now consider the structure matrix of a finite
dimensional algebra, which we find very useful for
analyzing its algebraic properties. Here, we introduce the n-
dimensional basis and use it to construct the structure matrix
of the finite dimensional algebra.

The next definition reads as follows:

Definition 2.6. [10,19,20] Let {e1, · · · , en} be a fixed basis

for V and assume

ei ∗ e j =

n∑
k=1

αk
i jek, i, j = 1, · · · , n.

Then,
{
αk

i j

}
is called structure constant ofA.

MV =


α1

11 · · · α1
1n · · · α1

n1 · · · α1
nn

α2
11 · · · α2

1n · · · α2
n1 · · · α2

nn
...

...
...

...

αn
11 · · · αn

1n · · · αn
n1 · · · αn

nn


is called structure matrix ofA.

In this discussion, we are considering n-dimensional
algebras. If we consider their column arrangements for
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NSM, which allow us to transform matrix problems into
vector problems, we can then use finite dimensional algebras
to analyze further. Therefore, the column arrangement of a
matrix is defined as

Vc(A) = (a11, · · · , am1, · · · , a1n, · · · , amn).

Let x =
∑n

i=1 xiei, y =
∑n

i=1 yiei. We simplified them to x =
(x1£ · · · £xn)T , y = (y1£ · · · £yn)T in a fixed basis {e1, · · · , en}.

Proposition 2.2. [19] Let z = x ∗ y. Then, we can get z in

the form of the coefficient vector

z = MV ⋉ x ⋉ y = MV xy.

As we mentioned earlier that STP is a generalization
of classical matrix multiplication, we can omit the
multiplication symbol ⋉. We will omit all ⋉ in the discussion
that follows. When two matrices do not satisfy the condition
of dimension matching, it must be the ⋉.

The some properties of an algebra are determined by its
structure matrix, so the study of algebraic properties can
correspond to the study of its structure matrix. Some basic
property definitions are given below.

Definition 2.7. [10] A = (V, ∗) is a finite dimensional

algebra

(i)A is commutative if

x ∗ y = y ∗ x, ∀x, y ∈ V.

(ii)A is anti-commutative if

x ∗ y = −y ∗ x, ∀x, y ∈ V.

(iii)A is associative if

(x ∗ y) ∗ z = x ∗ (y ∗ z), ∀x, y, z ∈ V.

After we have some basic algebraic properties, we can use
the structure matrix to analyze the related properties. The
relevant properties of an algebra can be revealed through
the equations which are satisfied by structure matrices. The
conclusion reads as follows:

Lemma 2.2. [10]A = (V, ∗) is a n-dimensional algebra.

(i) V is symmetric if and only if

MV (W[n] − In2 ) = 0.

(ii) V is skew-symmetric if and only if

MV (W[n] + In2 ) = 0.

(iii) V is associative if and only if

MV (MV ⊗ In − In ⊗ MV ) = 0.

After analyzing the algebraic properties of the foundation,
The definitions of the Lie algebra and Lie bracket are given
as follows.

Definition 2.8. [19]A is Lie algebra, if satisfied

(i) Skew-symmetric

X ∗ Y = −Y ∗ X, X, Y ∈ V.

(ii) Jacobi equation

(X ∗ Y) ∗ Z + (Y ∗ Z) ∗ X + (Z ∗ X) ∗ Y = 0, X,Y, Z ∈ V.

We first give the definition of Lie bracket in Mn×n as
follows:

[A, B] = AB − BA, A, B ∈ Mn×n. (1)

The lie bracket overMn×n is a type of Lie algebra known as
a general linear algebra gl(n,R).

Next, we will use DK-STP to define the Lie brackets over
Mm×n, which is an extension of the square case.

Definition 2.9. [16] Consider Mm×n. Using ⋉ , a Lie

bracket overMm×n is defined as

[A, B] ⋉ = A ⋉ B − B ⋉ A, A, B ∈ Mm×n, (2)

where [A, B] ⋉ is called dimension keeping Lie bracket.

Remark 2.2. The above definition of the Lie bracket is an

extension of the square case, if m = n, then we get the

familiar square case. The Lie bracket operation on Mm×n

is a Lie algebra, and we call it gl(m × n,R). This definition

is similar to the definition on a square matrix.

2.3. Structure matrix of Lie bracket

Next, we consider the structure matrix of Lie algebra.
Since Lie algebras must satisfy the skew-symmetric and
Jacobi equation, we naturally obtain some equations for
the structure matrix. However, it should be noted

Mathematical Modelling and Control Volume 5, Issue 4, 410–420.



414

that the operation here is not on finite dimensional
vectors. Therefore, by defining a suitable matrix base
and considering the column arrangements of matrices, we
can convert them into finite dimensional vector problems.
This allows us to obtain some conclusions regarding related
properties. To construct the structure matrix of gl(n,R),
we use the following lemma to establish the relationship
between column arrangements.

Lemma 2.3. [19] Let A ∈ Mm×n, B ∈ Mn×p. Then,

Vc(AB) = ΨmnpVc(A)Vc(B),

where

Ψmnp =


Im ⊗ (δ1

pδ
1
n)T · · · Im ⊗ (δ1

pδ
n
n)T

Im ⊗ (δ2
pδ

1
n)T · · · Im ⊗ (δ2

pδ
n
n)T

...
. . .

...

Im ⊗ (δp
pδ

1
n)T · · · Im ⊗ (δp

pδ
n
n)T


.

For convenience, Ψnnn is expressed as Ψn.
Consider the structure matrix of gl(n,R). {MIJ |I =

1, 2, · · · , n; J = 1, 2, · · · , n} represents a set of bases where

(MIJ)i j =

1, i = I or j = J.

0, others.

Now, construct the structure matrix of Lie bracket.

[A, B] = AB − BA.

Next, we calculate matrix column arrangement of AB and
BA,

Vc(AB) = ΨnVc(A)Vc(B),

Vc(BA) = ΨnVc(B)Vc(A) = ΨnW[n2]Vc(A)Vc(B).

Then, the structure matrix of gl(n,R) is represented as

Mgl(n,R) = Ψn(In4 −W[n2]).

Lemma 2.4. [19] The structure matrix of gl(n,R) should

meet the following equations:

(i) Skew-symmetric

Mgl(n,R)(In2 +W[n,n]) = 0.

(ii) Jacobi equation

M2
gl(n,R)(In3 +W[n,n2] +W[n2,n]) = 0.

2.4. Matrix mapping

Here we write the matrix mapping in column
arrangement, which gives us a way to transform a
matrix problem into a vector problem.

Theorem 2.1. [19] Let A ∈ Mm×n, B ∈ Mp×q,C ∈

Mm×p,D ∈ Mn×q, Z ∈ Mn×p. Π is a linear mapping:

Z → Π(Z), Mc
Π

is called the structure matrix of matrix

column arrangement in Π, that is,

Vc(Π(Z)) = Mc
ΠVc(Z).

(i) Let Π : Z → AZ. Then,

Mc
Π = Ip ⊗ A.

(ii) Let Π : Z → ZB. Then,

Mc
Π = BT ⊗ In.

(iii) Let Π : Z → AZB. Then,

Mc
Π = BT ⊗ A.

3. (Anti) Commutativity of DK-STP

Starting from classical matrix theory, we have learned
that commutativity in classical matrix operations can not be
satisfied, and only in special cases can commutativity be
established. STP is proposed through the swap matrix can
achieve a class of STP operations commutativity, so DK-
STP also has a similar commutative property. Due to the
special dimension relationship of DK-STP. If A ∈ Mn×m,
B ∈ Mp×q, then to achieve commutativity there must be

A ⋉ B = B ⋉ A.

A ⋉ B ∈ Mn×q, B ⋉ A ∈ Mp×m, that must be satisfied
n = p, q = m. There could be commutativity, so we
consider a case of A, B ∈ Mn×m. Next, we will use matrix
mapping to analyze the commutativity of DK-STP, which
benefits from the fact that both of them have the same bridge
matrix. In this way, we can express a sufficient condition for
commutativity in the form of Kronecker product. The bridge
matrix serves as a bridge that connects the two items that are
swapped.
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Theorem 3.1. Let A, B ∈ Mn×m. Then,

(i) A, B gratify commutativity

A ⋉ B = B ⋉ A,

if

BT ⊗ A = AT ⊗ B.

(ii) A, B gratify anticommutativity

A ⋉ B = −B ⋉ A,

if

BT ⊗ A + AT ⊗ B = 0.

Proof. (i) Given the following two matrix mapping:

A ⋉ B = Aψm×nB,

B ⋉ A = Bψm×nA,

it is noted that ψm×n is their common part. Thus, we can
treat the two equations as two matrix mappings starting from
ψm×n. The matrix mappings are presented as follows:

ψm×n 7−→ Aψm×nB,

ψm×n 7−→ Bψm×nA.

By Theorem 2.1, the matrix column arrangement of Aψm×nB

and Bψm×nA can be obtained,

Vc(Aψm×nB) = (BT ⊗ A)Vc(ψm×n),

Vc(Bψm×nA) = (AT ⊗ B)Vc(ψm×n).

If
BT ⊗ A = AT ⊗ B,

then the conclusion is obvious.
(ii) The proof of (ii) is similar to (i). □

Consider Theorem 3.1, we have only demonstrated the
sufficiency of the theorem, but the necessity is not satisfied.
Next, we will provide a counterexample to demonstrate that
the necessity is false.

Example 3.1. (i) Take two matrices

A =

1 0 0
0 0 0

 , B = 1 0 0
1 −2 0

 .

We can calculate

A ⋉ B = Aψ3×2B =

2 0 0
0 0 0

 ,
B ⋉ A = Bψ3×2A =

2 0 0
0 0 0

 ,
where

ψ3×2 =

2 1 0
0 1 2

T .
We can verify A ⋉ B = B ⋉ A, where BT ⊗ A and AT ⊗ B can
be expressed

BT ⊗ A =



1 0 0 0 0 0
1 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, AT ⊗ B =



1 0 0 1 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

It can be verified by computation

BT ⊗ A , AT ⊗ B.

(ii) Take two matrices

A =

1 0 0
0 0 0

 , B =

0 0 0
1 −2 0

 .
We can calculate

A ⋉ B = Aψ3×2B =

0 0 0
0 0 0

 ,
B ⋉ A = Bψ3×2A =

0 0 0
0 0 0

 .
A ⋉ B = −B ⋉ A can be confirmed, and next we calculate

BT ⊗ A and AT ⊗ B.

BT ⊗ A =



0 0 0 0 0 0
1 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, AT ⊗ B =



0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 −2 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

It can be verified by computation,

BT ⊗ A + AT ⊗ B , 0.

Take some matrices to verify Theorem 3.1, which gives
us a sufficient condition to confirm whether matrices are
exchanged under DK-STP. Meanwhile it is possible to
construct commutative matrices through this condition.
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Example 3.2. Consider two matrices

A =

1 2 3
2 3 4

 , B =

2 4 6
4 6 8

 .
Through calculation, we can find

BT ⊗ A = AT ⊗ B.

Further calculation can also be obtained

A ⋉ B = Aψ3×2B =

40 64 88
58 94 130

 ,
B ⋉ A = Bψ3×2A =

40 64 88
58 94 130

 .
Remark 3.1. (i) It is easy to verify if the condition is

valid, the commutativity (i) of DK-STP is correct. More

deeply, if the commutativity (i) is valid, the matrix must meet

dimension condition in order to establish commutativity, that

is, the elements in the matrix must establish

ai j = λbi j, λ ∈ R, i, j = 1, · · · , n,

then

A = λB.

If elements of A and B are 0, then the corresponding position

ai j = bi j = 0.
(ii) For the commutativity (ii), we need matrix A,B satisfy

BT ⊗A+AT ⊗ B = 0, this is a sufficient condition. Similar to

the treatment of (1) above, we correspond to the relationship

between the internal elements of the two matrices. The

elements in the matrix must establish

ai j = λbi j, λ ∈ R, i, j = 1, · · · , n,

then

A + λB = 0.

If elements of A and B are 0, then the corresponding position

ai j = bi j = 0.

4. Structure matrix of dimension keeping Lie bracket

In this section, we will study the structure matrix of
dimension keeping Lie bracket. We consider the structure
matrix of the mapping between vectors. By utilizing Lie
bracket in NSM, we can determine the column arrangement
of a matrix and obtain its structure matrix.

Theorem 4.1. Under the action of DK-STP, the structure

matrix MV is generated from the mapping of two n-

dimensional vector spaces

MV = In ⊗ ψ1×n,

then

x ⋉ y = (In ⊗ ψ1×n)xy, x, y ∈ Mn×1.

Proof. In the n-dimensional space mapping, we analyze the
structure matrix MV . Let us start with the form of the bridge
matrix.

ψn×p = (In ⊗ 1T
t/n)(Ip ⊗ 1t/p) ∈ Mn×p, t = lcm(n, p).

Then, ψ1×n can be expressed as follows:

ψ1×n = (I1 ⊗ 1T
n )(In ⊗ 11) = 1T

n .

Definition of structure matrix is used to compute the
elements of structure matrix from the basis of n-dimensional
vector,

ei

⋉ e j = δ
i
n, i, j = 1, 2, · · · , n.

From this expression, we can see that only the first position
basis actually affects the result of the calculation. Therefore,
the structure matrix is divided into blocks so that the results
of each block can be expressed,

MV =
[
M1 M2 · · · Mn

]
,

Mi =
[
δi

n δi
n · · · δi

n

]
.

In the end, structure matrix MV can be expressed as

MV = diag(1T
n , 1

T
n , · · · , 1

T
n ) = In ⊗ ψ1×n.

The DK-STP satisfies the associative law, which can be
proved by using the bridge matrix. The structure matrix of
the DK-STP is considered here. The corresponding proof
can also be obtained by the structure matrix, which only
needs to prove that the structure matrix satisfies the algebraic
associative condition Lemma 2.2 (iii). This is easy to verify.

In Lemma 2.3, we get the structure matrix of gl(n,R). The
following theorem will get the structure matrix of gl(m ×
n,R). □
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Theorem 4.2. The structure matrix of dimension keeping

Lie bracket is

Mgl(m×n,R) = Ψmmn(ψm×n ⊗ Im)(Im2n2 −W[mn]).

Proof. After extending the matrix operation of Lie bracket
from classical matrix operation to DK-STP, Lie bracket can
be defined for NSM, which is great significance to NSM
operations.
{MIJ |I = 1, 2, · · · ,m; J = 1, 2, · · · , n} represents a set of

bases, where

(MIJ)i j =

1 i = I or j = J,

0 others.

By Lemma 2.1 and Theorem 2.1, we have

Vc(A ⋉ B) = Ψmmn(ψm×n ⊗ Im)Vc(A)Vc(B),

Vc(B ⋉ A) = Ψmmn(ψm×n ⊗ Im)W[mn]Vc(A)Vc(B).

Then, we can find

Vc([A, B] ⋉ ) = Ψmmn(ψm×n ⊗ Im)(Im2n2 −W[mn])Vc(A)Vc(B),

and

Mgl(m×n,R) = Ψmmn(ψm×n ⊗ Im)(Im2n2 −W[mn]).

We know gl(m × n,R) is a Lie algebra. Then, skew-
symmetric and Jacobi equation are established in gl(m ×
n,R). Thus, the structure matrix need to satisfy the following
equations. □

Corollary 4.1. The structure matrix of dimension keeping

Lie bracket Mgl(m×n,R) must satisfies the following two

equations.

(i) Skew-symmetric

Mgl(m×n,R)(Im2n2 +W[mn]) = 0.

(ii) Jacobi equation

M2
gl(m×n,R)(I(mn)3 +W[mn,(mn)2] +W[(mn)2,mn]) = 0.

Proof. (i) The expression for the anticommutation is as
follows:

[A, B] ⋉ = −[B, A] ⋉ , A, B ∈ Mm×n.

Then, the following equation can be deduced:

Vc([A, B] ⋉ ) = −Vc([B, A] ⋉ ).

By Theorem 4.2, we can compute

Mgl(m×n,R)Vc(A)Vc(B) = −Mgl(m×n,R)Vc(B)Vc(A),

Mgl(m×n,R)(Im2n2 +W[mn])Vc(A)Vc(B) = 0.

Since A, B is arbitrary, the conclusion is obvious.
(ii) The expression for the Jacobi equation is as follows:

[[X, Y],Z] + [[Y,Z], X] + [[Z, X], Y] = 0, X, Y,Z ∈ Mm×n.

It is written in the form of structure matrix and can be
obtained by calculation.

M2
gl(m×n,R)(I(mn)3+W[mn,(mn)2]+W[(mn)2,mn])Vc(X)Vc(Y)Vc(Z) = 0.

Since X, Y, Z is arbitrary, the conclusion is obvious. □

Next, we give some related special subalgebras for
dimension keeping Lie bracket. Under the action of DK-
STP, there are related Lie subalgebras for NSM.

Example 4.1. Take the coefficients n = 2, m = 3 in

Theorem 4.2, we verify its relevant properties by calculating

the structure matrix of gl(3 × 2,R).
Consider the definition of Ψmmn, we can give

Ψ332 =

I3 ⊗ (δ1
2δ

1
3)T I3 ⊗ (δ1

2δ
2
3)T I3 ⊗ (δ1

2δ
3
3)T

I3 ⊗ (δ2
2δ

1
3)T I3 ⊗ (δ2

2δ
2
3)T I3 ⊗ (δ2

2δ
3
3)T

 .
Then, we can get parts of the structure matrix of gl(3×2,R),

ψ2×3 ⊗ I3 =



2 0 0 1 0 0 0 0 0
0 2 0 0 1 0 0 0 0
0 0 2 0 0 1 0 0 0
0 0 0 1 0 0 2 0 0
0 0 0 0 1 0 0 2 0
0 0 0 0 0 1 0 0 0


and

W[6] = [I6 ⊗ δ
1
6, I6 ⊗ δ

2
6, · · · , I6 ⊗ δ

6
6].

Then, we can verify Corollary 4.1 by calculating the

following:

Mgl(3×2,R) = Ψ3×3×2(ψ3×2 ⊗ I3)(I36 −W[6]),
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Mgl(3×2,R)(I36 +W[6]) = 0,

M2
gl(3×2,R)(I216 +W[6,36] +W[36,6]) = 0.

Through this example, we find that the structure matrix of

gl(3 × 2,R) indeed satisfies the equation relationship in the

Corollary 4.1.

5. Homomorphisms of Lie algebra

Next, we use homomorphisms of Lie algebras to describe
some Lie subalgebras and present some subalgebras under
DK-STP.

Define
φ(A) := Aψn×m, A ∈ Mm×n.

Taking A, B ∈ Mm×n, we can get

φ(A + B) = φ(A) + φ(B),

φ(A ⋉ B) = φ(A)φ(B).

From the above relationship, we can get the following
formula:

φ([A, B] ⋉ ) = [φ(A), φ(B)].

Therefore, we can obtain

φ : gl(m × n,R)→ gl(m,R),

that is gl(m × n,R) ≃ gl(m,R).
Through this mapping, we have achieved a Lie algebra

homomorphism from NSM to square matrices. Thus for the
subalgebra set of square matrices, we can also define the set
of corresponding nonsquare algebras.

Example 5.1. Some special Lie subalgebras under the

dimension keeping Lie bracket are obtained as follows:

(i) Nonsquare orthogonal algebra

o(m × n,R) =
{
X ∈ gl(m × n,R)|(Xψn×m)T = −Xψn×m

}
.

Proof. If X, Y ∈ o(m × n,R), then

[[X, Y] ⋉ ψn×m]T =((X ⋉ Y − Y ⋉ X)ψn×m)T

=((Xψn×mY − Yψn×mX)ψn×m)T

=(Yψn×m)T (Xψn×m)T − (Xψn×m)T (Yψn×m)T

= − (Xψn×mY − Yψn×mX)ψn×m

= − [X, Y] ⋉ ψn×m.

The algebraic closure is valid in the sense of dimension
keeping Lie bracket. From the perspective of the
homomorphism,

(φ([X, Y] ⋉ ))T = (φ(X)φ(Y) − φ(Y)φ(X))T

= φ(Y)Tφ(X)T − φ(X)Tφ(Y)T

= −φ([X,Y] ⋉ ),

that is, [X, Y] ⋉ ∈ o(m × n,R). Consider the definition of
φ(X). Thus, we know that

o(m × n,R) ≃ o(m,R).

From nonsquare orthogonal algebra to square orthogonal
algebra is a Lie algebra homomorphism.

(ii) Nonsquare special linear algebra

sl(m × n,R) = {X ∈ gl(m × n,R)|tr(Xψn×m) = 0} .

Proof. If X, Y ∈ sl(m × n), then

tr([X, Y] ⋉ ψn×m) =tr((X ⋉ Y − Y ⋉ X)ψn×m)

=tr((Xψn×mY − Yψn×mX)ψn×m)

=0.

(iii) Nonsquare unitary algebra
u(m × n,C) =

{
X ∈ gl(m × n,C)|(Xψn×m)

T
= −Xψn×m

}
.

Proof. If X, Y ∈ u(m × n), then

[[X, Y] ⋉ ψn×m]
T
=((X ⋉ Y − Y ⋉ X)ψn×m)

T

=((Xψn×mY − Yψn×mX)ψn×m)
T

=(Yψn×m)
T

(Xψn×m)
T
− (Xψn×m)

T
(Yψn×m)

T

=(−Yψn×m)(−Xψn×m) − (−Xψn×m)(−Yψn×m)

= − (Xψn×mY − Yψn×mX)ψn×m

= − [X, Y] ⋉ ψn×m.

This means that through this homomorphism, a
correspondence between NSM operations and square
matrices operations is generated. Thus, for Example 5.1,
their algebraic relationships can be proven through this
correspondence, which are presented as follows:

sl(m × n,R) ≃ sl(m,R),

u(m × n,C) ≃ u(m,C).

The above formulas all express a kind of homomorphism
correspondence from NSM to square matrices.
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6. Conclusions

In this paper, we filled in the gap in the structure
matrix of the Lie bracket for NSM and solved the (anti)
commutative problem of DK-STP to a certain extent. The
conditions that the structure matrix of dimension keeping
Lie bracket must satisfy are analyzed from the perspective of
the structure matrix. Finally, we provide examples of special
Lie subalgebras.

As an extension of traditional matrix multiplication, STP
is undoubtedly a very convenient new tool for studying
algebraic problems. The study in this paper is only the tip
of the iceberg for the extension of STP, and there are many
algebraic properties worth studying. For example, there is
space for more discussion on Killing type, group mapping,
group isomorphism, and so on. This is actually derived from
the algebraic closure of DK-STP for NSM, which provides
us with a method to study the operation of NSM. This aspect
may be used in the matrix equation, which is worth our in-
depth exploration.
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