In this paper, we address a system of two ODEs including a hysteresis nonlinearity of generalized play type. Our system is subject to a composed perturbation, giving under particular choices of composants various types of common multivalued perturbations. We prove the existence of a solution to this system. The theoretical analysis is complemented by a discussion of a mechanical model illustrating potential applicability of our results and the physical meaning of the underlying assumptions.
Citation: Shengda Zeng, Sergey A. Timoshin. Composed perturbations to a coupled ODEs system with hysteresis[J]. Mathematics in Engineering, 2025, 7(4): 505-521. doi: 10.3934/mine.2025021
In this paper, we address a system of two ODEs including a hysteresis nonlinearity of generalized play type. Our system is subject to a composed perturbation, giving under particular choices of composants various types of common multivalued perturbations. We prove the existence of a solution to this system. The theoretical analysis is complemented by a discussion of a mechanical model illustrating potential applicability of our results and the physical meaning of the underlying assumptions.
| [1] | A. Visintin, Differential models of hysteresis, Applied Mathematical Sciences, Springer-Verlag, 1994. |
| [2] | P. Krejčí, Hysteresis, convexity and dissipation in hyperbolic equations, Vol. 8, Tokyo: Gakkotosho, 1996. |
| [3] | M. Brokate, J. Sprekels, Hysteresis and phase transitions, Vol. 121, Springer-Verlag, 1996. |
| [4] |
T. Aiki, E. Minchev, A prey-predator model with hysteresis effect, SIAM J. Math. Anal., 36 (2005), 2020–2032. https://doi.org/10.1137/S0036141004440186 doi: 10.1137/S0036141004440186
|
| [5] |
P Gurevich, R Shamin, S Tikhomirov, Reaction-diffusion equations with spatially distributed hysteresis, SIAM J. Math. Anal., 45 (2013), 1328–1355. https://doi.org/10.1137/120879889 doi: 10.1137/120879889
|
| [6] |
S. A. Timoshin, T. Aiki, Control of biological models with hysteresis, Syst. Control Lett., 128 (2019), 41–45. https://doi.org/10.1016/j.sysconle.2019.04.003 doi: 10.1016/j.sysconle.2019.04.003
|
| [7] |
S. A. Timoshin, T. Aiki, Relaxation in population dynamics models with hysteresis, SIAM J. Control Optim., 59 (2021), 693–708. https://doi.org/10.1137/19M1279551 doi: 10.1137/19M1279551
|
| [8] |
M. Kubo, A filtration model with hysteresis, J. Differ. Equations, 201 (2004), 75–98. https://doi.org/10.1016/j.jde.2004.02.010 doi: 10.1016/j.jde.2004.02.010
|
| [9] |
P. Krejčí, J. P. O'Kane, A. Pokrovskii, D. Rachinskii, Properties of solutions to a class of differential models incorporating Preisach hysteresis operator, Phys. D, 241 (2012), 2010–2028. https://doi.org/10.1016/j.physd.2011.05.005 doi: 10.1016/j.physd.2011.05.005
|
| [10] |
B. Detmann, P. Krejčí, E. Rocca, Solvability of an unsaturated porous media flow problem with thermomechanical interaction, SIAM J. Math. Anal., 48 (2016), 4175–4201. https://doi.org/10.1137/16M1056365 doi: 10.1137/16M1056365
|
| [11] |
A. Corli, H. Fan, Two-phase flow in porous media with hysteresis, J. Differ. Equations, 265 (2018), 1156–1190. https://doi.org/10.1016/j.jde.2018.03.021 doi: 10.1016/j.jde.2018.03.021
|
| [12] |
P. Krejčí, J. Sprekels, A hysteresis approach to phase-field models, Nonlinear Anal., 39 (2000), 569–586. https://doi.org/10.20347/WIAS.PREPRINT.364 doi: 10.20347/WIAS.PREPRINT.364
|
| [13] |
P. Colli, N. Kenmochi, M. Kubo, A phase field model with temperature dependent constraint, J. Math. Anal. Appl., 256 (2001), 668–685. https://doi.org/10.1006/jmaa.2000.7338 doi: 10.1006/jmaa.2000.7338
|
| [14] |
P. Krejčí, J. Sprekels, U. Stefanelli, Phase-field models with hysteresis in one-dimensional thermoviscoplasticity, SIAM J. Math. Anal., 34 (2002), 409–434. https://doi.org/10.1137/S0036141001387604 doi: 10.1137/S0036141001387604
|
| [15] |
P. Krejčí, A. A. Tolstonogov, S. A. Timoshin, A control problem in phase transition modeling, Nonlinear Differ. Equ. Appl., 22 (2015), 513–542. https://doi.org/10.1007/s00030-014-0294-x doi: 10.1007/s00030-014-0294-x
|
| [16] |
M. Helmers, M. Herrmann, Hysteresis and phase transitions in a lattice regularization of an ill-posed forward-backward diffusion equation, Arch. Rational Mech. Anal., 230 (2018), 231–275. https://doi.org/10.1007/s00205-018-1244-2 doi: 10.1007/s00205-018-1244-2
|
| [17] |
T. Aiki, K. Kumazaki, Mathematical model for hysteresis phenomenon in moisture transport of concrete carbonation process, Phys. B, 407 (2012), 1424–1426. https://doi.org/10.1016/j.physb.2011.10.016 doi: 10.1016/j.physb.2011.10.016
|
| [18] |
T. Aiki, S. A. Timoshin, Relaxation for a control problem in concrete carbonation modeling, SIAM J. Control Optim., 55 (2017), 3489–3502. https://doi.org/10.1137/17M1119251 doi: 10.1137/17M1119251
|
| [19] |
S. A. Timoshin, T. Aiki, Extreme solutions in control of moisture transport in concrete carbonation, Nonlinear Anal., 47 (2019), 446–459. https://doi.org/10.1016/j.nonrwa.2018.12.003 doi: 10.1016/j.nonrwa.2018.12.003
|
| [20] |
J. Kopfová, T. Kopf, Differential equations, hysteresis, and time delay, Z. Angew. Math. Phys., 53 (2002), 676–691. https://doi.org/10.1007/s00033-002-8176-1 doi: 10.1007/s00033-002-8176-1
|
| [21] |
H. Logemann, E. P. Ryan, I. Shvartsman, A class of differential-delay systems with hysteresis: asymptotic behaviour of solutions, Nonlinear Anal., 69 (2008), 363–391. https://doi.org/10.1016/j.na.2007.05.025 doi: 10.1016/j.na.2007.05.025
|
| [22] |
S. A. Timoshin, Control system with hysteresis and delay, Syst. Control Lett., 91 (2016), 43–47. https://doi.org/10.1016/j.sysconle.2016.02.008 doi: 10.1016/j.sysconle.2016.02.008
|
| [23] |
P. Gurevich, E. Ron, Stability of periodic solutions for hysteresis-delay differential equations, J. Dyn. Diff. Equat., 31 (2019), 1873–1920. https://doi.org/10.1007/s10884-018-9664-0 doi: 10.1007/s10884-018-9664-0
|
| [24] |
R. Cross, H. Mc Namara, A. Pokrovskii, Modelling macroeconomic flows related to large ensembles of elementary exchange operations, Phys. B, 403 (2008), 451–455. https://doi.org/10.1016/j.physb.2007.08.073 doi: 10.1016/j.physb.2007.08.073
|
| [25] |
S. A. Timoshin, A. A. Tolstonogov, Existence and properties of solutions of a control system with hysteresis effect, Nonlinear Anal., 74 (2011), 4433–4447. https://doi.org/10.1016/j.na.2011.04.004 doi: 10.1016/j.na.2011.04.004
|
| [26] |
P. Krejčí, S. A. Timoshin, Coupled ODEs control system with unbounded hysteresis region, SIAM J. Control Optim., 54 (2016), 1934–1949. https://doi.org/10.1137/15M1018915 doi: 10.1137/15M1018915
|
| [27] |
A. A. Tolstonogov, Upper semicontinuous convex-valued selectors of a Nemytskii operator with nonconvex values and evolution inclusions with maximal monotone operators, J. Math. Anal. Appl., 526 (2023), 127197. https://doi.org/10.1016/j.jmaa.2023.127197 doi: 10.1016/j.jmaa.2023.127197
|
| [28] |
A. A. Tolstonogov, BV sweeping process involving prox-regular sets and a composed perturbation, Set-Valued Var. Anal., 32 (2024), 2. https://doi.org/10.1007/s11228-024-00705-7 doi: 10.1007/s11228-024-00705-7
|
| [29] | A. A. Tolstonogov, S. A. Timoshin, Convex-valued selectors of a Nemytskii operator with nonconvex values and their applications, J. Nonlinear Convex Anal., 16 (2015), 1131–1145. |
| [30] | N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Faculty Educ. Chiba Univ., 30 (1981), 1–87. |
| [31] | A. Fryszkowski, Fixed point theory for decomposable sets, 1 Ed., Vol. 2, Springer Dordrecht, 2004. https://doi.org/10.1007/1-4020-2499-1 |
| [32] |
A. A. Tolstonogov, $L_p$-continuous selections of fixed points of multifunctions with decomposable values. Ⅰ: existence theorems, Sib. Math. J., 40 (1999), 595–607. https://doi.org/10.1007/BF02679768 doi: 10.1007/BF02679768
|
| [33] | K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proceedings of the National Academy of Sciences of the United States of America, 38 (1952), 121–126. |