Research article

Surfactants in the two gradient theory of phase transitions

  • Published: 08 September 2025
  • We investigate the influence of surfactants on stabilizing the formation of interfaces in solid-solid phase transitions. The analysis focuses on singularly perturbed van der Waals-Cahn-Hillard-type energies for gradient vector fields, supplemented with a term that accounts for the interaction between the surfactant and the solid. Assuming the potential term to have only two rank-$ 1 $ connected wells, we prove that the effective energy for the formation of an interface decreases when the surfactant segregate to the interface.

    Citation: Marco Cicalese, Tim Heilmann. Surfactants in the two gradient theory of phase transitions[J]. Mathematics in Engineering, 2025, 7(4): 522-552. doi: 10.3934/mine.2025022

    Related Papers:

  • We investigate the influence of surfactants on stabilizing the formation of interfaces in solid-solid phase transitions. The analysis focuses on singularly perturbed van der Waals-Cahn-Hillard-type energies for gradient vector fields, supplemented with a term that accounts for the interaction between the surfactant and the solid. Assuming the potential term to have only two rank-$ 1 $ connected wells, we prove that the effective energy for the formation of an interface decreases when the surfactant segregate to the interface.



    加载中


    [1] E. Acerbi, G. Bouchitté, A general class of phase transition models with weighted interface energy, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 25 (2008), 1111–1143. https://doi.org/10.1016/j.anihpc.2007.09.004 doi: 10.1016/j.anihpc.2007.09.004
    [2] R. Alicandro, A. Braides, M. Cicalese, M. Solci, Discrete variational problems with interfaces, Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2024. https://doi.org/10.1017/9781009298766
    [3] R. Alicandro, M. Cicalese, L. Sigalotti, Phase transitions in presence of surfactants: from discrete to continuum, Interfaces Free Bound., 14 (2012), 65–103. https://doi.org/10.4171/ifb/274 doi: 10.4171/ifb/274
    [4] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Academic, 2000. https://doi.org/10.1093/oso/9780198502456.001.0001
    [5] M. Baía, A. C. Barroso, J. Matias, A model for phase transitions with competing terms, Q. J. Math., 68 (2017), 957–1000. https://doi.org/10.1093/qmath/hax009 doi: 10.1093/qmath/hax009
    [6] S. Baldo, Minimal interface criterion for phase transitions in mixtures of Cahn-Hilliard fluidss, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 7 (1990), 67–90. https://doi.org/10.1016/s0294-1449(16)30304-3 doi: 10.1016/s0294-1449(16)30304-3
    [7] J. M. Ball, R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal., 100 (1987), 13–52. https://doi.org/10.1007/BF00281246 doi: 10.1007/BF00281246
    [8] A. Braides, Gamma-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, 2002. https://doi.org/10.1093/acprof: oso/9780198507840.001.0001
    [9] M. Chermisi, G. Dal Maso, I. Fonseca, G. Leoni, Singular perturbation models in phase transitions for second-order materials, Indiana Univ. Math. J., 60 (2011), 367–409. https://doi.org/10.1512/iumj.2011.60.4346 doi: 10.1512/iumj.2011.60.4346
    [10] M. Cicalese, E. N. Spadaro, C. I. Zeppieri, Asymptotic analysis of a second-order singular perturbation model for phase transitions, Calc. Var. Partial Differential Equations, 41 (2011), 127–150. https://doi.org/10.1007/s00526-010-0356-9 doi: 10.1007/s00526-010-0356-9
    [11] S. Conti, I. Fonseca, G. Leoni, A $\Gamma$-convergence result for the two-gradient theory of phase transitions, Commun. Pure Appl. Math., 55 (2002), 857–936. https://doi.org/10.1002/cpa.10035 doi: 10.1002/cpa.10035
    [12] S. Conti, B. Schweizer, A sharp-interface limit for a two-well problem in geometrically linear elasticity, Arch. Ration. Mech. Anal., 179 (2006), 413–452. https://doi.org/10.1007/s00205-005-0397-y doi: 10.1007/s00205-005-0397-y
    [13] S. Conti, B. Schweizer, Rigidity and gamma convergence for solid-solid phase transitions with SO(2) invariance, Commun. Pure Appl. Math., 59 (2006), 830–868. https://doi.org/10.1002/cpa.20115 doi: 10.1002/cpa.20115
    [14] R. Cristoferi, I. Fonseca, A. Hagerty, C. Popovici, A homogenization result in the gradient theory of phase transitions, Interfaces Free Bound., 21 (2019), 367–408. https://doi.org/10.4171/ifb/426 doi: 10.4171/ifb/426
    [15] G. Dal Maso, An introduction to $\Gamma$-convergence, Progress in Nonlinear Differential Equations and their Application, Vol. 8, Birkhäuser Boston, 1993. https://doi.org/10.1007/978-1-4612-0327-8
    [16] G. Dal Maso, I. Fonseca, G. Leoni, Asymptotic analysis of second order nonlocal Cahn-Hilliard-type functionals, Trans. Amer. Math. Soc., 370 (2018), 2785–2823. https://doi.org/10.1090/tran/7151 doi: 10.1090/tran/7151
    [17] E. Davoli, M. Friedrich, Two-well rigidity and multidimensional sharp-interface limits for solid-solid phase transitions, Calc. Var. Partial Differential Equations, 59 (2020), 44. https://doi.org/10.1007/s00526-020-1699-5 doi: 10.1007/s00526-020-1699-5
    [18] I. Fonseca, C. Mantegazza, Second order singular perturbation models for phase transitions, SIAM J. Math. Anal., 31 (2000), 1121–1143. https://doi.org/10.1137/S0036141099356830 doi: 10.1137/S0036141099356830
    [19] I. Fonseca, M. Morini, V. Slastikov, Surfactants in foam stability: a phase-field model, Arch. Rational Mech. Anal., 183 (2007), 411–456. https://doi.org/10.1007/s00205-006-0012-x doi: 10.1007/s00205-006-0012-x
    [20] I. Fonseca, L. Tartar, The gradient theory of phase transitions for systems with two potential wells, Proc. Roy. Soc. Edinb.: Sec. A Math., 111 (1989), 89–102. https://doi.org/10.1017/S030821050002504X doi: 10.1017/S030821050002504X
    [21] D. Myers, Surfactant science and technology, John Wiley & Sons, Inc., 2020. https://doi.org/10.1002/9781119465829
    [22] L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987) 123–142. https://doi.org/10.1007/BF00251230
    [23] L. Modica, S. Mortola, Un esempio di $\Gamma ^{-}$-convergenza, Boll. Un. Mat. Ital. B, 14 (1977), 285–299.
    [24] D. Raabe, S. Sandlöbes, J. Millán, D. Ponge, H. Assadi, M. Herbig, et al., Segregation engineering enables nanoscale martensite to austenite phase transformation at grain boundaries: a pathway to ductile martensite, Acta Mater., 61 (2013), 6132–6152. https://doi.org/10.1016/j.actamat.2013.06.055 doi: 10.1016/j.actamat.2013.06.055
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(586) PDF downloads(32) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog