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Abstract: We investigate the influence of surfactants on stabilizing the formation of interfaces in solid-
solid phase transitions. The analysis focuses on singularly perturbed van der Waals-Cahn-Hillard-type
energies for gradient vector fields, supplemented with a term that accounts for the interaction between
the surfactant and the solid. Assuming the potential term to have only two rank-1 connected wells, we
prove that the effective energy for the formation of an interface decreases when the surfactant segregate
to the interface.
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1. Introduction

Surfactants (surface active agents) play a pivotal role in influencing phase transitions. In essence,
the primary mechanism driving these effects is the adsorption of surface active molecules onto phase
interfaces. This adsorption alters the surface tension, by decreasing the energy penalty associated
with the different chemical environments of the different phases. Consequently surfactants exert a
profound influence on the stability and morphology of the physical system. The capacity of surfactants
to modulate phase transitions has found practical applications in various fields both in fluid-fluid
and in solid-solid phase transitions. In the case of solid-solid transitions we refer to [24], where
manganese in an iron-manganese alloy is used as surfactant which favours the formation of transition
layers between singular martensite crystals resulting in modified mechanical properties of the material.
Other examples are provided by crystal growth, metallurgy, and ceramics processing (see [21] and the
references therein).

In this paper we introduce a phase transition model in presence of surfactant working within the
framework of the gradient theory of phase transition. More specifically we modify the easiest phase-
field model for solid-solid transition introduced in [11] in order to account for the interaction between
the surfactant and the solid. The model we introduce draws inspiration from the one proposed by
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Perkins, Sekerka, Warren and Langer for fluid-fluid transitions and analyzed in [19] (see also [1,5, 14]
for some extension to more general models of fluid-fluid or multiphase-fluid-fluid phase transitions
in presence of surfactants). To fix the ideas, in what follows we first present the latter model. Such a
model, motivated by the investigation on foam stability, is a modification of the classical van der Waals-
Cahn-Hillard energy functional. More specifically, an integral term accounting for the fluid-surfactant
interaction is added to the classical Cahn-Hillard functional, as explained in detail below.

In a given open and bounded set Q c R" (the region occupied by the fluid and the surfactant), one
considers a scalar function # : Q — R and a non-negative function p : Q — [0, +0) representing
the order parameter of the fluid and the density of the surfactant, respectively. As & — 0 one is
interested in the asymptotic behaviour of the singularly perturbed sequence of energy functionals &, :
W2(Q) x M(Q) — [0, +00) defined as

E(u, 1) := féW(u) + elVul* + elp — |Vul)? dx, (1.1)
Q

where y = p.LV denotes the surfactant measure and W : R — [0, +o0) is a double-well potential with
wells {u : W(u) = 0} = {0, 1}. The first two terms in the energy define the usual Cahn-Hillard energy
functional, namely

1
CH.(u) = f gW(u)+s|vu|2dx,
Q

which models the energy cost of a phase separation phenomenon in a two-component immiscible
fluid. In few words, within this theory, also known as the gradient theory of phase transitions, the
phase separation phenomenon corresponds to the transition from the value O to the value 1 of the
order parameter u# which represents the local concentration of one of the components of the fluid. The
variational limit in the sense of I'-convergence (see [8, 15]) of the Cahn-Hillard functional as € — 0
has been considered by Modica and Mortola in [22, 23] (see also [6,20] for analogous results about
the asymptotic behaviour of the Cahn-Hillard functional in the case of vector valued order parameters).
In [22], it is proved the pre-compactness in BV(Q; {0, 1}) of sequences of phase-fields u, with uniformly
bounded energy and it is computed the I'-limit of CH, as & — 0 with respect to the L' convergence.
Roughly speaking, the limit u of a converging subsequence of u, will take only the values O and 1,
partitioning Q in the two sets {u = 0} and {# = 1} (the two immiscible phases of the fluid) whose
common boundary (the phase interface) will correspond to the jump set S, of the function u. Since u
is of bounded variation, the latter set will have finite {"~!-measure. Up to a multiplicative constant
depending on the shape of W the effective asymptotic energy of the system, captured by the I'-limit
of CH,, will be proportional to such a perimeter measure. Hence, if we fix the measure of the set
{u, = 0} to be strictly smaller than the measure of €, both phases will be non empty and the minimal
Cahn-Hillard energy as € — 0 will correspond to the partition of Q in the two sets having the least
perimeter of the common boundary. Such an energy will be achieved along a sequence u. of phase
fields with Vu, concentrating on S ,. In this perspective, one can understand the role of the additional
third term in &,(u, 1) which is responsible for the interaction between the surfactant and the fluid. The
presence of the additional term will modify the minimizers of CH, described above enhancing the
phase separation phenomenon to happen in the regions where the surfactant is present. In fact, the
last integral term in (1.1) is minimized if p, = Vu,, which corresponds to the situation in which both
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the surfactant measure u, = p,£" and the approximating phase interface {Vu, ~ é} are concentrating
on the same (N — 1)-dimensional set. As explained in [19] the scaling factor &€ multiplying the third
integral is chosen in order to observe the effect of this concentration in the asymptotic limit energy.
In fact in [19] the authors have proven that, carrying out the I'-limit of &, with respect to the strong
L' convergence of the phase fields and the weak+-convergence of the surfactant measures, one obtains
a limit functional finite for u € BV(Q,{0, 1}) and u € M(Q) (the space of positive Radon measures)
where it takes the form

. du N-1
E(u, ) = fsmgq](—dWN‘lLSu) dH™ . (1.2)

Here ¥ : [0, +00) — [0, +o0) is a decreasing function of the relative density of the surfactant measure
with respect to the surface measure of the interface. In other words, according to the limit energy
functional, the surface tension between the phases {# = 0} and {u = 1} can be lowered increasing the
surfactant density on the interface, a phenomenon that characterizes surface active agents as already
recalled at the beginning of this section. It is worth mentioning that in [2, 3] such a limit energy
has been obtained via a variational discrete-to-continuum coarse-graining procedure starting from the
microscopic Blume-Emery-Griffiths ternary surfactant model.

In this paper we are interested in extending the results above to the framework of solid-solid phase
transition models. Unlike the fluid-fluid ones already introduced, these transitions, and the variational
energy models leading to the associated phase separation phenomena, are vectorial problems. The
energy functionals we are interested in will be obtained by adding a surfactant-solid interaction term
to the functionals H, : W>?(Q;R¢) defined as

H.(u) := f éW(Vu)+8|V2u|2dx. (1.3)
Q

The latter functionals, which are the analogue for gradient vector fields of the Cahn-Hillard functionals
CH, mentioned before, commonly arise as higher-order regularizations of non-convex stored energy
functional in elasticity as those considered in the seminal paper [7]. Their I'-convergence as € — 0 has
been carried out in [11] assuming the wells of W to be rank-1 connected; i.e.,

{(W=0}={A,B), withA - B=a®yv, forsomea € RY, v e S¥. (1.4)

For further generalizations allowing for frame invariant potentials W, see [12, 13, 17] (the reader
interested in vector valued singularly perturbed problems with higher order gradients regularizations
would also find interesting the results obtained in [9, 10, 16, 18]). Under additional assumptions on W
and Q, satisfied in particular by prototypical quadratic potentials as W(£) = min{|& — A[?, |¢ — B|*} and
by regular convex domains €2, the authors of [11] compute the I'-limit of H, and prove that the latter
is given by a functional H finite on those u € W'(Q;RY) with Vu € BV(;{A, B}). On this set of
functions H(u) takes the form

Hw) = K- H'(Sv. N Q), (1.5)

where the constant K > 0 is obtained by solving an asymptotic cell-problem formula.
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In the present paper we are going to investigate functionals defined on functions u € W>2(Q, RY)
and measures u = pL" of the form

1
QWJO:Vf;WWM+8W%F+dp—W%de (1.6)
Q

The main result of this paper is stated in Theorem 2.3 in which we compute, under the same
assumptions on W (w.l.o.g. we assume that in (1.4) v = ey) and Q as those considered in [11]
(see Section 2.2 for details), the I'-limit of E.(u,u) with respect to the strong W' convergence
of the deformations u and the weakx*-convergence of the surfactant measures u. We have that
I-lim,_o E.(u, 1) = E(u,u) where E(u,u) is a functional finite on those functions u € WH?(Q;R%)
such that Vu € (Q; {A, B}) on which it takes the form

du N-1
E(u,u) = O|————|dH . 1.7
(4,2 ﬁv,,mg (d'HN'II-S Vu) (-7

The surface tension @ above is a nonnegative nonincreasing function given by an asymptotic formula

(see Definition 3.2). Roughly speaking ®(y) can be interpreted as the effective energy per unit H™!-
measure associated to the phase separation induced by the deformation u : Q — R? with

—-a®ey, xy<O0,
Vu(x) = A
a® ey, xy >0

and in presence of the surfactant measure
wi=yHN {xy = 0).

In order to prove our main result, we first need to show that ® can be obtained restricting the class of
admissible functions in the asymptotic formula to those sharing additional regularity and periodicity
assumption as in (3.17). To this end we need to combine some of the arguments in [11, 19], the latter
modified to fit in the present vectorial case. Such characterization allows us to compute the I'-limit
on functions with fixed boundary conditions that are periodic in direction of the phase separation.
The proof of the I'-lim inf-inequality (Proposition 4.1) is then obtained by a blow-up technique near
the interfaces of u. The proof of the I'-limsup inequality (Proposition 4.2) makes use of a density
argument which reduces the construction of a recovery sequence for a generic pair (u, i) to the case of
deformations with a single interface and to constant surfactant densities.

2. Notation, statement of the main result and preliminaries

2.1. General notation

Let Q c RY be a bounded, open set with Lipschitz boundary. We denote by £V and HV~' the
N-dimensional Lebesgue measure and the (N — 1)-dimensional Hausdorff measure in RY, respectively.
We use the notation |U| := fU dx = LN(U). We denote by M(Q) the space of non negative Radon
measures finite on Q. We set O, 5 := (xop — 6, xp + 5)" and we use the notation Q := O, 1 for the

unitary open cube in R centred at the origin. Given x € R" we label the first (N — 1)-coordinates
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) . N-1
as x" and the last coordinate as xy and we write x = (X', xy). We also set Q' = ( — %,% , hence

0 = Q' x (- 1,1). Given a function u : Q — R such that for all xy € (— 1,1) it holds that u(-, xy)
is Q’-periodic, we say that u is Q’-periodic in x’. Given a function u € L'(Q,R?), we denote by S,
the approximate discontinuity set of u, i.e., the set of those points x € Q for which no z € RY exists

such that lim,_¢+ |B,(x)|™! fB ) lu(y) — zldy = 0 holds. We denote by BV(L2) the set of functions of

bounded variation in Q. We say that a measurable set E ¢ R" is a set of finite perimeter in Q if
XE € BV(Q). Denoting by P(E, Q) the De Giorgi’s perimeter in Q of E, if E is a set of finite perimeter
we also write that P(E, Q) = HY"1(6*E N Q) < +oco where 9*E stands for the reduced boundary of E.
If u € BV(Q;{a, b}) is a function of bounded variation in € taking only the two values a,b € R?, the
(N — 1)-Hausdorff measure of S, equals the perimeter of the level set {u = a} (and {u = b}) in Q or in
formula HN'(S,) = P({u = a}, Q). For all properties of functions of bounded variations and of sets of
finite perimeter needed in this paper we refer the reader to [4]. Finally we set S¥! := {(x e RV : |x| = 1}
and we denote by ¢ and C generic real positive constants that may vary from line to line and expression
to expression within the same formula.

2.2. The main result

In this section we introduce the energy functional we are interested in and state our main theorems.
For & > 0 we consider the functional E, : W"1(Q; RY) x M(Q) X A(Q) — [0, +o0] defined as

[iW(Vu) + el V2uP + e(p — [Vul)? dx,  if u € W*A(Q;RY), u = p dx,
Eg(u,u,U) := U (2.1)
+oo0, otherwise in W"!'(Q; R?) x M(Q).

With a little abuse of notation we will also introduce the functional E,(u, u) : Wh(Q; R?) x M(Q) —
[0, +o0] defined as

Eg(u,p) := Ec(u,pu, Q).

The asymptotic analysis as € — 0 of the functional E.(u, u) will be carried over in the ambiance space
WEH(Q) x M(Q) endowed with the convergence 7; X 7, where 7, denotes the strong convergence in
WhL(Q; RY), while T, denotes the weak*-convergence in the space of non-negative bounded Radon
measures M(Q).

On the potential W : R™Y — [0, c0) we make the following set of assumptions:

W is continuous, W(€) = 0 if and only if ¢ € {A, B}, (H1)
where A— B=a®v, forsomea € R, ye SV,
1
Elfl” —C<WE <CWéP+1) forsome C > 1,p > 2. (H2)
cé - AP < W) < Clg - AP, 1§-Al<p, (H3)

cl - B <W() <Clg-Bl", £-Bl<p,
for some p > 0 and p > 2.

W, .. & E) = WELL..., =&, ....&é), i=1,...,N. (H4)
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Remark 2.1. We observe that assumption (H1) together with the control from below in (H2) for p > 1
would suffice to obtain the forthcoming compactness and liminf inequality statements.

Remark 2.2. The following control on the potential energy W is proven in [11, Remark 6.1].
From (H2) and (H3), there exist Cy, C, > 0 such that

CilE'l < W(E) < C:(Wm) + 1€ —nl")
holds for all £, € R,

The following two theorems are the main result of this article. Note that a corresponding
compactness statement is given in Proposition 3.1.

Theorem 2.3. Let E, be as in (1.6), where W : RV — [0, o) is a continuous double-well potential as
in (1.4) that satisfies growth conditions as in (H1)—(H3) and is even as in (H4). If the domain Q c RY
is open, bounded, has a Lipschitz boundary, is simply connected and for all t € R it holds that the
section {(x1,...xy) € Q : xy = t} is connected, then in the space W"'(Q,R?) x M(Q) it holds that

[-limg o+ Eg(u, p) = E(u, p).

Here, we have written

du
E(u, ) := 5w (D(d(HN-lLSW)’ Vu € BV(Q,{A, B}), ) 2.2)
+00, otherwise in WH(Q; RY) x M(Q),
with ® a nonnegative nonincreasing function as in (3.1).
Proof. The proof follows from Propositions 4.1 and 4.2. |

Theorem 2.4. Let E, be as in (1.6), where W : RV — [0, o) is a continuous double-well potential
as in (1.4) that satisfies growth conditions as in (HI)—(H3) and (HS5). If the domain Q c RY is open,
bounded, has a Lipschitz boundary, is simply connected and for all t € R it holds that the section
{(x1,...xny) € Q: xy =t} is connected, then in the space WIH(Q, RY) x M(Q) it holds that

I-limg o+ Eq(u, 1) = E(u, p),

where E(u, ) is given in (2.2). The surface tension ® in Definition 3.2 is obtained further restricting
the admissible set of functions in the cell-problem formula to one-dimensional profiles u;,(x) = u,(xy).

Proof. The proof of the statement follows from the proof of Theorem 2.3 taking into account
Proposition 3.7. m|

Remark 2.5. Note that for potentials that do not satisfy (HS) Proposition 3.7, and hence Theorem 2.4,
are false as shown in [11, Section 8].
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2.3. Preliminaries

In what follows we will often make use of the following straightforward identity:
min{A® + w*, 2w*} = w* + (max{d + w,0} — w)* for all 1 < 0,w > 0. (2.3)

The next theorem is proved in [11, Theorem 3.3].
Theorem 2.6. Let u € WH(Q, RY) be such that Vu € BV(Q,{A,B) withA— B =aQv, for some a €
RY, v € SN"L. Then u has the form

u(x’, xy) = yo + axy — 2¢(x)a

for some vy € R? such that v, - a = 0 and for some ¢ € WH(Q, R?) such that Vi(x) = ye(x)ey. The
set E C Q has P(E,Q) < oo and moreover

OE = O Q; x {t;}
i=1

with Q; ¢ RY™! connected, open and bounded and t; € R. If in addition for each t € R the set
{(x', xy) € Q| xy =t} is connected, then ¥ depends only on xy.

The following lemma is proved in [19, Lemma 3.2].

Lemma 2.7. Assume that (X, ) is a measure space with u a non-atomic positive measure. Let g : X —
[0,00) € L'(X, ) N L2 (X, ) and 0 < y < fng,u be given. Then, for all v > 0 with fx vdu = vy it holds
true that

f (v—g) du> f (max{d + g,0} - g)* du = f min{A, g%} du,
X X X

where A € (—o0, 0] satisfies fxmax{/l + 2,0} du = .
3. Compactness and characterization of the asymptotic surface tension

In this section we prove the compactness statement for sequences u;, and u, = p,dx with
equibounded energy E., (u;.0,). We moreover introduce the effective asymptotic (as &, — 0) surface
tension of the energy functional given by the variational limit of E,, and provide some useful
characterization of it. For simplicity of notation and without loss of generality from now on we will
assume in (H1) that A = —-B = a ® ey.

3.1. Compactness

In what follows we state the main compactness result for our functionals. It is a direct consequence
of [11, Theorem 3.1]. In all our analysis &, denotes a sequence of positive numbers vanishing as
h — +oo.

Proposition 3.1 (Compactness). Let W : RN — [0, co) satisfy assumptions (H1) and (H2), &, — 07,
(up) be a sequence in W>*(Q, RY) and Up = ppdx be a sequence in M(Q) such that

sup Eg, (un, pp) < 00 and sup p,(Q) < oo.
h h
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Then there exist subsequences (uy, ), (on,) and u € WhP(Q,RY) with Vu € BV(Q, {A, B)) and p € M(Q)
such that

1
= 1oy f  dx — win WP(QRY) and gy, Ap as k — +oo.
Q

Proof. The convergence of a subsequence of (u;,) follows as in [11, Remark 3.2 (ii)]. In fact we can
apply the proof of [11, Theorem 3.1] to find a subsequence u,, — u in W"'(Q, R?). By assumption (H2)
there exists L > 0 such that W(¢) > c|€|P for p > 2 and for all £ satisfying |£] > L and therefore

cf [Vuy, [P dx < f W(Vuy,,)dx — 0.
(IVuty [2L) Q

f [Vuy, — Vul? dx — 0
(IVun, 1>L)

If follows

and together with
f \Vuy, — Vul? dx < (L +|A| + |B)P™! f |Vuy, — Vuldx — 0,
[V, I<L) Q

it implies the convergence of u;, in W'”(Q,R?). The convergence of a subsequence of (u;) in the
weak*-topology is a consequence of the weak*-compactness of M(L2). O

In what follows we define the lower semicontinuous envelope of our energy functional on a
restricted class of admissible functions. In Section 4, we are going to prove that this lower bound
is actually our I'-liminf functional.

We start by introducing a notation. For every open subset U C ) we define

1
Fo(u,A,U) := f —-W(Vu) + &|V?ul]* + e min{A?, |V?ul?} dx.
U €

In the case U = Q (the unitary cube in R centred at the origin) the notation above will be shortened
and we will use F.(u, A) := F.(u, A, Q).

Definition 3.2. Fory > 0, k > 0 and w c RV a bounded open set with H"~'(0w) = 0 we define
F(y.w X (k,k)) := inf {Timinf Fy, uy, Ay 0 X (~k,K) 05 = Lxnla, (up, Ap) € Ay, 0 X (=k, D)},

where we have used the notation A(y, w X (—k, k)) for the set of admissible functions defined as

Ay, w % (=k, k) = {(u, 1) € W**(Q,RY) x (=00,0] | max{d + [V2ul, 0} dx < y H" ' (w)}.

wX(—k,k)

In order to shorten the notation we also set
Ay) = Ay, Q), @) :=F(,0), and O(y):= (}irgg d(y +06) (3.1)

and we observe that since ® is non-increasing, the function @ is well-defined.
The following lemma, whose proof we omit, can be proved as in [11, Lemma 4.3], the only care
being that the rescaling argument used to show assertion (iv) now makes use of the admissible sequence

x\ An
(a(un(;), /"
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Lemma 3.3. Fory > 0 fixed, it holds

(i) F(y,x +wX(=k, k) = F(y,w % (—k, k)) for all X € RN™!;
(it)  F(y,w1 X (=k,k)) < F(y,ws X (=k, k)) if w1 C wy;
(@ii) F(y,wi X (—=k,k)) + F(y,w; X (=k,k)) < F(y,w; U wy X (—k,k)) if w; Nw, = 0;
(iv) F(y,aw X (—ak,ak)) = " 'F(y, w x (=k, k)) for a > 0,
F(y,aw X (=h,h)) > " 'F(y, w X (=k, k)) for 1 > a > 0;
) F(y,wX (=k,k)) = H Y (w)F(y, Q' X (=k, k));
i) F(y,w X (—k,k)) = F(y,w X (=k', k")) for all kK’ > 0,

and analogously for lims_g- F(y + 6, w X (—k, k)).
In particular it holds that F(y, w X (=k, k)) = HY"(w)D(y).

3.2. Characterization of the surface tension

In this section we further characterize the surface tension ® and ®. More specifically,
following [11], we prove that the minimum problem in Definition 3.2 can be restricted to a narrower
class of competitors.

Proposition 3.4. Let W : R™Y — [0, 00) satisfy (H1)—(H3) and let y > 0 and § > 0 be given. Then
there exist sequences €5 — 0" and (uS, 1) € A(y + 6) satisfying

5 . 1, d
u, = |xyla in W-P(Q,R%),
1 1
ui = —xya near xy = —5 ui = xya + cfl near xy = oh ci —0ash — o,
. 5 30 =
lim F, (1, A;) = O(y).
h—o0

Proof. Our proof follows the strategy of the proof of [11, Proposition 6.2]. We fix ¢ and drop it from
the notation. Choosing admissible sequences satisfying

lim F,, (s, A1) = ©(y) (3.2)

and using the compactness result (3.1) we can assume that u, — |xyla =: uo in WHP(Q, RY). We can
partition Q" X (é, %) into Li]—horizontal layers of height Léj‘lé and choose a layer L, = Q' X (6, —
L;—hJ‘1 £.0,) which satisifies

{i| (th(uh, Ap, Ly) +

|Vuh —a® €N|p + |l/th - uo(x)Ip dx)

En L,
(11
< Fy lup, A, @' X | =, 5 || + [Vu, —a® eyl + lup — up(x)l” dx
6 3 oLl
= a, >0, 3.3)

where we have used Lemma 3.3(vi), which asserts that the energy concentrates near Q' X {0}. By
the continuity of W, (3.2) and the very definition of the energy functional F, there exists z;, € (6, —
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Ls—lhj‘lé, 6,) such that
1 ’ 2 ’ 2 . 2 2 ’ 2 ’
— W Vu (X', ) + el Voup(x’, zp)|” + &, min{ A, [Vouy(x7, 23)17} dx

Q/ 6h
+ f Vi (X', zp) — a ® enl” + up(x', z1) — uo(x’, z,)I” dx’ < 6a,. (3.4)
Ql

Choosing a smooth cut-off function ¢, : (—%, %) — R satisfying g, (xy) = 1if xy < 6~ 11176, 0, = 0

if xy 2 Oy, lg| < =, 1@ < é we define

Via(X) := uo(x) + up(X', zp) — uo(x’, 2) + @r(xXn)Up(x) = to(x) = (Up(x’, 21) — uo(x’, 1))

= @p(xn)up(x) + (1 = @p(xn)) (o (x) + up(x’', zp) — (X', 23)).

We claim that the following limits hold true:

1
(Cl)f Vi — uol” dx — 0, (b) — f Vv, —a®ey|’ dx — 0,
Ly En Ly
(¢) Fg,(vp, Ay, Ly) — 0, (d) | max{A, + [V*v,],0} dx — 0.
Lh

The limit in (a) follows directly from (3.3) and (3.4). We now prove the limit in (). We can apply
Poincaré inequality to the function u,(x) — ug(x) — (us(x’, ) — uo(x’, z;)) to obtain

1
— Vv, —a®epn|’ dx
En JL,

C
< — | Vup(x) —a®eyl’
En Jr,
4 Cp /7 4
+ [Veup(x', 2P + = lup(x) — uo(x) = (up(x’, zp) — uo(x’, zp)I” dx

el

h

C
< Cf IVoun(x', z)IP dx’ + —f Vu, —a®ey|’ dx
Q, Sh Lh

C
< Cf Vun(x',z,) —a®eyl? dx' + — Vu, —a®ey|’ dx — 0, 3.5)
o € JI,

where in the last step we have used (3.3) and (3.4). We now prove claim (c). Thanks to (H2) and (H3)
we obtain

1 1
— f W(Vv,) dx < — ClVv, —a®ey|’ dx
€n Ji, En JLun(IVvi=Vugl<p)
1
+ — C(1 +|Vvy|P) dx
Eh J Lyn{|Vvi=Vuol=p)
C
< — Vv, —a®ey|’ dx — 0, (3.6)
Sh Ly

where the last limit follows by (b). We also have that
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1
f eV, dx <C f enlVoun(x', 2 + enlVunl* + —|Vuy, — a @ eyl
En

Ly Ly

1 2
+ <l — uo — (un(x’, z1) — uo(x’, z))I” dx
h

<Ce; | IViup(x',zp)l* dx' + Cey, | |V2ul* dx

Q/ Lh
C
+ — |Vuh —a®ey|? dx+ Cf IVoun (X', z20) dx’
8h ’
Cs(p 2)/p 2/p
t+ (f [ (x) = uo(x) = (up(x’, zp) = uo(x’, zp))I” dx)

2/p
<Ce; f V(¥ z)f dx’ + Ce f Vil d+ < ( f Vi — a® exl? dx)

2/p
+ C( |Vu,(x', z,) —a® enl? dx’) — 0,
Q/

where we have used Holder’s inequality, Poincaré’s inequality for u;,(x) — uo(x) — (up(x', 2,) — uo(x’, z4))

and, in the last step, (3.3)—(3.5). By the trivial inequality

f gy min{A7, [V2v*} dx < f enlViul? dx,

Ly Ly

the estimate above shows (c). Finally (d) follows from (3.3) and (3.4) thanks to the estimate

1/2
max{d, + [V?v,,0} dx < f IV2v;l dx < Ce)/? ( f V2,2 dx) - 0.
Lh

Ly

In the next step, we choose a smooth cut-off function ¢ : ( 3 2) — R such that ¥(xy) = 1 for xy <
and ¥ = O near xy = % We moreover may assume that |[/’||, < C and |[)”'||.c < C and define

wi(x) 1= ug(x) + cp + Yoy up(x’', zp) — uo(X', 2) = cp),

where
cp = f up(x’, zp) — up(x’, zp) dx’ = 0
Q/

by (3.4). We write Oy = Q' % (6, 1/2) and claim that

(@) | Iwp—upl” dx —0, (& ) — | IVwy—a®eyl” dx >0, (') Fe,(wp, A4, Q) — O,
On On

(@) | max{d, + [V*wyl,0} dx < max{A, + |[V?u,|, 0} dx + d,,, where d;, — 0 as h — oo.
On O

1

3
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The first claim follows from (3.4). In order to prove claim (b") we use Poincaré’s inequality and
Remark 2.2. We obtain

1 C
-—bf|th—a®empdxs-— Vot 2l + (s 20) = (¥ s z0) — el dx (3T)
Sh Qh 8h le

C 1
< — | Voup(x',zp)l"dx" < C f —W(Vu(x', z)) dx’ — 0,
& Jor o &h

where the last limit follows by (3.4). Similarly, it holds that

[ et dx< e, [ 190 0P + Wou2)f ds
On O
2/p

< Cshf V2 u,(x', zp)|* dx’ + Cey, (f |Vu,(x',z) — a® ey’ dx’ - 0.

Again, as shown for the claim (c), the last two estimates, together with (b") and (3.6), give (¢’). To
prove the last claim we use the estimate

IV2wi (0| < Cllup (X', 21) = (X, z) = cul + IV oun (X, 2)) + [Voun(x', 2

to find that

max{A, + |V?wy|, 0} dx < f max{A, + [V2u,(x', z)l, 0y dx + C | |Veup(x',z4)| dx
() On

le

%
< max{, + |V2u,|, 0} dx + c( IV o un(x’, z1)? dx) )
le Qh

The second summand tends to zero as in (3.7), hence (d’) holds true. Let us define

111
Up, XN<9/1_|_€_hJ 1_’
: 1 -11
Up:=9q v O= L1 <aw <6,

Wh, Xy > 0.

Our claims show that U, — u in W"?(Q, R%) and that we may assume (U, 4;,) € A(y + 6/2) for h
large enough. Since by Lemma 3.3(vi), we have that

, (11
Fsh (uha /lh’ Q X (ga E)) - 09
from our claims it also follows that limy,_,., F,(Uy, 4;) = ®(y). The proof is completed on observing

that the construction above can be repeated on Q" X (—%, 0). O

In the next proposition, which is analogous to [11, Proposition 6.3], we show how to further modify
the construction of the sequence of functions in the previous proposition to enforce periodic boundary
condition in the x” variable.
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Proposition 3.5. Let W : R™Y — [0, 00) satisfy (H1)—(H4) and let y > 0 and § > 0 be given. Then
there exist sequences €5 — 0" and (1S, 3) € A(y + 6) satisfying

u) € W>S(Q,RY), u) - xylain L'(Q, R,

1
Vui = ta ® ey near xy = ii and ui is Q'-periodic for all xy,
lim Fe,(u), 1) = ®(y).

Proof. Fixing ¢ and dropping it from the notation, we are going to show how to proceed as in the proof
of Proposition 6.3 in [11] and show that there exist sequences &, — 0%, v, € W22 RN, RY), 2, < 0 such

that
(o) € Aly +6,20 % (- 2, 2)),
2’2
1

vi(+, xy) is 2Q’-periodic for all xy, Vv, = +a ® ey near xy = ii’

. ’ 11 N-1& .

lim F,, (v, 4,20 x (- 5.5)) =2""'®(),  lim Vi — |xnlaldx = 0. (3.8)

fimseo 22 I Jagrx-1.4)

With (3.8) at hand we can extend v, linearly to 2Q, define u,(x) := %vh(Zx) and complete the proof

noting that
(uha 2/111) € ﬂ('}’ + 6),

b

| =

uy(-, xy) is Q’-periodic for all xy, Vu, = +a ® ey near xy = +

lim F (s, A1) = d(y),

Iim | |u, — |xylaldx = 0.
h—oo 0
In what follows we prove (3.8). A sketch illustrating the notation of the following step 1 of the proof
is given in Figure 1.
X 1

=

3=
N —

X1

Figure 1. Sketch of the construction in Step 1.
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Step 1. We assume that N = 2 and set uy := |x;la. By (3.4) we find sequences &, — 07, (1, 4;) €
A(y +6/2) such that u, — uyin L'(Q,R?), Vu, = +ta®e, near x, = % and limy,_, Fg, (up, Ap) = D(y).
Moreover, we may assume u, € C2(Q, R?): This follows from (H2) and the fact that

fmax{/l + |os * ul, 0} dx — fmax{/l + |u|, 0} dx
Q Q

as € — 0foru € L'(R™, R") which can be shown by an application of the Vitali dominated convergence
theorem (see [4, Exercise 1.18]). We can therefore conclude as in the proof of [11, Proposition 6.2].

Setting

1 1 1 I 11 11
Im = “ AT A — U A~ T A — XA/
(=3 =5+ VG~ .5 X(=3.7)

we have 5
B(y) = lim Fy, (., Ay) > liminf Fy, 0y, 4 Q\L) = D)(1 = =),
—00 —00 m

and therefore
lim sup Fsh (tp> Aps m) < (D(V)_

h—oo
By the compactness result stated in Theorem 3.1 we have u;, — uy in W'?(Q,R?). Therefore, for h
sufficiently large, it holds that

N
Fe,(up, A, Iy) + f mP|Vuy, — Vul? + luy, — ugl dx < O(y)—. (3.9
L m

Let us subdivide (- 3,—3 + =) X (— 3,3) and (3 — =, 2) X (- 3, 3) into k strips of equal width and
order them in pairs. By (3 9) we ﬁnd a pair of strips

11
Ry i = Bhmpes Chmi) X
mk (hkchk)(zz)

_ 11
Rh mk — ( bhmk’ Ch,m,k) X (_E’ 5) )

such that for £ sufficiently large it holds that

o 3
th(uh,/lh,Rh mi Y R mk) + f mP|Vuy, — Vuel? + |uy, — upl dx < O(y)—. (3.10)
R/: m,k UR;,m,k mk

(bh mk+Chmk

In particular we have that, setting Jj, .« : T Chunk)s

2]
f f — W(Vu(x)) + nlV2up (0 + mP|Vup(x) = Vitg(0)l” + () = uo(x)|

L&y
Jhmk :

+ %W(Vuh(—x» + & Vi (=)* + mP|Vuy(=x) = Vug(=x)P + lug(=x) — uo(—2x)| dx
h
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bpmit+Chmnk

and this shows that there exists aj,,x € (bh,m,k, >

) satisfying

1
21
2 2
f 1 ;W(Vuh(ah,m,ka X2)) + enlVoup(apmp, x2)|
_1 &
2

+ mP |Vup(apnmr, x2) = Vuo(anmp, X7 + [up(@nmp. X2) = to(@pmps X2)|

1 2 2
+ ;W(Vuh(_ah,m,ka X2)) + enlVoup(=apmi, x2)|
h

+ mP |Vup(=anmp, X2) = Vio(=appmies X2)IP + [up(=apmp, X2) — to(=ap x> X2)| dx

< 6D(y). (3.11)
Next we modify u, in order to obtain a new function that coincides with u;, near x; = _ah»m,k‘“szk and
with u,(—ay .k, -) near x; = —ay, ., (note that by construction (—aj ;x> —@pnmi + ﬁ) C (=Chmi> =bimi))-

To this end we choose a smooth cut-off function ¢y, : (—%, %) — R such that @, = 1if x; >

~Ahmk + 53> Promk = 01F X1 < =@hmp 1), |0 < €K, |g) (oo < cm?k* and define
Wk (X) 1= Qpmp(X)Up(X) + (1 = @p i (X1)ttn (= apm e X2)-
We have that wy, . € W2>(Q, R%) and VWpmix = £a ® e, near x, = i%. We are going to show that

lim sup lim sup lim sup F,, Wz Ap) < D(y),

h—oo k—o0 m— oo

lim sup lim sup lim sup f Whmi — uoldx =0 and
(¢

h—oo k—o0 m— oo
0
lim sup lim sup lim sup f max{A, + IVzwh,m,kI, 0O}dx <vy+ 7 (3.12)
h—o0 k—o00 m—oo 0

With (3.12) at hand, we can repeat the same modification procedure close to x; = a4 and obtain,
using a diagonal argument, a sequence (wy, A;,) € Ay + 8),w;, € W>*(Q, RY) where w;, = wy(xay, -)

near x; = 1, Vw;, = ta ® e; near x, = £1, w, - up in L'(Q,RY) and F, (wy, 4s) = ®(y). We can

now reflect vfzh with respect to the axis x; = 1, translate it such that it is defined on (=1,1) X (- 1, 1)
and denote it by v,. Using property (H4) of W, we obtain that we have found a sequence of 2Q’-
periodic functions as desired. For later use, we also note that v, € Wi;’o( Rx( - 1,1),R?) if extended
periodically.

In order to show (3.12), we first claim that

1
lim sup lim sup lim sup f —W( VW) dx =0,
.

h— o0 k—o00 m—oo &Ep
h.m.k

lim sup lim sup lim sup f ashlvzw;,,,n,kl2 dx=0 and
.

h—oo k—o0 m—oo ek
lim sup lim sup lim supf Whmix — upldx = 0. (3.13)
h—o0 k—o0 m—oo R

h,m.k

We are going to exploit that, from the very definition of wy,,,x, we have that
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ou
VWi () = @i (X1)Vitn(x) + (1 = @pmic(x1))(0 | a—x”(—ah,m,k, X))
2
+ (up(x1, X2) = (A X2)) ® @), i (X1)e1

and, by assumption (H2), it holds true that W(&) < C(1 + |€]7) < C(1 + 2P~ Vug|? + 2P7'¢ — Vug|P). As
a consequence of that, using (3.9)—(3.11), we get

1 C
f _W(th,m,k) dx < — f 1+ |Vu0|p + vah,m,k - Vl/t()|p dx
R En JR:

h,m.k Sh h h,m.k
C C ) g
< (1+la®el’) + — f Vuty, — Vatol” + [Vug — (o | ﬂ(—ah,m,k,xz)) dx
gpmk en Jr;, | 0x

C
+ — f mP kP luy(x) — wp(—=apmi, X2)|° dx
En

R;J‘Vl,k
C C C 2
< + — IVuy, = Vug|” dx + —— f IV (g — up)(=anmi, x2)I” dx»
exmk g, Jp- exmk J_1 ”
h.m,k 2
CmPkP
+ f 04 (X) = (=i X2)IP 6
8h Rl;,m,k
C 3CD(y) 6CD(y) CmPkP f
< + + - “Whmks Pdx.
ek ek T sk e |un(x) = up(=anmp, X2)I" dx

h,mk

By Holder’s inequality we infer that

Guh

_(Sa XZ)

—Ch,m.k
[ (x) = up(=ap i, X2)I” < (f
_ 8x1

bh,m,k
C —Ch,m.k
<o |
(mk)p_ _bh.m,k

The latter estimate together with (3.10) gives

C —Ch,m.k
f |t (x) = un(=anmp, X2)I” dx < =] f f IV (un — uo)(s, x2)IPds dx
R (mk)p R -

h,m.k hym.k bh,m,k

p
ds)

p C —Ch,m,k
ds < T f IV (= uo)(s, x2)I"ds.

bh,m,k

ﬁuh

B_xI(s’ X2)

<

(3.14)

m2p+ljp+l’

[Vu, — Vul? dx <
(mk)p \th n.k ' ’

which shows the first equation in (3.13). To show the second equation, we remark that, by the very

definition of ¢, 4, in Ry, We have that

2 0u 2
IV Wik (O < C[V2up|” + Cl 5 (=@ 02| + Co* k() = (= s x2)P
ox;
0
+ Cm2k2|Vuh(x) -10 | ﬂ(_ah,m,k’ -x2) |2-
(9x2
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Hence, by (3.10) and (3.11) it follows that

1
Ce 2
2 2 2.2 h 2 2
f enl VWil dx < Cf enlVoupl~dx + P IVup(=apnmp, x2)I” dx;
.

— 1
h,m,k RhA,m,k -2

414 2
+ Comk f n(2) = tn(=tp i %)
B

h.m,k

+ Cem*k? f
.

h.m,k

C
< - + Cem*k? f |t () — tp(—=ap s> X2)|* dx
-

2

0
i dx

Vuy,(x) - (0 | a_xz(_ah,m,k’ Xz))

m

+ Cem’k? f
.

hmk

h,m.k
2

dx.
aXZ x

0
Vuu(x) — (0 | ﬂ(—Clh,m,k, Xz))

We are left with an estimate of the two integral terms in the previous expression. The first can be
estimated noting that Holder’s inequality and (3.14) yield

2/p
2 — 2
fluh(x) — u(=p i, 2)I* dx < IRy, (| P727P {fluh(x) = up(=Ap > X2 dx)
R R

himk h,m.k
2/p
< < - © (3.15)
(mk)(p—z)/P m2p+1 e+l k3

In order to estimate the second term we first observe that the following inequality holds true

auh 2 _ 8I/th émh ﬁuh 2

|Vuh(x) - (0 | 6_x2(_ah,m,k,x2))‘ = a_xl(x) + 8_xz(x) - (a—M(—ah,m,k,xz)

—bhm 82 2
< |Vuu(x) — Vuo()c)l2 + (f “n (s, xz)'ds)
—Chmik axle
1 _bh,m.k
< [Vuy(x) = Vug(x)l* + — f IV2u(s, x2)I*ds.
mk —Ch,m,k

Combining it with (3.10), we find that

I,

h,mk

2

0
Vi (x) - (0 | a—””(—ah,m,k, x2>) dx
X2

1 _bh,m,k
< f Vi, — Vu|* dx + — f f IV2u,,(s, x,)|*ds dx
R, mk R;,m,k Ch,m,k

hmk -
2/p

1 1
_ — p 2,12
< T (fR Vuy — Vgl dx] s j; V2 dx

h,m.k h,m.k
C

< — +—
m3k  g,m3k3
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This completes the proof of the second equation in (3.13). The third equation follows noting that
from (3.15) it holds that

12
! C
f Whmx = upl dx < — (f lun(x) = tp (=G X2)I° dx) <
Ry mk | Jg-

2§52
h,m.k h,m.k

We now prove (3.12). We first observe that from Remark 2.2 it follows that
ﬁuh

p
W( ( ahmk»xz)) < CW(NVup(=apmp, x2)) + C '—( —Qp ks X2)

< CW(Vup(=apnmp» X2))-

Setting J := (—%, —bpmi) X (—%, %), the previous estimate together with (3.11) gives

1
Fo,Whmis Aps I\Rpm i) < f — W(VWh i) + 28| VWi al* dx (3.16)
\Rh m,k

o, 2u & u, ?
<—f h( ks X2) | + En 2( A k> X2)
1 & ox
1 2
C (1 *uy, C
<= — W NVu(=apmp, x2)) + &, ] (s X2)| dx < —.
mJ_1 & ox m

This shows that c
Fo,(Whmis An) < Fe, (up, Any O\I) + Fe, Whnir Ans Ry, ) + -~
which, combined with (3.13), implies the first equation in (3.12). Again by (3.11) it holds that

f [Whm — tol dx Sf |utp, — uol dx + f [Whm — uol dx
o o\J R

h,m.k

1
1 [
+ - fl |un (= jer X2) — uo(x)| dx
-2

C
Sf |Lth - l/t()l dx + f |Wh,m,k - M0| dx + —_,
oV R, m

h,m.k

which, together with (3.13), implies the second equation in (3.12). To show the third equation, we first
note that by the previous inequalities leading to the proof of (3.13), we have that

f VAW mal® dx < ¢ + C—k
.

gimk  m
h,m.k

From that and (3.16) it we get

fmax Ay + |V? Whmil, 0 dx < fIV Whmil dx

‘f;

621/!;,
( A ks X2)

12
12 2 2
+ IR, il [ VWil a’x]

R;m k
Mathematics in Engineering
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C c c\”
< +—
epm (6hm2k2 m? )
This completes the first part of the proof. O

Step 2. For N > 3 one can repeat the argument in Step 1, leading to the definition of the sequence
of functions (w;,) (from which the sequence (u;,) is obtained), in each coordinate direction. We give
here only the main idea (see Step 2 in the proof of Proposition 6.3 [11] for additional details). Starting
from a sequence (1) € W>2(Q,R%), we modify uj, as in Step 1 and obtain, by reflection with respect
to the hyperplane {x; = 1}, the functions w;, € W>*((-1,1) x (-1, H)V™!,R’) that are (-1, 1)-periodic
in x;. The desired sequence (w},) is then obtained repeating the same construction with respect to the
variables xs, ..., xy_1.
We define for y > 0,

. 1
®,(y) := inf {Fy;.(u, 2) : L > 0,u € W*°(Q,R?), Vu = +a ® ey near xy = £, (3.17)
u periodic of period one in X', (u, 1) € A(y)} (3.18)

and
®,(y) := lim ®,(y +9). (3.19)

Proposition 3.6. Let W : R>N — [0, o) satisify (HI)—(H4). Then it holds that D,(y) = O(y).

Proof. From the propositions above it follows that ®, < ®. The other inequality can be shown by an
application of the same rescaling argument we are going to use in the proof of Proposition 4.2, which
allows us to define from an admissible pair (u, 1) for @, an admissible sequence for ®. O

In analogy with [11, Proposition 5.3] if we replace the assumption on the potential (H4) with the
following

W(E) = W(O0,éy), €= (& &) eR™Y, (H5)

we can show that the sequence of functions from Proposition 3.4 can be chosen to depend only on the
xy-variable. More precisely, it holds

Proposition 3.7. Let W : RN — [0, 00) satisfy (H1)—(H3) and (H5) and lety > 0 and § > 0 be given.
Then there exist sequences 82 — 0" and (”Z’ /12) € A(y + 9) satisfying

uy € W(Q,RY),
u) — |xyla in L'(Q,RY),

1
Vui = +a ® ey near xy = ii’
uy, depends only on xy,

lim F,,u, 0) = O(y).

Proof. As in the proof of Proposition 3.5 we obtain the existence of sequences &, — 0%, (u;, A,) €
A(y + 6) and w, € CQ,R?) such that u, — uo in L'(Q,RY), Vu, = +a ® ey near x, = 1 and
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limy, e Fe,(up, An) = ®d(y). Because we have that (xy — u,(0,xy),1) € Ay + ), it is enough to
observe that

1
Fo(up, ) = | —W(Vuy) + &,|Vuul* + &, min{A;, [V2u,|*} dx
0 €h

1
> S—W(O, Oyutn) + 4| V2un(0, xp)I* + &, min{A;, [V2ux(0, xy)I*} dx
0 ©h
= Fsh(uh(oa '), /lh)-

4. T'-convergence

In this section we state and prove the two propositions 4.1 and 4.2, which together imply our I'-
convergence result.

Proposition 4.1 (I-liminf inequality). Let W : R™N — [0, o) satisfies (HI) and (H2), &, — 0%, and
let (uy,) be a sequence in W>2(Q, RY) and Un = prdx be a sequence in M(Q) such that

= 0%, w > uin WHQRY,  w Au e MQ).

Then it holds that
E(u,p) < lihm inf E,, (up, pn)-

Proof. Thanks to Proposition 3.1, up to choosing a subsequence, we may assume that
li{gg}f E.,(uy, pn) = }}I_)Ig E., (un, pp),
Vu, —» Vua.e. and Vu € BV(Q, {A,B}) and
(Sth(Vuh) + &n(IV2unl® + (on — [V2unl)*) LY Ko

To conclude it is enough to show the following claim:

do
dHN-1LS Vu

du
dHN-1LS Yu

We can use Theorem 2.6 together with the Besikovitch differentiation theorem [4, Theorem 2.22]
and [4, Proposition 1.62] to see that for H""'-a.e. xy € Sy, and for all but at most countably many
0 < 1 it holds that

> (D( ) HN1-ae. in Sy,.

§00,,) =0 = lim [ prdx= (@)
- on,é

(o)

O-(ang,J) =0= l}l—{g Eeh(uh,Ph, ng,é) = O-(on,(s),

WN_ILSVM(QxO,(S) =6V

lim #(on,é) — d/.l
5-0+ HNILS Vu(on,(S) dHN-ILS Vu

(x0) =: p,
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lim 0(Qx5) _ do
§-0* HN1.S ¢, (Qrs)  dHN-ILSy

(x0)-

In particular, given r > 0, we have
f pndx < (14216 p,
Qx0,5

(1 + 2r) (X()) = E&‘h(uh’ph’ QXO,6)51_N’

do
dHN-ILS Yu
for all but at most countably many ¢ < 1 and 4 sufficiently large. We define 4, such that

max{A, + [V?u,|, 0} dx = f pndx
on,ri Qx0,5
and consider the following subsequences (if they exist) of (4,) that we do not relabel:

Case 1 (4, satisfies 4, > 0). We have by (4.1) and (4.3),

f IV2up| dx < f prdx < (1+2r)6" 'p.
QXO,6 Q

X(s0

This means that (u,, 0) € A((1 + 2r)p, Q,,s) and we obtain

K Ey, . o1, Q) = T nf Fo, 1, 0, Quy) = B((1 +29p)5" ",

where in the last inequality we have used Lemma 3.3. By (4.2) we obtain that

(1+2r) (x0) = D((1 + 2r)p)

do
dHN-1 Sy,

and, letting r — 07,
do

dHN-1LS Yu
Case 2 (1, satisfies 1, < 0). By (4.3) we have (u;, A,) € A((1 + 2r)p, Q,,s) and, since 4, < 0,

f ppdx < f \V2u,| dx
Qx0,6 Q

X050

(x0) = ©(p).

and we can apply Lemma 2.7 to get
1
Eg,(un, pp, Oxp.6) = f S_W(Vuh) + &Vl + &n(on — Vuyl)* dx
on,z)' h

1
> f —W(Vuy) + &,|Vup|* + &, min{ A2, |V2u,|*} dx
0

X050 Sh

= th(uh’ /lhﬁ on,ﬁ)'

This implies
P}l—{l;lo Eé‘h(uh’ph’ on,é) 2 (D((l + 2r)p)5N_] .

We conclude as in the previous case.

(4.1)

4.2)

4.3)

O
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From now on, we assume that Q is open, bounded, with Lipschitz boundary, and, in addition, we
assume it to be simply connected. We write €, := {(x’, xy) € Q |xy = ¢t} and set

a :=inf{xy : Q,, # 0}, [ :=sup{xy:Q,, #0)}.

We assume moreover that the sets Q,, are connected for any xy € (a, ).
In what follows, given a set A C R" we define As := {x € R" |d(x, A) < ¢}. For the sake of simplicity
we also use the notation €, s := (€, )s-

Proposition 4.2 (I'-limsup inequality). Let W : R™N [0, 00) satisfy (HI)—(H4). Given a measure
1 e MQ) and u € WH(Q,R?Y) with Vu € BV(Q, {A, B)), and given any sequence g, — 07, there exist
sequences (11;) € M(Q) and (u,) € W**(Q, RY) satisfying

pn 5, w, > win WHHQRY),  limsup E,, (un, pn) < E(u, ).

h—oo

Proof. We will prove the statement in several steps. At each step we assume u and yu to be of increasing
generality and provide for them a recovery sequence.

Step A.
Step A.1. We assume that u and u are given by

u(x) = |xyla and g =yxxH" LSy, + B, (4.4)

where y1,8 > 0, xop € Q\Sy, and K C Q is a compact set. Note that in this case there is only one
connected interface, namely Sy, = Qp. We choose & > 0 such that [-4h,4h] C [a,B] and assume

moreover without loss of generality that K = K’ X [ — %, %], with K’ ¢ Q, compact. Given &,5,6 > 0,

thanks to Proposition 3.5, which guarantees in particular that @, < ®, and the very definition of (T)p
and @, we can choose L; > 0 and
(LA € Al +8) N W (Q,RY)
1
Vv! = +a ® ey near xy = ii’ v! periodic of period one in x’

that we assume to be extended periodically in x” such that

FinO A <®,(y; +6) +6 < D(y)) + 0.

We set
8L1v1(€%, —% —a(xy + %), Xy < —‘9—51,
=1 eLVW'(2), eyl < 2L,
eLW! 8%, %) +a(xy — %), xy > ﬂ,
and X
Al = /1—
el!
It holds that
—a®ey, xy< _g_g»
Vi) =4 W), Il < %
eL

a® ey, .XN>7.
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Moreover, by the periodicity of Vv! in the x’-variable, we also have that

1/2 ’
meax{wzzymg,O}dx: f L/z max{'Vzvl(é,xN)‘+ﬂl,0}dedx’

.0t f max{|V*!| + A", 0} dx <y, + 6,
Qg

where the last inequality follows by the assumption on (v!, 1'). We repeat the same construction, up

to replacing the index 1 by 2, for y, := 0 and obtain (72, 12). We choose a smooth cut-off function

@s : Qoas X (—’51, g) — R satisfying

C
@slk = 1. @slay -t ing, = 0> [Ves| < 5

C
V25| < =

and set 7.5 := <p5z; +(1 - <p5)z§. We also choose a smooth cut-off function 5 : Q@ — R satisfying

C
2
Wslogsx-nznzy = 1, Wslavagasx-nzn =0, [Vigs| < 5 Vsl < 2
and set
Ues '= YsZes + (1 — Ys)u.
An example of this situation is shown in Figure 2.
X2
.l e T
2
Qoos X (-4, 8
i) 0,26 ( 2 2)
3 h h
Q5 X (—g, 5)
K
X1
_h]
3
_h]
I

Figure 2. Sketch of the construction in Step A.1.

We claim that, uniformly with respect to 4,

lim lim |lu.s — ullyrpqrey = 0.

-0 e—-0*
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To prove the claim we first observe that
\Vits — Vul < |Vipsllzes — ul + [Vzes — Vul.

Since for |xy| > max{k T’ 7} 1t holds that Vz = Vzﬁ = Vu, for such x we have that Vz.5 — Vu =

Vs(zL — 72) and, recalling that v! and v? are bounded in L*, it follows that

C
Vugs — Vul < [Visllzes — ul + |Vzes — Vul = |Vigsllzes — ul + IV(;D(S(Zé - Z§)| < gb‘-

In the set {5 = 1} it holds

C
Vites = Vul < [Vsl(lzs] + 122) + V2l + V22| < 58+C

and on {¢; = 0} it holds

|Vl/t8§ - Vul =
Without loss of generality we may assume that max 2 , 852} < %, which implies that ¢; is constant on
{lxn| < max{T, %}} {0 < ¢s < 1} and we have

C
Vs — Vul < [Vsl(lzLl + 122]) + |Vz| + [VZ2] < Fi C.
It follows

C C
f Vu.s — Vull dx < —&? + |—e+ C
o S 2

P L' el?
max{g— £ }WN '(Q0.26)-

Since v‘l’g € L™, it holds that ||z;”* — ull < Ce and the claim follows.
We define a sequence of measures converging to u. We set u! := pl £V, where

max{|V?z,| + 4,,0}, IxNI <%

s +6 = [, max{({V3![+2,0)), % < |xN| <Lt e,
\/‘53”’ DS Bgﬁ (-XO)’

0, otherwise.

pa(x) =

We have that ,ué 2y +0)HN LS v +6,,: For any open cylinder Q cc Qofthe type Q= 'x(b,c)
with b < 0 < ¢ we have, by the periodicity of Vv!, that

eL! /2
f)(@d,u}g = f max{lezél +A%,0}) dx
o 5

—eLl)2

(eL!/2)+ Ve
f ()/1 +6 - fmax (V3! + A%, 0 0}) dx + By a(xo)

L'/2
X

1/2
— V2 1 ,
I ; f m{ v(ng )

+ HN Q) +6 - f max{|V?v'| + 2, 0}) + Byq(x0)
0

+al,0} dx
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gm0+ ﬂN_l(Q')(% +96) + Bxalxo) = WN_I(SVM N Q)()’l +96) + Bxa(xo).

If instead O ¢ (b, ¢) we have that
f Xadi: — Bra(xo).
Q

To obtain the claimed weak* convergence it is enough to recall that compactly supported continuous
functions can be approximated uniformly by piecewise constant functions on cylinders of the type of
Q. Finally, one can analogously define p? for y, := 0. Eventually, setting p,s := @sp! + (1 — @s)p? and
Hes = p8,5~£N we get

Heo Fesor 05yt + OYHN LS vy + By

which implies that limz_,q+ limg_,o+ lim,_,o+ pg,(;.EN = u with respect to the weak* convergence. Let
us observe that in particular g s(€2) is uniformly bounded in &,6 and that the bound decreases for
decreasing 6. Next we claim that

lim sup lim sup lim sup E.(u. s, pes) < E(u, p1).
d—0+ 6—0* e—0*
We have that
V2t < [V2sllzes — ul + 2V05lVzes — Vul + [V 2,4].

. 1 2
Since for |xy| > max{Z- -

obtain

} it holds that Vz! = Vz2 = Vu, for such x and for § sufficiently small we

|V2M&5| < ES'
In the set {; = 1} N {0 < @5 < 1}, recalling that v'> € W?*(Q,R%), for § sufficiently small, it holds

2 2 2 1 2 1 2 2.1 2.2
IVoug sl = [Vozesl < IVopsllze — 22l + 2IVsllVz, — Vz | + [Vz, | + [V

On {5 = 1} N {ps = 1} it holds
Vitzs — Vul = [Vzi| < C,  Viugs = V’z,

and similarly on {y/s = 1} N {ps = 0}. On {Ys = 0} it holds Vu, s = Vu, hence

VU6l = 0.
In the next estimates we may assume that max {‘9—51, %} < % As a result, ¢; is constant on {|xy| <
max{g—gl, %}} N {0 < s < 1}, hence

V2ue sl < IVsllzes — ul + 21Vl V205 = Vil + V72
C c C _C ¢
<Sg+—+—< S+ —
2 0 & 6 ¢
for ¢ sufficiently small. As a consequence of the previous estimates, setting

1 2 1 1

L
Jo 1= (bl > max( -, o)) and K, o= (- < bl < 5=+ V&),
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we get
1
f —|Vues — Vul’ + &lViugs* + &(pes — V7 50)* dx
onJ, €
C C 1 N 2
<—e 43+ 2gf (— ()q +6— fmax{levll + 11,0})) dx
or g ank, \2 Ve 0
1 . 2
+2eB° +2¢ f (— (yz +6— f max{|V*V?| +/12,0})) dx
onk, \2 Ve 0
C C
— -1 3 2
<&+ e +28B% + C Ve,
1
f —Vites — Vul” + elV:ugs* + £(pes — V71 51)* dx
Ws=1}n{0<gs<1}inJs €
L' el? 1/C P C C\?
< K(g\K N {|XN| < max{%, 87}} (; (ES - C) + 38(6— + E) )
eL! el? 2
+2¢ Me.s K(;\K N |XN| < max T, 7
1/C P C C\?
< max{eL', eL*}6" | - (—8 - C) + 38(— + —) +&C
e\d 02 ¢
and

1
f —IVites = Vul? + £lV2ug s> + &(pes — |Vussl)* dx < £C.
{v5=0}

Moreover, recalling that we have assumed that max {%, ‘“’TLZ} <

WIS

, we also get
1
f ~Vites = Vul” + VU 5* + (o5 — |V 1 s])* dx
{O<ys<1INJ,
el' el? el' el? 1/C P C C\
€025\ 80,) X (‘ ma"{? 7}’“‘“{7 7}) (; (38 * C) * 38(5—2 * z) )
eL! el? eL! el? 2
26 (11,5 [ 025\ - = =4 il
1/C p C C\
< HY (Q25\ Qo) max{sL', s} (— (Es t c) t 3g(§ ; —) ) +eC.

E E

<

Choosing n = +a ® ey in Remark 2.2 we observe that
W) < Clmin{é —a® ey, & +aQ ey’
which, together with the above estimates, implies that

lim sup lim sup E;(utz.5, Pes, Q\ W5 = 1} N ({5 = 0} U {5 = 1})) = 0. (4.5)

-0+ -0t
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We are left to estimate the energy on the set {5 = 1} N ({¢s = 0} U {¢s = 1}). To this end, without loss
of generality we may suppose that xy ¢ {|xy| < %} and 6 < C. We have that

Es(uss, oo Ws = 1} N{ps = 1))

1
< f L WVites) + 61V s + 600 — [VutesP) dx
Ks €

1
—W(Vz}) + elVzL] + £(pes — [V72L)* dix

Ks

1
- f —W(Vz)) + | VZzL|* + e(max{|V?z}| + AL, 0} — [V?z))? dx
Ksnilxyl<2Lt) €

2
+f ( ( Yi+6— fmax (V3! + A%, 0 )) dx + VeByk(xo)
Ksn{ L 2= <\xN|< 5= +\f} 2\/_
< f —W(Vz;) + e(min{|V?Z!? + (1), 2|V} P} dx + C e
KsO{lxnl<55-}

sy &
2
X x
vyl Ty XN V! Ty XN
eL eL

¢ 1
= f LIW/(VV1 ( Xl,XN)) + —lmln
Kx-3\ - \EL L
glggl E(ts5, pes. W5 = 1} 0 {ps = 1) < HYVHKDFn (', A < HYHEKD(@(y) + ).

+ (12,2

2
}dx+C\/E.

Using the periodicity of Vv! in the estimate above we get

An analogous argument leads to the estimate of the energy on the set {5 = 1} N {¢s = 0}, namely
Bim Eo(upp. pes s = 1} N {ps = 0 < HY 1 (Qo26\K' ) D(y1) + D).
The last two inequalities together with (4.5) imply that

lim lim hm E (uss,pes) < E(u, ).
550+ 60" &

Using a diagonal argument, we have shown the assertion of the theorem if u and y are as in (4.4).

Step A.2. We consider the case of finitely many interfaces, namely Sy, = U)_,Q,,, and

u= Z YiXk + Z Bidx,,  vi.Pi = 0,K; C Sy, compact and pairwise disjoint, x; € Q\Sy,.
i=0 i=0

By Theorem 2.6, we can suppose that near an interface €Q;,, u takes the form

Sho
u(x) = %|x, — syl + ¢y

Therefore, we can (up to adding constants) apply Step A.l to obtain a recovery sequence near the
interface Q;, for any summand in the definition of u. Since this construction is local and the sets €,
as well as the sets K; and {x;} have positive distance from each other, these local constructions can be
glued to give a recovery sequence for u near Q;, and then also for u, u in Q. We leave the details to the
reader.
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Step A.3. We now consider the case of infinitely many interfaces, namely Sy, = U;7 €Q,, and we let
4 be a finite sum of terms as in Step A.2. As in the proof of [11, Theorem 5.5, Step 2], only @ and
[ can be accumulation points of the sequence (s;) (otherwise one could find a cylinder Z c Q with
axis in direction of ey that intersects infinitely many of the €;,, and this would contradict the fact that
Do ﬁN‘l(Qsh) < 00). We can choose a decreasing sequence 6, — 0* such that {a+0, B—}N{sp}, = 0
and such that supp(u) CC {a + 6x < xy < 8 — 9;} for all k. Then it follows that u has only finitely many
interfaces in
Ui :=Qﬁ{a/+(5k<xN <ﬁ—6k}.

Therefore, we can apply Step A.2 and find for any given sequence &, — 0" sequences (u} ), and (i)
such that

lim uf = uin WH(Q, Uy,  wy Epin Q, lim E,,(uy, w, Uy) < E(u, 1, Up), (4.6)

h— o0

where we used that supp(u) cC Uy and that therefore the sequences p;, which approximate u in Step A.2
can be chosen in such a way that they not depend on k. By construction it holds

Esh(u]é’ Mhs Uk) = Esh(ul;p Mhs Q)
which implies by (4.6) that

lim lim E,,(uy, i, Q) < lim E(u, 1, Uy) < E(u, p, Q). (4.7)

k—oo h—

k(

The existence of a subsequence u, " with the desired properties follows by a diagonal argument.

Step B. Now we assume that g is a finite positive Radon measure. It holds

du 1 N-1
<gi=———-¢€L s .
0<g dHT S, €L (Svui, H™)

We observe that there exist functions
ny.
gk = Z VXK, » K,;,i C Sy, compact, pairwise disjoint
i=0 '
which satisfy

lim g, = g in L‘(SVM,WN“),I}im HY '({gx < gh) = 0.

my

By the boundedness of u, we find measures .7, Bx.0.,, supported outside Sy, such that

my
D Brid, Sp—gH ' S,

i=0
It follows that
my
Mk = gkq_{N_ll—SVu + Zﬂk,idxk,,' i\ﬂ
i=0
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Since the I'-lim sup is lower semicontinuous and @ is non-increasing and bounded, we can use the
result of Step A to obtain

I-limsup,_,., Eg, (4, 1) < likm_glf I-limsup,_,., Ee, (U, 1)
< lim inf E(u, p) = lim inf fg D (g )dH"!
< liminf [ QG)H"! +C lim HY gy < g)) = Elup)
for any sequence &, — 0*. This concludes the proof of the theorem. O
5. Conclusions

We investigated a family of Cahn-Hilliard type energies for gradient vector fields with a double-
well potential W having two rank-one connected wells A and B, supplemented by an additional term
modeling the interaction with a surfactant density.

We proved the I'-convergence of these functionals to a limit energy E(u, u), finite for deformations
u with Vu € BV (€, {A, B}) and for surfactant measures u. The limit energy is of perimeter type and
can be expressed as

du N-1
E = O|—r—|d
(u, 1) j;vu (d?-(N"LSVu) HY,

where @ is a nonincreasing surface tension density determined through an asymptotic cell problem.

The liminf inequality follows by the blow-up method, while the lim sup construction exploits the
fact that the asymptotic problem defining @ can be restricted to classes of functions with additional
regularity and periodicity.

From a modeling perspective, our I'-convergence result shows that phase transitions are promoted
in regions where surfactant accumulates. This mechanism is fully consistent with the scalar fluid-
fluid case introduced by Perkins, Sekerka, Warren and Langer and considered in [19], and provides
a rigorous variational analysis of surfactant-driven solid-solid transitions. In this sense, our result
extends the classical gradient theory of phase transitions in presence of surfactant to a vectorial setting,
contributing to the mathematical understanding of phenomena relevant, for instance, in crystal growth,
metallurgy, and ceramics processing.
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