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Abstract: We investigate the influence of surfactants on stabilizing the formation of interfaces in solid-
solid phase transitions. The analysis focuses on singularly perturbed van der Waals-Cahn-Hillard-type
energies for gradient vector fields, supplemented with a term that accounts for the interaction between
the surfactant and the solid. Assuming the potential term to have only two rank-1 connected wells, we
prove that the effective energy for the formation of an interface decreases when the surfactant segregate
to the interface.
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1. Introduction

Surfactants (surface active agents) play a pivotal role in influencing phase transitions. In essence,
the primary mechanism driving these effects is the adsorption of surface active molecules onto phase
interfaces. This adsorption alters the surface tension, by decreasing the energy penalty associated
with the different chemical environments of the different phases. Consequently surfactants exert a
profound influence on the stability and morphology of the physical system. The capacity of surfactants
to modulate phase transitions has found practical applications in various fields both in fluid-fluid
and in solid-solid phase transitions. In the case of solid-solid transitions we refer to [24], where
manganese in an iron-manganese alloy is used as surfactant which favours the formation of transition
layers between singular martensite crystals resulting in modified mechanical properties of the material.
Other examples are provided by crystal growth, metallurgy, and ceramics processing (see [21] and the
references therein).

In this paper we introduce a phase transition model in presence of surfactant working within the
framework of the gradient theory of phase transition. More specifically we modify the easiest phase-
field model for solid-solid transition introduced in [11] in order to account for the interaction between
the surfactant and the solid. The model we introduce draws inspiration from the one proposed by
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Perkins, Sekerka, Warren and Langer for fluid-fluid transitions and analyzed in [19] (see also [1, 5,14]
for some extension to more general models of fluid-fluid or multiphase-fluid-fluid phase transitions
in presence of surfactants). To fix the ideas, in what follows we first present the latter model. Such a
model, motivated by the investigation on foam stability, is a modification of the classical van der Waals-
Cahn-Hillard energy functional. More specifically, an integral term accounting for the fluid-surfactant
interaction is added to the classical Cahn-Hillard functional, as explained in detail below.

In a given open and bounded set Ω ⊂ RN (the region occupied by the fluid and the surfactant), one
considers a scalar function u : Ω → R and a non-negative function ρ : Ω → [0,+∞) representing
the order parameter of the fluid and the density of the surfactant, respectively. As ε → 0 one is
interested in the asymptotic behaviour of the singularly perturbed sequence of energy functionals Eε :
W1,2(Ω) ×M(Ω)→ [0,+∞) defined as

Eε(u, µ) :=
∫
Ω

1
ε

W(u) + ε|∇u|2 + ε(ρ − |∇u|)2 dx, (1.1)

where µ = ρLN denotes the surfactant measure and W : R → [0,+∞) is a double-well potential with
wells {u : W(u) = 0} = {0, 1}. The first two terms in the energy define the usual Cahn-Hillard energy
functional, namely

CHε(u) =

∫
Ω

1
ε

W(u) + ε|∇u|2 dx,

which models the energy cost of a phase separation phenomenon in a two-component immiscible
fluid. In few words, within this theory, also known as the gradient theory of phase transitions, the
phase separation phenomenon corresponds to the transition from the value 0 to the value 1 of the
order parameter u which represents the local concentration of one of the components of the fluid. The
variational limit in the sense of Γ-convergence (see [8, 15]) of the Cahn-Hillard functional as ε → 0
has been considered by Modica and Mortola in [22, 23] (see also [6, 20] for analogous results about
the asymptotic behaviour of the Cahn-Hillard functional in the case of vector valued order parameters).
In [22], it is proved the pre-compactness in BV(Ω; {0, 1}) of sequences of phase-fields uε with uniformly
bounded energy and it is computed the Γ-limit of CHε as ε → 0 with respect to the L1 convergence.
Roughly speaking, the limit u of a converging subsequence of uε will take only the values 0 and 1,
partitioning Ω in the two sets {u = 0} and {u = 1} (the two immiscible phases of the fluid) whose
common boundary (the phase interface) will correspond to the jump set S u of the function u. Since u
is of bounded variation, the latter set will have finite HN−1-measure. Up to a multiplicative constant
depending on the shape of W the effective asymptotic energy of the system, captured by the Γ-limit
of CHε, will be proportional to such a perimeter measure. Hence, if we fix the measure of the set
{uε = 0} to be strictly smaller than the measure of Ω, both phases will be non empty and the minimal
Cahn-Hillard energy as ε → 0 will correspond to the partition of Ω in the two sets having the least
perimeter of the common boundary. Such an energy will be achieved along a sequence uε of phase
fields with ∇uε concentrating on S u. In this perspective, one can understand the role of the additional
third term in Eε(u, µ) which is responsible for the interaction between the surfactant and the fluid. The
presence of the additional term will modify the minimizers of CHε described above enhancing the
phase separation phenomenon to happen in the regions where the surfactant is present. In fact, the
last integral term in (1.1) is minimized if ρε = ∇uε, which corresponds to the situation in which both
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the surfactant measure µε = ρεL
N and the approximating phase interface {∇uε ' 1

ε
} are concentrating

on the same (N − 1)-dimensional set. As explained in [19] the scaling factor ε multiplying the third
integral is chosen in order to observe the effect of this concentration in the asymptotic limit energy.
In fact in [19] the authors have proven that, carrying out the Γ-limit of Eε with respect to the strong
L1 convergence of the phase fields and the weak∗-convergence of the surfactant measures, one obtains
a limit functional finite for u ∈ BV(Ω, {0, 1}) and µ ∈ M(Ω) (the space of positive Radon measures)
where it takes the form

E(u, µ) :=
∫

S u∩Ω

Ψ

(
dµ

dHN-1xS u

)
dHN-1 . (1.2)

Here Ψ : [0,+∞) → [0,+∞) is a decreasing function of the relative density of the surfactant measure
with respect to the surface measure of the interface. In other words, according to the limit energy
functional, the surface tension between the phases {u = 0} and {u = 1} can be lowered increasing the
surfactant density on the interface, a phenomenon that characterizes surface active agents as already
recalled at the beginning of this section. It is worth mentioning that in [2, 3] such a limit energy
has been obtained via a variational discrete-to-continuum coarse-graining procedure starting from the
microscopic Blume-Emery-Griffiths ternary surfactant model.

In this paper we are interested in extending the results above to the framework of solid-solid phase
transition models. Unlike the fluid-fluid ones already introduced, these transitions, and the variational
energy models leading to the associated phase separation phenomena, are vectorial problems. The
energy functionals we are interested in will be obtained by adding a surfactant-solid interaction term
to the functionals Hε : W2,2(Ω;Rd) defined as

Hε(u) :=
∫
Ω

1
ε

W(∇u) + ε|∇2u|2 dx. (1.3)

The latter functionals, which are the analogue for gradient vector fields of the Cahn-Hillard functionals
CHε mentioned before, commonly arise as higher-order regularizations of non-convex stored energy
functional in elasticity as those considered in the seminal paper [7]. Their Γ-convergence as ε→ 0 has
been carried out in [11] assuming the wells of W to be rank-1 connected; i.e.,

{W = 0} = {A, B}, with A − B = a ⊗ ν, for some a ∈ Rd, ν ∈ SN−1. (1.4)

For further generalizations allowing for frame invariant potentials W, see [12, 13, 17] (the reader
interested in vector valued singularly perturbed problems with higher order gradients regularizations
would also find interesting the results obtained in [9, 10, 16, 18]). Under additional assumptions on W
and Ω, satisfied in particular by prototypical quadratic potentials as W(ξ) = min{|ξ − A|2, |ξ − B|2} and
by regular convex domains Ω, the authors of [11] compute the Γ-limit of Hε and prove that the latter
is given by a functional H finite on those u ∈ W1,1(Ω;Rd) with ∇u ∈ BV(Ω; {A, B}). On this set of
functions H(u) takes the form

H(u) = K · HN-1(S ∇u ∩Ω), (1.5)

where the constant K > 0 is obtained by solving an asymptotic cell-problem formula.
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In the present paper we are going to investigate functionals defined on functions u ∈ W2,2(Ω,Rd)
and measures µ = ρLN of the form

Eε(u, µ) :=
∫
Ω

1
ε

W(∇u) + ε|∇2u|2 + ε(ρ − |∇2u|)2 dx. (1.6)

The main result of this paper is stated in Theorem 2.3 in which we compute, under the same
assumptions on W (w.l.o.g. we assume that in (1.4) ν = eN) and Ω as those considered in [11]
(see Section 2.2 for details), the Γ-limit of Eε(u, µ) with respect to the strong W1,p convergence
of the deformations u and the weak∗-convergence of the surfactant measures µ. We have that
Γ- limε→0+ Eε(u, µ) = E(u, µ) where E(u, µ) is a functional finite on those functions u ∈ W1,p(Ω;Rd)
such that ∇u ∈ (Ω; {A, B}) on which it takes the form

E(u, µ) =

∫
S ∇u∩Ω

Φ

(
dµ

dHN-1xS ∇u

)
dHN-1 . (1.7)

The surface tension Φ above is a nonnegative nonincreasing function given by an asymptotic formula
(see Definition 3.2). Roughly speaking Φ(γ) can be interpreted as the effective energy per unit HN-1-
measure associated to the phase separation induced by the deformation u : Q→ Rd with

∇u(x) =

−a ⊗ eN , xN < 0,
a ⊗ eN , xN > 0

and in presence of the surfactant measure

µ := γHN-1x{xN = 0}.

In order to prove our main result, we first need to show that Φ can be obtained restricting the class of
admissible functions in the asymptotic formula to those sharing additional regularity and periodicity
assumption as in (3.17). To this end we need to combine some of the arguments in [11, 19], the latter
modified to fit in the present vectorial case. Such characterization allows us to compute the Γ-limit
on functions with fixed boundary conditions that are periodic in direction of the phase separation.
The proof of the Γ- lim inf-inequality (Proposition 4.1) is then obtained by a blow-up technique near
the interfaces of u. The proof of the Γ-limsup inequality (Proposition 4.2) makes use of a density
argument which reduces the construction of a recovery sequence for a generic pair (u, µ) to the case of
deformations with a single interface and to constant surfactant densities.

2. Notation, statement of the main result and preliminaries

2.1. General notation

Let Ω ⊂ RN be a bounded, open set with Lipschitz boundary. We denote by LN and HN−1 the
N-dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff measure in RN , respectively.
We use the notation |U | :=

∫
U

dx := LN(U). We denote by M(Ω) the space of non negative Radon
measures finite on Ω. We set Qx0,δ := (x0 − δ, x0 + δ)N and we use the notation Q := Q0, 1

2
for the

unitary open cube in RN centred at the origin. Given x ∈ RN we label the first (N − 1)-coordinates
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as x′ and the last coordinate as xN and we write x = (x′, xN). We also set Q′ =
(
− 1

2 ,
1
2

)N−1, hence
Q = Q′ ×

(
− 1

2 ,
1
2

)
. Given a function u : Q → Rd such that for all xN ∈

(
− 1

2 ,
1
2

)
it holds that u(·, xN)

is Q′-periodic, we say that u is Q′-periodic in x′. Given a function u ∈ L1(Ω,Rd), we denote by S u

the approximate discontinuity set of u, i.e., the set of those points x ∈ Ω for which no z ∈ Rd exists
such that limr→0+ |Br(x)|−1

∫
Br(x)
|u(y) − z|dy = 0 holds. We denote by BV(Ω) the set of functions of

bounded variation in Ω. We say that a measurable set E ⊂ RN is a set of finite perimeter in Ω if
χE ∈ BV(Ω). Denoting by P(E,Ω) the De Giorgi’s perimeter in Ω of E, if E is a set of finite perimeter
we also write that P(E,Ω) = HN−1(∂∗E ∩ Ω) < +∞ where ∂∗E stands for the reduced boundary of E.
If u ∈ BV(Ω; {a, b}) is a function of bounded variation in Ω taking only the two values a, b ∈ Rd, the
(N − 1)-Hausdorff measure of S u equals the perimeter of the level set {u = a} (and {u = b}) in Ω or in
formulaHN-1(S u) = P({u = a},Ω). For all properties of functions of bounded variations and of sets of
finite perimeter needed in this paper we refer the reader to [4]. Finally we set SN−1 := {x ∈ RN : |x| = 1}
and we denote by c and C generic real positive constants that may vary from line to line and expression
to expression within the same formula.

2.2. The main result

In this section we introduce the energy functional we are interested in and state our main theorems.
For ε > 0 we consider the functional Eε : W1,1(Ω;Rd) ×M(Ω) ×A(Ω)→ [0,+∞] defined as

Eε(u, µ,U) :=


∫
U

1
ε
W(∇u) + ε|∇2u|2 + ε(ρ − |∇2u|)2 dx, if u ∈ W2,2(Ω;Rd), µ = ρ dx,

+∞, otherwise in W1,1(Ω;Rd) ×M(Ω).
(2.1)

With a little abuse of notation we will also introduce the functional Eε(u, µ) : W1,1(Ω;Rd) ×M(Ω) →
[0,+∞] defined as

Eε(u, µ) := Eε(u, µ,Ω).

The asymptotic analysis as ε→ 0 of the functional Eε(u, µ) will be carried over in the ambiance space
W1,1(Ω) × M(Ω) endowed with the convergence τ1 × τ2 where τ1 denotes the strong convergence in
W1,1(Ω;Rd), while τ2 denotes the weak*-convergence in the space of non-negative bounded Radon
measuresM(Ω).

On the potential W : Rd×N → [0,∞) we make the following set of assumptions:

W is continuous, W(ξ) = 0 if and only if ξ ∈ {A, B}, (H1)
where A − B = a ⊗ ν, for some a ∈ Rd, ν ∈ SN−1.

1
C
|ξ|p −C ≤ W(ξ) ≤ C(|ξ|p + 1) for some C > 1, p ≥ 2. (H2)

c|ξ − A|p ≤ W(ξ) ≤ C|ξ − A|p, |ξ − A| ≤ ρ, (H3)
c|ξ − B|p ≤ W(ξ) ≤ C|ξ − B|p, |ξ − B| ≤ ρ,

for some ρ > 0 and p ≥ 2.

W(ξ1, . . . , ξi, . . . , ξN) = W(ξ1, . . . ,−ξi, . . . , ξN), i = 1, . . . ,N. (H4)

Mathematics in Engineering Volume 7, Issue 4, 522–552.



527

Remark 2.1. We observe that assumption (H1) together with the control from below in (H2) for p > 1
would suffice to obtain the forthcoming compactness and liminf inequality statements.

Remark 2.2. The following control on the potential energy W is proven in [11, Remark 6.1].
From (H2) and (H3), there exist C1,C2 > 0 such that

C1|ξ
′|p ≤ W(ξ) ≤ C2(W(η) + |ξ − η|p)

holds for all ξ, η ∈ Rd×N .

The following two theorems are the main result of this article. Note that a corresponding
compactness statement is given in Proposition 3.1.

Theorem 2.3. Let Eε be as in (1.6), where W : RN×d → [0,∞) is a continuous double-well potential as
in (1.4) that satisfies growth conditions as in (H1)–(H3) and is even as in (H4). If the domain Ω ⊂ RN

is open, bounded, has a Lipschitz boundary, is simply connected and for all t ∈ R it holds that the
section {(x1, . . . xN) ∈ Ω : xN = t} is connected, then in the space W1,1(Ω,Rd) ×M(Ω) it holds that

Γ- limε→0+ Eε(u, µ) = E(u, µ).

Here, we have written

E(u, µ) :=


∫

S ∇u
Φ

(
dµ

dHN-1xS ∇u

)
, ∇u ∈ BV(Ω, {A, B}),

+∞, otherwise in W1,1(Ω;Rd) ×M(Ω),
(2.2)

with Φ a nonnegative nonincreasing function as in (3.1).

Proof. The proof follows from Propositions 4.1 and 4.2. �

Theorem 2.4. Let Eε be as in (1.6), where W : RN×d → [0,∞) is a continuous double-well potential
as in (1.4) that satisfies growth conditions as in (H1)–(H3) and (H5). If the domain Ω ⊂ RN is open,
bounded, has a Lipschitz boundary, is simply connected and for all t ∈ R it holds that the section
{(x1, . . . xN) ∈ Ω : xN = t} is connected, then in the space W1,1(Ω,Rd) ×M(Ω) it holds that

Γ- limε→0+ Eε(u, µ) = E(u, µ),

where E(u, µ) is given in (2.2). The surface tension Φ in Definition 3.2 is obtained further restricting
the admissible set of functions in the cell-problem formula to one-dimensional profiles uh(x) = uh(xN).

Proof. The proof of the statement follows from the proof of Theorem 2.3 taking into account
Proposition 3.7. �

Remark 2.5. Note that for potentials that do not satisfy (H5) Proposition 3.7, and hence Theorem 2.4,
are false as shown in [11, Section 8].
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2.3. Preliminaries

In what follows we will often make use of the following straightforward identity:

min{λ2 + w2, 2w2} = w2 + (max{λ + w, 0} − w)2 for all λ ≤ 0,w ≥ 0. (2.3)

The next theorem is proved in [11, Theorem 3.3].

Theorem 2.6. Let u ∈ W1,1(Ω,Rd) be such that ∇u ∈ BV(Ω, {A, B}) with A − B = a ⊗ ν, for some a ∈
Rd, ν ∈ SN−1. Then u has the form

u(x′, xN) = γ0 + axN − 2ψ(x)a

for some γ0 ∈ R
d such that γ0 · a = 0 and for some ψ ∈ W1,∞(Ω,Rd) such that ∇ψ(x) = χE(x)eN . The

set E ⊆ Ω has P(E,Ω) < ∞ and moreover

∂∗E =

∞⋃
i=1

Ωi × {ti}

with Ωi ⊂ R
N−1 connected, open and bounded and ti ∈ R. If in addition for each t ∈ R the set

{(x′, xN) ∈ Ω | xN = t} is connected, then ψ depends only on xN .

The following lemma is proved in [19, Lemma 3.2].

Lemma 2.7. Assume that (X, µ) is a measure space with µ a non-atomic positive measure. Let g : X →
[0,∞) ∈ L1(X, µ) ∩ L2(X, µ) and 0 < γ ≤

∫
X

g dµ be given. Then, for all v ≥ 0 with
∫

X
v dµ = γ it holds

true that ∫
X
(v − g)2 dµ ≥

∫
X
(max{λ + g, 0} − g)2 dµ =

∫
X

min{λ2, g2} dµ,

where λ ∈ (−∞, 0] satisfies
∫

X
max{λ + g, 0} dµ = γ.

3. Compactness and characterization of the asymptotic surface tension

In this section we prove the compactness statement for sequences uh and µh = ρh dx with
equibounded energy Eεh(uh.ρh). We moreover introduce the effective asymptotic (as εh → 0) surface
tension of the energy functional given by the variational limit of Eεh and provide some useful
characterization of it. For simplicity of notation and without loss of generality from now on we will
assume in (H1) that A = −B = a ⊗ eN .

3.1. Compactness

In what follows we state the main compactness result for our functionals. It is a direct consequence
of [11, Theorem 3.1]. In all our analysis εh denotes a sequence of positive numbers vanishing as
h→ +∞.

Proposition 3.1 (Compactness). Let W : Rd×N → [0,∞) satisfy assumptions (H1) and (H2), εh → 0+,
(uh) be a sequence in W2,2(Ω,Rd) and µh = ρh dx be a sequence inM(Ω) such that

sup
h

Eεh(uh, ρh) < ∞ and sup
h
µh(Ω) < ∞.
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Then there exist subsequences (uhk), (ρhk) and u ∈ W1,p(Ω,Rd) with ∇u ∈ BV(Ω, {A, B}) and µ ∈ M(Ω)
such that

uhk −
1
|Ω|

∫
Ω

uhk dx→ u in W1,p(Ω,Rd) and µhk ⇀
∗ µ as k → +∞.

Proof. The convergence of a subsequence of (uh) follows as in [11, Remark 3.2 (ii)]. In fact we can
apply the proof of [11, Theorem 3.1] to find a subsequence uhk → u in W1,1(Ω,Rd). By assumption (H2)
there exists L > 0 such that W(ξ) ≥ c|ξ|p for p ≥ 2 and for all ξ satisfying |ξ| ≥ L and therefore

c
∫
{|∇uhk |≥L}

|∇uhk |
p dx ≤

∫
Ω

W(∇uhk) dx→ 0.

If follows ∫
{|∇uhk |≥L}

|∇uhk − ∇u|p dx→ 0

and together with∫
{|∇uhk |≤L}

|∇uhk − ∇u|p dx ≤ (L + |A| + |B|)p−1
∫

Ω

|∇uhk − ∇u| dx→ 0,

it implies the convergence of uhk in W1,p(Ω,Rd). The convergence of a subsequence of (µh) in the
weak∗-topology is a consequence of the weak∗-compactness ofM(Ω). �

In what follows we define the lower semicontinuous envelope of our energy functional on a
restricted class of admissible functions. In Section 4, we are going to prove that this lower bound
is actually our Γ-liminf functional.

We start by introducing a notation. For every open subset U ⊂ Ω we define

Fε(u, λ,U) :=
∫

U

1
ε

W(∇u) + ε|∇2u|2 + εmin{λ2, |∇2u|2} dx.

In the case U = Q (the unitary cube in RN centred at the origin) the notation above will be shortened
and we will use Fε(u, λ) := Fε(u, λ,Q).

Definition 3.2. For γ ≥ 0, k > 0 and ω ⊂ RN−1 a bounded open set withHN−1(∂ω) = 0 we define

F(γ, ω × (−k, k)) := inf
{

lim inf
h→∞

Fεh(uh, λh, ω × (−k, k)) : uh → |xN |a, (uh, λh) ∈ A(γ, ω × (−k, k))
}
,

where we have used the notationA(γ, ω × (−k, k)) for the set of admissible functions defined as

A(γ, ω × (−k, k)) :=
{
(u, λ) ∈ W2,2(Q,Rd) × (−∞, 0] |

∫
ω×(−k,k)

max{λ + |∇2u|, 0} dx ≤ γHN−1(ω)
}
.

In order to shorten the notation we also set

A(γ) := A(γ,Q), Φ̃(γ) := F(γ,Q), and Φ(γ) := lim
δ→0+

Φ̃(γ + δ) (3.1)

and we observe that since Φ̃ is non-increasing, the function Φ is well-defined.
The following lemma, whose proof we omit, can be proved as in [11, Lemma 4.3], the only care

being that the rescaling argument used to show assertion (iv) now makes use of the admissible sequence
(αun( x

α
), λn

α
).
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Lemma 3.3. For γ ≥ 0 fixed, it holds

(i) F(γ, x′ + ω × (−k, k)) = F(γ, ω × (−k, k)) for all x′ ∈ RN−1;
(ii) F(γ, ω1 × (−k, k)) ≤ F(γ, ω2 × (−k, k)) if ω1 ⊂ ω2;

(iii) F(γ, ω1 × (−k, k)) + F(γ, ω2 × (−k, k)) ≤ F(γ, ω1 ∪ ω2 × (−k, k)) if ω1 ∩ ω2 = ∅;
(iv) F(γ, αω × (−αk, αk)) = αN−1F(γ, ω × (−k, k)) for α > 0,

F(γ, αω × (−h, h)) ≥ αN−1F(γ, ω × (−k, k)) for 1 > α > 0;
(v) F(γ, ω × (−k, k)) = HN−1(ω)F(γ,Q′ × (−k, k));

(vi) F(γ, ω × (−k, k)) = F(γ, ω × (−k′, k′)) for all k′ > 0,

and analogously for limδ→0+ F(γ + δ, ω × (−k, k)).
In particular it holds that F(γ, ω × (−k, k)) = HN−1(ω)Φ̃(γ).

3.2. Characterization of the surface tension

In this section we further characterize the surface tension Φ and Φ̃. More specifically,
following [11], we prove that the minimum problem in Definition 3.2 can be restricted to a narrower
class of competitors.

Proposition 3.4. Let W : Rd×N → [0,∞) satisfy (H1)–(H3) and let γ ≥ 0 and δ > 0 be given. Then
there exist sequences εδh → 0+ and (uδh, λ

δ
h) ∈ A(γ + δ) satisfying

uδh → |xN |a in W1,p(Q,Rd),

uδh = −xNa near xN = −
1
2
, uδh = xNa + cδh near xN =

1
2
, cδh → 0 as h→ ∞,

lim
h→∞

Fεh(u
δ
h, λ

δ
h) = Φ̃(γ).

Proof. Our proof follows the strategy of the proof of [11, Proposition 6.2]. We fix δ and drop it from
the notation. Choosing admissible sequences satisfying

lim
h→∞

Fεh(uh, λh) = Φ̃(γ) (3.2)

and using the compactness result (3.1) we can assume that uh → |xN |a =: u0 in W1,p(Q,Rd). We can
partition Q′ × ( 1

6 ,
1
3 ) into b 1

εh
c-horizontal layers of height b 1

εh
c−1 1

6 and choose a layer Lh = Q′ × (θh −

b 1
εh
c−1 1

6 , θh) which satisifies⌊
1
εh

⌋ (
Fεh(uh, λh, Lh) +

∫
Lh

|∇uh − a ⊗ eN |
p + |uh − u0(x)|p dx

)
≤ Fεh

(
uh, λh,Q′ ×

(
1
6
,

1
3

))
+

∫
Q′×( 1

6 ,
1
3 )
|∇uh − a ⊗ eN |

p + |uh − u0(x)|p dx

=: αh → 0, (3.3)

where we have used Lemma 3.3(vi), which asserts that the energy concentrates near Q′ × {0}. By
the continuity of W, (3.2) and the very definition of the energy functional Fε there exists zh ∈ (θh −
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b 1
εh
c−1 1

6 , θh) such that∫
Q′

1
εh

W(∇uh(x′, zh)) + εh|∇
2uh(x′, zh)|2 + εh min{λ2

h, |∇
2uh(x′, zh)|2} dx′

+

∫
Q′
|∇uh(x′, zh) − a ⊗ eN |

p + |uh(x′, zh) − u0(x′, zh)|p dx′ ≤ 6αh. (3.4)

Choosing a smooth cut-off function ϕh :
(
−1

2 ,
1
2

)
→ R satisfying ϕh(xN) = 1 if xN ≤ θh−b

1
εh
c−1 1

6 , ϕh = 0
if xN ≥ θh, |ϕ′h| ≤

c
εh
, |ϕ′′h | ≤

c
ε2

h
, we define

vh(x) := u0(x) + uh(x′, zh) − u0(x′, zh) + ϕh(xN)(uh(x) − u0(x) − (uh(x′, zh) − u0(x′, zh)))
= ϕh(xN)uh(x) + (1 − ϕh(xN))(u0(x) + uh(x′, zh) − u0(x′, zh)).

We claim that the following limits hold true:

(a)
∫

Lh

|vh − u0|
p dx→ 0, (b)

1
εh

∫
Lh

|∇vh − a ⊗ eN |
p dx→ 0,

(c) Fεh(vh, λh, Lh)→ 0, (d)
∫

Lh

max{λh + |∇2vh|, 0} dx→ 0.

The limit in (a) follows directly from (3.3) and (3.4). We now prove the limit in (b). We can apply
Poincaré inequality to the function uh(x) − u0(x) − (uh(x′, zh) − u0(x′, zh)) to obtain

1
εh

∫
Lh

|∇vh − a ⊗ eN |
p dx

≤
C
εh

∫
Lh

|∇uh(x) − a ⊗ eN |
p

+ |∇x′uh(x′, zh)|p +
cp

ε
p
h

|uh(x) − u0(x) − (uh(x′, zh) − u0(x′, zh))|p dx

≤ C
∫

Q′
|∇x′uh(x′, zh)|p dx′ +

C
εh

∫
Lh

|∇uh − a ⊗ eN |
p dx

≤ C
∫

Q′
|∇uh(x′, zh) − a ⊗ eN |

p dx′ +
C
εh

∫
Lh

|∇uh − a ⊗ eN |
p dx→ 0, (3.5)

where in the last step we have used (3.3) and (3.4). We now prove claim (c). Thanks to (H2) and (H3)
we obtain

1
εh

∫
Lh

W(∇vh) dx ≤
1
εh

∫
Lh∩{|∇vh−∇u0 |<ρ}

C|∇vh − a ⊗ eN |
p dx

+
1
εh

∫
Lh∩{|∇vh−∇u0 |≥ρ}

C(1 + |∇vh|
p) dx

≤
C
εh

∫
Lh

|∇vh − a ⊗ eN |
p dx→ 0, (3.6)

where the last limit follows by (b). We also have that
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∫
Lh

εh|∇
2vh|

2 dx ≤C
∫

Lh

εh|∇x′uh(x′, zh)|2 + εh|∇
2uh|

2 +
1
εh
|∇uh − a ⊗ eN |

2

+
1
ε3

h

|uh − u0 − (uh(x′, zh) − u0(x′, zh))|2 dx

≤Cε2
h

∫
Q′
|∇2

x′uh(x′, zh)|2 dx′ + Cεh

∫
Lh

|∇2uh|
2 dx

+
C
εh

∫
Lh

|∇uh − a ⊗ eN |
2 dx + C

∫
Q′
|∇x′uh(x′, zh)|2 dx′

+
Cε(p−2)/p

h

ε3
h

(∫
Lh

|uh(x) − u0(x) − (uh(x′, zh) − u0(x′, zh))|p dx
)2/p

≤Cε2
h

∫
Q′
|∇2

x′uh(x′, zh)|2 dx′ + Cεh

∫
Lh

|∇2uh|
2 dx +

C

ε
2/p
h

(∫
Lh

|∇uh − a ⊗ eN |
p dx

)2/p

+ C
(∫

Q′
|∇uh(x′, zh) − a ⊗ eN |

p dx′
)2/p

→ 0,

where we have used Hölder’s inequality, Poincaré’s inequality for uh(x)−u0(x)− (uh(x′, zh)−u0(x′, zh))
and, in the last step, (3.3)–(3.5). By the trivial inequality∫

Lh

εh min{λ2
h, |∇

2vh|
2} dx ≤

∫
Lh

εh|∇
2vh|

2 dx,

the estimate above shows (c). Finally (d) follows from (3.3) and (3.4) thanks to the estimate∫
Lh

max{λh + |∇2vh|, 0} dx ≤
∫

Lh

|∇2vh| dx ≤ Cε1/2
h

(∫
Lh

|∇2vh|
2 dx

)1/2

→ 0.

In the next step, we choose a smooth cut-off function ψ :
(
−1

2 ,
1
2

)
→ R such that ψ(xN) = 1 for xN ≤

1
3

and ψ = 0 near xN = 1
2 . We moreover may assume that ‖ψ′‖∞ ≤ C and ‖ψ′′‖∞ ≤ C and define

wh(x) := u0(x) + ch + ψ(xN)(uh(x′, zh) − u0(x′, zh) − ch),

where

ch :=
∫

Q′
uh(x′, zh) − u0(x′, zh) dx′ → 0

by (3.4). We write Q̂h := Q′ × (θh, 1/2) and claim that

(a′)
∫

Q̂h

|wh − u0|
p dx→ 0, (b′)

1
εh

∫
Q̂h

|∇wh − a ⊗ eN |
p dx→ 0, (c′) Fεh(wh, λh, Q̂h)→ 0,

(d′)
∫

Q̂h

max{λh + |∇2wh|, 0} dx ≤
∫

Q̂h

max{λh + |∇2uh|, 0} dx + dh,where dh → 0 as h→ ∞.
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The first claim follows from (3.4). In order to prove claim (b′) we use Poincaré’s inequality and
Remark 2.2. We obtain

1
εh

∫
Q̂h

|∇wh − a ⊗ eN |
p dx ≤

C
εh

∫
Q̂h

|∇x′uh(x′, zh)|p + |uh(x′, zh) − u0(x′, zh) − ch|
p dx (3.7)

≤
C
εh

∫
Q′
|∇x′uh(x′, zh)|p dx′ ≤ C

∫
Q′

1
εh

W(∇uh(x′, zh)) dx′ → 0,

where the last limit follows by (3.4). Similarly, it holds that∫
Q̂h

εh|∇
2wh|

2 dx ≤ Cεh

∫
Q̂h

|∇2
x′uh(x′, zh)|2 + |∇x′uh(x′, zh)|2 dx

≤ Cεh

∫
Q′
|∇2

x′uh(x′, zh)|2 dx′ + Cεh

(∫
Q′
|∇uh(x′, zh) − a ⊗ eN |

p dx′
)2/p

→ 0.

Again, as shown for the claim (c), the last two estimates, together with (b′) and (3.6), give (c′). To
prove the last claim we use the estimate

|∇2wh(x)| ≤ C(|uh(x′, zh) − u0(x′, zh) − ch| + |∇x′uh(x′, zh)|) + |∇2
x′uh(x′, zh)|

to find that∫
Q̂h

max{λh + |∇2wh|, 0} dx ≤
∫

Q̂h

max{λh + |∇2
x′uh(x′, zh)|, 0} dx + C

∫
Q̂h

|∇x′uh(x′, zh)| dx

≤

∫
Q̂h

max{λh + |∇2uh|, 0} dx + C
(∫

Q̂h

|∇x′uh(x′, zh)|2 dx
) 1

2

.

The second summand tends to zero as in (3.7), hence (d′) holds true. Let us define

Uh :=


uh, xN < θh − b

1
εh
c−1 1

6 ,

vh, θh − b
1
εh
c−1 1

6 ≤ xN ≤ θh,

wh, xN > θh.

Our claims show that Uh → u0 in W1,p(Q,Rd) and that we may assume (Uh, λh) ∈ A(γ + δ/2) for h
large enough. Since by Lemma 3.3(vi), we have that

Fεh

(
uh, λh,Q′ ×

(
1
6
,

1
2

))
→ 0,

from our claims it also follows that limh→∞ Fεh(Uh, λh) = Φ̃(γ). The proof is completed on observing
that the construction above can be repeated on Q′ × (−1

2 , 0). �

In the next proposition, which is analogous to [11, Proposition 6.3], we show how to further modify
the construction of the sequence of functions in the previous proposition to enforce periodic boundary
condition in the x′ variable.
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Proposition 3.5. Let W : Rd×N → [0,∞) satisfy (H1)–(H4) and let γ ≥ 0 and δ > 0 be given. Then
there exist sequences εδh → 0+ and (uδh, λ

δ
h) ∈ A(γ + δ) satisfying

uδh ∈ W2,∞(Q,Rd), uδh → |xN |a in L1(Q,Rd),

∇uδh = ±a ⊗ eN near xN = ±
1
2

and uδh is Q′-periodic for all xN ,

lim
h→∞

Fεh(u
δ
h, λ

δ
h) = Φ̃(γ).

Proof. Fixing δ and dropping it from the notation, we are going to show how to proceed as in the proof
of Proposition 6.3 in [11] and show that there exist sequences εh → 0+, vh ∈ W2,∞(RN ,Rd), λh ≤ 0 such
that

(vh, λh) ∈ A
(
γ + δ, 2Q′ ×

(
−

1
2
,

1
2

))
,

vh(·, xN) is 2Q′-periodic for all xN , ∇vh = ±a ⊗ eN near xN = ±
1
2
,

lim
h→∞

Fεh

(
vh, λh, 2Q′ ×

(
−

1
2
,

1
2

))
= 2N−1Φ̃(γ), lim

h→∞

∫
2Q′×(− 1

2 ,
1
2 )
|vh − |xN |a| dx = 0. (3.8)

With (3.8) at hand we can extend vh linearly to 2Q, define uh(x) := 1
2vh(2x) and complete the proof

noting that

(uh, 2λh) ∈ A(γ + δ),

uh(·, xN) is Q′-periodic for all xN , ∇uh = ±a ⊗ eN near xN = ±
1
2
,

lim
h→∞

F εh
2

(uh, λh) = Φ̃(γ),

lim
h→∞

∫
Q
|uh − |xN |a| dx = 0.

In what follows we prove (3.8). A sketch illustrating the notation of the following step 1 of the proof
is given in Figure 1.

x1

x2

Q

1
2

1
2

1
2 −

1
m

bh,m,k

ah,m,k

ch,m,k

1
mk

Figure 1. Sketch of the construction in Step 1.
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Step 1. We assume that N = 2 and set u0 := |x2|a. By (3.4) we find sequences εh → 0+, (uh, λh) ∈
A(γ+ δ/2) such that uh → u0 in L1(Q,Rd), ∇uh = ±a⊗ e2 near x2 = ±1

2 and limh→∞ Fεh(uh, λh) = Φ̃(γ).
Moreover, we may assume uh ∈ C2(Q,Rd): This follows from (H2) and the fact that∫

Ω

max{λ + |ρε ∗ u|, 0} dx→
∫

Ω

max{λ + |u|, 0} dx

as ε→ 0 for u ∈ L1(Rm,Rn) which can be shown by an application of the Vitali dominated convergence
theorem (see [4, Exercise 1.18]). We can therefore conclude as in the proof of [11, Proposition 6.2].
Setting

Im := ((−
1
2
,−

1
2

+
1
m

) ∪ (
1
2
−

1
m
,

1
2

)) × (−
1
2
,

1
2

),

we have
Φ̃(γ) = lim

h→∞
Fεh(uh, λh) ≥ lim inf

h→∞
Fεh(uh, λh,Q\Im) ≥ Φ̃(γ)

(
1 −

2
m

)
,

and therefore
lim sup

h→∞
Fεh(uh, λh, Im) ≤ Φ̃(γ)

2
m
.

By the compactness result stated in Theorem 3.1 we have uh → u0 in W1,p(Q,Rd). Therefore, for h
sufficiently large, it holds that

Fεh(uh, λh, Im) +

∫
Im

mp|∇uh − ∇u0|
p + |uh − u0| dx ≤ Φ̃(γ)

3
m
. (3.9)

Let us subdivide
(
− 1

2 ,−
1
2 + 1

m

)
×

(
− 1

2 ,
1
2

)
and

(1
2 −

1
m ,

1
2

)
×

(
− 1

2 ,
1
2

)
into k strips of equal width and

order them in pairs. By (3.9) we find a pair of strips

R+
h,m,k = (bh,m,k, ch,m,k) ×

(
−

1
2
,

1
2

)
,

R−h,m,k = (−bh,m,k,−ch,m,k) ×
(
−

1
2
,

1
2

)
,

such that for h sufficiently large it holds that

Fεh(uh, λh,R−h,m,k ∪ R+
h,m,k) +

∫
R−h,m,k∪R+

h,m,k

mp|∇uh − ∇u0|
p + |uh − u0| dx ≤ Φ̃(γ)

3
mk

. (3.10)

In particular we have that, setting Jh,m,k := (bh,m,k+ch,m,k

2 , ch,m,k),∫
Jh,m,k

∫ 1
2

− 1
2

1
εh

W(∇uh(x)) + εh|∇
2uh(x)|2 + mp|∇uh(x) − ∇u0(x)|p + |uh(x) − u0(x)|

+
1
εh

W(∇uh(−x)) + εh|∇
2uh(−x)|2 + mp|∇uh(−x) − ∇u0(−x)|p + |uh(−x) − u0(−x)| dx

≤ Φ̃(γ)
3

mk
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and this shows that there exists ah,m,k ∈
(
bh,m,k,

bh,m,k+ch,m,k

2

)
satisfying

∫ 1
2

− 1
2

1
εh

W(∇uh(ah,m,k, x2)) + εh|∇
2uh(ah,m,k, x2)|2

+ mp|∇uh(ah,m,k, x2) − ∇u0(ah,m,k, x2)|p + |uh(ah,m,k, x2) − u0(ah,m,k, x2)|

+
1
εh

W(∇uh(−ah,m,k, x2)) + εh|∇
2uh(−ah,m,k, x2)|2

+ mp|∇uh(−ah,m,k, x2) − ∇u0(−ah,m,k, x2)|p + |uh(−ah,m,k, x2) − u0(−ah,m,k, x2)| dx

≤ 6Φ̃(γ). (3.11)

Next we modify uh in order to obtain a new function that coincides with uh near x1 = −ah,m,k+
1

2mk and
with uh(−ah,m,k, ·) near x1 = −ah,m,k (note that by construction (−ah,m,k,−ah,m,k + 1

2mk ) ⊂ (−ch,m,k,−bh,m,k)).
To this end we choose a smooth cut-off function ϕh,m,k :

(
−1

2 ,
1
2

)
→ R such that ϕh,m,k = 1 if x1 >

−ah,m,k + 1
2mk , ϕh,m,k = 0 if x1 < −ah,m,k, |ϕ′h,m,k|∞ ≤ cmk, |ϕ′′h,m,k|∞ ≤ cm2k2 and define

wh,m,k(x) := ϕh,m,k(x1)uh(x) + (1 − ϕh,m,k(x1))uh(−ah,m,k, x2).

We have that wh,m,k ∈ W2,∞(Q,Rd) and ∇wh,m,k = ±a ⊗ e2 near x2 = ±1
2 . We are going to show that

lim sup
h→∞

lim sup
k→∞

lim sup
m→∞

Fεh(wh,m,k, λh) ≤ Φ̃(γ),

lim sup
h→∞

lim sup
k→∞

lim sup
m→∞

∫
Q
|wh,m,k − u0| dx = 0 and

lim sup
h→∞

lim sup
k→∞

lim sup
m→∞

∫
Q

max{λh + |∇2wh,m,k|, 0} dx ≤ γ +
δ

2
. (3.12)

With (3.12) at hand, we can repeat the same modification procedure close to x1 = ah,m,k and obtain,
using a diagonal argument, a sequence (wh, λh) ∈ A(γ + δ),wh ∈ W2,∞(Q,Rd) where wh = wh(±ah, ·)
near x1 = ±1

2 , ∇wh = ±a ⊗ e2 near x2 = ±1
2 , wh → u0 in L1(Q,Rd) and Fεh(wh, λh) → Φ̃(γ). We can

now reflect wh with respect to the axis x1 = 1
2 , translate it such that it is defined on (−1, 1) ×

(
− 1

2 ,
1
2

)
and denote it by vh. Using property (H4) of W, we obtain that we have found a sequence of 2Q′-
periodic functions as desired. For later use, we also note that vh ∈ W2,∞

loc

(
R×

(
− 1

2 ,
1
2

)
,Rd )

if extended
periodically.

In order to show (3.12), we first claim that

lim sup
h→∞

lim sup
k→∞

lim sup
m→∞

∫
R−h,m,k

1
εh

W(∇wh,m,k) dx = 0,

lim sup
h→∞

lim sup
k→∞

lim sup
m→∞

∫
R−h,m,k

εh|∇
2wh,m,k|

2 dx = 0 and

lim sup
h→∞

lim sup
k→∞

lim sup
m→∞

∫
R−h,m,k

|wh,m,k − uh| dx = 0. (3.13)

We are going to exploit that, from the very definition of wh,m,k, we have that
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∇wh,m,k(x) = ϕh,m,k(x1)∇uh(x) + (1 − ϕh,m,k(x1))
(
0 |

∂uh

∂x2
(−ah,m,k, x2)

)
+ (uh(x1, x2) − uh(ah,m,k, x2)) ⊗ ϕ′h,m,k(x1)e1,

and, by assumption (H2), it holds true that W(ξ) ≤ C(1 + |ξ|p) ≤ C(1 + 2p−1|∇u0|
p + 2p−1|ξ −∇u0|

p). As
a consequence of that, using (3.9)–(3.11), we get∫

R−h,m,k

1
εh

W(∇wh,m,k) dx ≤
C
εh

∫
R−h,m,k

1 + |∇u0|
p + |∇wh,m,k − ∇u0|

p dx

≤
C

εhmk
(1 + |a ⊗ e2|

p) +
C
εh

∫
R−h,m,k

|∇uh − ∇u0|
p +

∣∣∣∣∣∣∇u0 −

(
0 |

∂uh

∂x2
(−ah,m,k, x2)

)∣∣∣∣∣∣p dx

+
C
εh

∫
R−h,m,k

mpkp|uh(x) − uh(−ah,m,k, x2)|p dx

≤
C

εhmk
+

C
εh

∫
R−h,m,k

|∇uh − ∇u0|
p dx +

C
εhmk

∫ 1
2

− 1
2

|∇(u0 − uh)(−ah,m,k, x2)|p dx2

+
Cmpkp

εh

∫
R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|p dx

≤
C

εhmk
+

3CΦ̃(γ)
εhmp+1k

+
6CΦ̃(γ)
εhmp+1k

+
Cmpkp

εh

∫
R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|p dx.

By Hölder’s inequality we infer that

|uh(x) − uh(−ah,m,k, x2)|p ≤
(∫ −ch,m,k

−bh,m,k

∣∣∣∣∣∂uh

∂x1
(s, x2)

∣∣∣∣∣ ds
)p

≤
C

(mk)p−1

∫ −ch,m,k

−bh,m,k

∣∣∣∣∣∂uh

∂x1
(s, x2)

∣∣∣∣∣p ds ≤
C

(mk)p−1

∫ −ch,m,k

−bh,m,k

|∇(uh − u0)(s, x2)|pds.

The latter estimate together with (3.10) gives∫
R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|p dx ≤
C

(mk)p−1

∫
R−h,m,k

∫ −ch,m,k

−bh,m,k

|∇(uh − u0)(s, x2)|pds dx

≤
C

(mk)p

∫
R−h,m,k

|∇uh − ∇u0|
p dx ≤

C
m2p+1kp+1 , (3.14)

which shows the first equation in (3.13). To show the second equation, we remark that, by the very
definition of ϕh,m,k, in R−h,m,k, we have that

|∇2wh,m,k(x)|2 ≤C
∣∣∣∇2uh

∣∣∣2 + C
∣∣∣∂2uh

∂x2
2

(−ah,m,k, x2)
∣∣∣2 + Cm4k4|uh(x) − uh(−ah,m,k, x2)|2

+ Cm2k2
∣∣∣∇uh(x) −

(
0 |

∂uh

∂x2
(−ah,m,k, x2)

) ∣∣∣2.
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Hence, by (3.10) and (3.11) it follows that∫
R−h,m,k

εh|∇
2wh,m,k|

2 dx ≤ C
∫

R−h,m,k

εh|∇
2uh|

2 dx +
Cεh

mk

∫ 1
2

− 1
2

|∇2uh(−ah,m,k, x2)|2 dx2

+ Cεhm4k4
∫

R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|2 dx

+ Cεhm2k2
∫

R−h,m,k

∣∣∣∣∣∣∇uh(x) −
(
0 |

∂uh

∂x2
(−ah,m,k, x2)

)∣∣∣∣∣∣2 dx

≤
C
mk

+ Cεhm4k4
∫

R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|2 dx

+ Cεhm2k2
∫

R−h,m,k

∣∣∣∣∣∣∇uh(x) −
(
0 |

∂uh

∂x2
(−ah,m,k, x2)

)∣∣∣∣∣∣2 dx.

We are left with an estimate of the two integral terms in the previous expression. The first can be
estimated noting that Hölder’s inequality and (3.14) yield∫

R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|2 dx ≤ |R−h,m,k|
(p−2)/p

∫
R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|p dx

2/p

≤
1

(mk)(p−2)/p

( C
m2p+1kp+1

)2/p

=
C

m5k3 . (3.15)

In order to estimate the second term we first observe that the following inequality holds true∣∣∣∣∇uh(x) −
(
0 |

∂uh

∂x2
(−ah,m,k, x2)

)∣∣∣∣2 =

∣∣∣∣∣∂uh

∂x1
(x)

∣∣∣∣∣2 +

∣∣∣∣∣∂uh

∂x2
(x) −

∂uh

∂x2
(−ah,m,k, x2)

∣∣∣∣∣2
≤ |∇uh(x) − ∇u0(x)|2 +

( ∫ −bh,m,k

−ch,m,k

∣∣∣∣ ∂2uh

∂x1x2
(s, x2)

∣∣∣∣ds
)2

≤ |∇uh(x) − ∇u0(x)|2 +
1

mk

∫ −bh,m,k

−ch,m,k

|∇2uh(s, x2)|2ds.

Combining it with (3.10), we find that∫
R−h,m,k

∣∣∣∣∣∣∇uh(x) −
(
0 |

∂uh

∂x2
(−ah,m,k, x2)

)∣∣∣∣∣∣2 dx

≤

∫
R−h,m,k

|∇uh − ∇u0|
2 dx +

1
mk

∫
R−h,m,k

∫ −bh,m,k

−ch,m,k

|∇2uh(s, x2)|2ds dx

≤
1

(mk)(p−2)/p

∫
R−h,m,k

|∇uh − ∇u0|
p dx

2/p

+
1

m2k2

∫
R−h,m,k

|∇2uh|
2 dx

≤
C

m3k
+

C
εhm3k3 .
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This completes the proof of the second equation in (3.13). The third equation follows noting that
from (3.15) it holds that∫

R−h,m,k

|wh,m,k − uh| dx ≤
1

mk

∫
R−h,m,k

|uh(x) − uh(−ah,m,k, x2)|2 dx

1/2

≤
C

m7/2k5/2 .

We now prove (3.12). We first observe that from Remark 2.2 it follows that

W
(
0,
∂uh

∂x2
(−ah,m,k, x2)

)
≤ C W(∇uh(−ah,m,k, x2)) + C

∣∣∣∣∣∂uh

∂x1
(−ah,m,k, x2)

∣∣∣∣∣p
≤ C W(∇uh(−ah,m,k, x2)).

Setting J := (−1
2 ,−bh,m,k) × (−1

2 ,
1
2 ), the previous estimate together with (3.11) gives

Fεh(wh,m,k, λh, J\Rh,m,k) ≤
∫

J\Rh,m,k

1
εh

W(∇wh,m,k) + 2εh|∇
2wh,m,k|

2 dx (3.16)

≤
2
m

∫ 1
2

− 1
2

1
εh

W
(
0,
∂uh

∂x2
(−ah,m,k, x2)

)
+ εh

∣∣∣∣∣∣∂2uh

∂x2
2

(−ah,m,k, x2)

∣∣∣∣∣∣2 dx

≤
C
m

∫ 1
2

− 1
2

1
εh

W(∇uh(−ah,m,k, x2)) + εh

∣∣∣∣∣∣∂2uh

∂x2
2

(−ah,m,k, x2)

∣∣∣∣∣∣2 dx ≤
C
m
.

This shows that
Fεh(wh,m,k, λh) ≤ Fεh(uh, λh,Q\J) + Fεh(wh,m,k, λh,R−h,m,k) +

C
m

which, combined with (3.13), implies the first equation in (3.12). Again by (3.11) it holds that∫
Q
|wh,m,k − u0| dx ≤

∫
Q\J
|uh − u0| dx +

∫
R−h,m,k

|wh,m,k − u0| dx

+
1
m

∫ 1
2

− 1
2

|uh(−ah,m,k, x2) − u0(x)| dx

≤

∫
Q\J
|uh − u0| dx +

∫
R−h,m,k

|wh,m,k − u0| dx +
C
m
,

which, together with (3.13), implies the second equation in (3.12). To show the third equation, we first
note that by the previous inequalities leading to the proof of (3.13), we have that∫

R−h,m.k

|∇2wh,m,k|
2 dx ≤

C
εhmk

+
Ck
m
.

From that and (3.16) it we get∫
J

max{λh + |∇2wh,m,k|, 0} dx ≤
∫

J
|∇2wh,m,k| dx

≤
1
m

∫ 1
2

− 1
2

∣∣∣∣∣∣∂2uh

∂x2
2

(−ah,m,k, x2)

∣∣∣∣∣∣ + |R−h,m,k|
1/2

∫
R−h,m.k

|∇2wh,m,k|
2 dx

1/2

Mathematics in Engineering Volume 7, Issue 4, 522–552.



540

≤
C
εhm

+

(
C

εhm2k2 +
C
m2

)1/2

.

This completes the first part of the proof. �

Step 2. For N ≥ 3 one can repeat the argument in Step 1, leading to the definition of the sequence
of functions (wh) (from which the sequence (uh) is obtained), in each coordinate direction. We give
here only the main idea (see Step 2 in the proof of Proposition 6.3 [11] for additional details). Starting
from a sequence (uh) ⊂ W2,2(Q,Rd), we modify uh as in Step 1 and obtain, by reflection with respect
to the hyperplane {x1 = 1

2 }, the functions wh ∈ W2,∞((−1, 1) × (−1
2 ,

1
2 )N−1,Rd) that are (−1, 1)-periodic

in x1. The desired sequence (wh) is then obtained repeating the same construction with respect to the
variables x2, . . . , xN−1.

We define for γ ≥ 0,

Φ̃p(γ) := inf
{
F1/L(u, λ) : L > 0, u ∈ W2,∞(Q,Rd),∇u = ±a ⊗ eN near xN = ±

1
2
, (3.17)

u periodic of period one in x′, (u, λ) ∈ A(γ)
}

(3.18)

and
Φp(γ) := lim

δ→0+
Φ̃p(γ + δ). (3.19)

Proposition 3.6. Let W : Rd×N → [0,∞) satisify (H1)–(H4). Then it holds that Φp(γ) = Φ(γ).

Proof. From the propositions above it follows that Φp ≤ Φ. The other inequality can be shown by an
application of the same rescaling argument we are going to use in the proof of Proposition 4.2, which
allows us to define from an admissible pair (u, λ) for Φp an admissible sequence for Φ. �

In analogy with [11, Proposition 5.3] if we replace the assumption on the potential (H4) with the
following

W(ξ) ≥ W(0, ξN), ξ = (ξ′, ξN) ∈ Rd×N , (H5)

we can show that the sequence of functions from Proposition 3.4 can be chosen to depend only on the
xN-variable. More precisely, it holds

Proposition 3.7. Let W : Rd×N → [0,∞) satisfy (H1)–(H3) and (H5) and let γ ≥ 0 and δ > 0 be given.
Then there exist sequences εδh → 0+ and (uδh, λ

δ
h) ∈ A(γ + δ) satisfying

uδh ∈ W2,∞(Q,Rd),
uδh → |xN |a in L1(Q,Rd),

∇uδh = ±a ⊗ eN near xN = ±
1
2
,

uh depends only on xN ,

lim
h→∞

Fεh(u
δ
h, λ

δ
h) = Φ̃(γ).

Proof. As in the proof of Proposition 3.5 we obtain the existence of sequences εh → 0+, (uh, λh) ∈
A(γ + δ) and uh ∈ C2(Q,Rd) such that uh → u0 in L1(Q,Rd), ∇uh = ±a ⊗ eN near x2 = ±1

2 and

Mathematics in Engineering Volume 7, Issue 4, 522–552.



541

limh→∞ Fεh(uh, λh) = Φ̃(γ). Because we have that (xN 7→ uh(0, xN), λ) ∈ A(γ + δ), it is enough to
observe that

Fεh(uh, λh) =

∫
Q

1
εh

W(∇uh) + εh|∇
2uh|

2 + εh min{λ2
h, |∇

2uh|
2} dx

≥

∫
Q

1
εh

W(0, ∂xN uh) + εh|∇
2uh(0, xN)|2 + εh min{λ2

h, |∇
2uh(0, xN)|2} dx

= Fεh(uh(0, ·), λh).

�

4. Γ-convergence

In this section we state and prove the two propositions 4.1 and 4.2, which together imply our Γ-
convergence result.

Proposition 4.1 (Γ-liminf inequality). Let W : Rd×N → [0,∞) satisfies (H1) and (H2), εh → 0+, and
let (uh) be a sequence in W2,2(Ω,Rd) and µh = ρh dx be a sequence inM(Ω) such that

εh → 0+, uh → u in W1,1(Ω,Rd), µh ⇀∗ µ ∈ M(Ω).

Then it holds that
E(u, µ) ≤ lim inf

h→∞
Eεh(uh, ρh).

Proof. Thanks to Proposition 3.1, up to choosing a subsequence, we may assume that

lim inf
h→∞

Eεh(uh, ρh) = lim
h→∞

Eεh(uh, ρh),

∇uh → ∇u a.e. and ∇u ∈ BV(Ω, {A, B}) and( 1
εh

W(∇uh) + εh(|∇2uh|
2 + (ρh − |∇

2uh|)2)
)
LN

⇀∗ σ.

To conclude it is enough to show the following claim:

dσ
dHN−1xS ∇u

≥ Φ
( dµ
dHN−1xS ∇u

)
HN−1-a.e. in S ∇u.

We can use Theorem 2.6 together with the Besikovitch differentiation theorem [4, Theorem 2.22]
and [4, Proposition 1.62] to see that for HN−1-a.e. x0 ∈ S ∇u and for all but at most countably many
δ � 1 it holds that

µ(∂Qx0,δ) = 0⇒ lim
h→∞

∫
Qx0 ,δ

ρh dx = µ(Qx0,δ),

σ(∂Qx0,δ) = 0⇒ lim
h→∞

Eεh(uh, ρh,Qx0,δ) = σ(Qx0,δ),

HN−1xS ∇u(Qx0,δ) = δN−1,

lim
δ→0+

µ(Qx0,δ)
HN−1xS ∇u(Qx0,δ)

=
dµ

dHN−1xS ∇u
(x0) =: ρ,
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lim
δ→0+

σ(Qx0,δ)
HN−1xS ∇u(Qx0,δ)

=
dσ

dHN−1xS ∇u
(x0).

In particular, given r > 0, we have ∫
Qx0 ,δ

ρh dx ≤ (1 + 2r)δN−1ρ, (4.1)

(1 + 2r)
dσ

dHN−1xS ∇u
(x0) ≥ Eεh(uh, ρh,Qx0,δ)δ

1−N , (4.2)

for all but at most countably many δ � 1 and h sufficiently large. We define λh such that∫
Qx0 ,δ

max{λh + |∇2uh|, 0} dx =

∫
Qx0 ,δ

ρh dx (4.3)

and consider the following subsequences (if they exist) of (λh) that we do not relabel:

Case 1 (λh satisfies λh ≥ 0). We have by (4.1) and (4.3),∫
Qx0 ,δ

|∇2uh| dx ≤
∫

Qx0 ,δ

ρh dx ≤ (1 + 2r)δN−1ρ.

This means that (uh, 0) ∈ A((1 + 2r)ρ,Qx0,δ) and we obtain

lim
h→∞

Eεh(uh, ρh,Qx0,δ) ≥ lim inf
h→∞

Fεh(uh, 0,Qx0,δ) ≥ Φ̃((1 + 2r)ρ)δN−1,

where in the last inequality we have used Lemma 3.3. By (4.2) we obtain that

(1 + 2r)
dσ

dHN−1xS ∇u
(x0) ≥ Φ̃((1 + 2r)ρ)

and, letting r → 0+,
dσ

dHN−1xS ∇u
(x0) ≥ Φ(ρ).

Case 2 (λh satisfies λh ≤ 0). By (4.3) we have (uh, λh) ∈ A((1 + 2r)ρ,Qx0,δ) and, since λh ≤ 0,∫
Qx0 ,δ

ρh dx ≤
∫

Qx0 ,δ

|∇2uh| dx

and we can apply Lemma 2.7 to get

Eεh(uh, ρh,Qx0,δ) =

∫
Qx0 ,δ

1
εh

W(∇uh) + εh|∇
2uh|

2 + εh(ρh − |∇
2uh|)2 dx

≥

∫
Qx0 ,δ

1
εh

W(∇uh) + εh|∇
2uh|

2 + εh min{λ2
h, |∇

2uh|
2} dx

= Fεh(uh, λh,Qx0,δ).

This implies
lim
h→∞

Eεh(uh, ρh,Qx0,δ) ≥ Φ̃((1 + 2r)ρ)δN−1.

We conclude as in the previous case. �
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From now on, we assume that Ω is open, bounded, with Lipschitz boundary, and, in addition, we
assume it to be simply connected. We write Ωt := {(x′, xN) ∈ Ω |xN = t} and set

α := inf{xN : ΩxN , ∅}, β := sup{xN : ΩxN , ∅}.

We assume moreover that the sets ΩxN are connected for any xN ∈ (α, β).
In what follows, given a set A ⊂ Rn we define Aδ := {x ∈ Rn |d(x, A) < δ}. For the sake of simplicity

we also use the notation ΩxN ,δ := (ΩxN )δ.

Proposition 4.2 (Γ-limsup inequality). Let W : Rd×N → [0,∞) satisfy (H1)–(H4). Given a measure
µ ∈ M(Ω) and u ∈ W1,1(Ω,Rd) with ∇u ∈ BV(Ω, {A, B}), and given any sequence εh → 0+, there exist
sequences (µh) ⊂ M(Ω) and (uh) ⊂ W2,2(Ω,Rd) satisfying

µh ⇀∗ µ, uh → u in W1,1(Ω,Rd), lim sup
h→∞

Eεh(uh, µh) ≤ E(u, µ).

Proof. We will prove the statement in several steps. At each step we assume u and µ to be of increasing
generality and provide for them a recovery sequence.

Step A.
Step A.1. We assume that u and µ are given by

u(x) = |xN |a and µ = γ1χKH
N−1xS ∇u + βδx0 , (4.4)

where γ1, β ≥ 0, x0 ∈ Ω\S ∇u and K ⊂ Ω is a compact set. Note that in this case there is only one
connected interface, namely S ∇u = Ω0. We choose h > 0 such that [−4h, 4h] ⊂ [α, β] and assume
moreover without loss of generality that K = K′ ×

[
− h

2 ,
h
2

]
, with K′ ⊂ Ω0 compact. Given ε, δ, δ̃ > 0,

thanks to Proposition 3.5, which guarantees in particular that Φp ≤ Φ, and the very definition of Φ̃p

and Φ̃, we can choose L1 > 0 and

(v1, λ1) ∈ A(γ1 + δ̃) ∩W2,∞(Q,Rd)

∇v1 = ±a ⊗ eN near xN = ±
1
2
, v1 periodic of period one in x′

that we assume to be extended periodically in x′ such that

F1/L1(v1, λ1) ≤ Φ̃p(γ1 + δ̃) + δ̃ ≤ Φ(γ1) + δ̃.

We set

z1
ε(x) :=


εL1v1( x′

εL1 ,−
1
2 ) − a(xN + εL1

2 ), xN < −
εL1

2 ,

εL1v1( x
εL1 ), |xN | ≤

εL1

2 ,

εL1v1( x′
εL1 ,

1
2 ) + a(xN −

εL1

2 ), xN >
εL1

2 ,

and

λ1
ε :=

λ1

εL1 .

It holds that

∇z1
ε(x) =


−a ⊗ eN , xN < −

εL1

2 ,

∇v1( x
εL1 ), |xN | <

εL1

2 ,

a ⊗ eN , xN >
εL1

2 .
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Moreover, by the periodicity of ∇v1 in the x′-variable, we also have that∫
Q

max{|∇2z1
ε| + λ1

ε, 0} dx =

∫
Q′

∫ 1/2

−1/2
max

{∣∣∣∣∇2v1
( x′

εL1 , xN

)∣∣∣∣ + λ1, 0
}

dxN dx′

→ε→0+

∫
Q

max{|∇2v1| + λ1, 0} dx ≤ γ1 + δ̃,

where the last inequality follows by the assumption on (v1, λ1). We repeat the same construction, up
to replacing the index 1 by 2, for γ2 := 0 and obtain (z2

ε, λ
2
ε). We choose a smooth cut-off function

ϕδ : Ω0,2δ × (−h
2 ,

h
2 )→ R satisfying

ϕδ|K = 1, ϕδ|Ω0,2δ×(− h
2 ,

h
2 )\Kδ

= 0, |∇ϕδ| ≤
C
δ
, |∇2ϕδ| ≤

C
δ2

and set zε,δ := ϕδz1
ε + (1 − ϕδ)z2

ε. We also choose a smooth cut-off function ψδ : Ω→ R satisfying

ψδ|Ω0,δ×(−h/3,h/3) = 1, ψδ|Ω\Ω0,2δ×(−h/2,h/2) = 0, |∇ψδ| ≤
C
δ
, |∇2ψδ| ≤

C
δ2

and set
uε,δ := ψδzε,δ + (1 − ψδ)u.

An example of this situation is shown in Figure 2.

K

Ω0,2δ ×
(
−h

2 ,
h
2

)
Ω0,δ ×

(
−h

3 ,
h
3

)
x1

x2

h
3

h
2

−h
3

−h
2

Ω

Figure 2. Sketch of the construction in Step A.1.

We claim that, uniformly with respect to δ̃,

lim
δ→0+

lim
ε→0+
‖uε,δ − u‖W1,p(Ω,Rd) = 0.
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To prove the claim we first observe that

|∇uε,δ − ∇u| ≤ |∇ψδ||zε,δ − u| + |∇zε,δ − ∇u|.

Since for |xN | ≥ max{ εL1

2 ,
εL2

2 } it holds that ∇z1
ε = ∇z2

ε = ∇u, for such x we have that ∇zε,δ − ∇u =

∇ϕδ(z1
ε − z2

ε) and, recalling that v1 and v2 are bounded in L∞, it follows that

|∇uε,δ − ∇u| ≤ |∇ψδ||zε,δ − u| + |∇zε,δ − ∇u| = |∇ψδ||zε,δ − u| + |∇ϕδ(z1
ε − z2

ε)| ≤
C
δ
ε.

In the set {ψδ = 1} it holds

|∇uε,δ − ∇u| ≤ |∇ϕδ|(|z1
ε| + |z

2
ε|) + |∇z1

ε| + |∇z2
ε| ≤

C
δ
ε + C

and on {ψδ = 0} it holds
|∇uε,δ − ∇u| = 0.

Without loss of generality we may assume that max{ εL1

2 ,
εL2

2 } ≤
h
3 , which implies that ϕδ is constant on

{|xN | ≤ max{ εL1

2 ,
εL2

2 }} ∩ {0 < ψδ < 1} and we have

|∇uε,δ − ∇u| ≤ |∇ψδ|(|z1
ε| + |z

2
ε|) + |∇z1

ε| + |∇z2
ε| ≤

C
δ
ε + C.

It follows ∫
Ω

|∇uε,δ − ∇u|p dx ≤
C
δpε

p +

∣∣∣∣∣Cδ ε + C
∣∣∣∣∣p max

{
εL1

2
,
εL2

2

}
HN−1(Ω0,2δ).

Since v1,2
ε,δ ∈ L∞, it holds that ‖z1,2

ε − u‖∞ ≤ Cε and the claim follows.
We define a sequence of measures converging to µ. We set µ1

ε := ρ1
εL

N , where

ρ1
ε(x) :=


max{|∇2z1

ε| + λ1
ε, 0}, |xN | <

εL1

2 ,
1

2
√
ε
(γ1 + δ̃ −

∫
Q

max{|∇2v1| + λ1, 0}), εL1

2 < |xN | <
εL1

2 +
√
ε,

β
√
ε|B1 |

, x ∈ B
ε

1
2N

(x0),
0, otherwise.

We have that µ1
ε⇀
∗ (γ1+δ̃)HN−1xS ∇u+βδx0: For any open cylinder Ω̃ ⊂⊂ Ω of the type Ω̃ = Ω̃′×(b, c)

with b < 0 < c we have, by the periodicity of ∇v1, that∫
Ω

χΩ̃dµ1
ε =

∫ εL1/2

−εL1/2

∫
Ω̃′

max{|∇2z1
ε| + λ1

ε, 0} dx

+
1
√
ε

∫ (εL1/2)+
√
ε

εL1/2

∫
Ω̃′

(
γ1 + δ̃ −

∫
Q

max{|∇2v1| + λ1, 0}
)

dx + βχΩ̃(x0)

=

∫ 1/2

−1/2

∫
Ω̃′

max
{∣∣∣∣∣∇2v1

( x′

εL1 , xN

)∣∣∣∣∣ + λ1, 0
}

dx

+HN−1(Ω̃′)(γ1 + δ̃ −

∫
Q

max{|∇2v1| + λ1, 0}) + βχΩ̃(x0)
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→ε→0+ HN−1(Ω̃′)(γ1 + δ̃) + βχΩ̃(x0) = HN−1(S ∇u ∩ Ω̃)(γ1 + δ̃) + βχΩ̃(x0).

If instead 0 < (b, c) we have that ∫
Ω

χΩ̃dµ1
ε → βχΩ̃(x0).

To obtain the claimed weak* convergence it is enough to recall that compactly supported continuous
functions can be approximated uniformly by piecewise constant functions on cylinders of the type of
Ω̃. Finally, one can analogously define ρ2

ε for γ2 := 0. Eventually, setting ρε,δ := ϕδρ
1
ε + (1 − ϕδ)ρ2

ε and
µε,δ := ρε,δL

N we get
µε,δ⇀∗ ε→0+ ϕδ(γ1 + δ̃)HN−1xS ∇u + βδx0 ,

which implies that limδ̃→0+ limδ→0+ limε→0+ µε,δL
N = µ with respect to the weak* convergence. Let

us observe that in particular µε,δ(Ω) is uniformly bounded in ε, δ and that the bound decreases for
decreasing δ̃. Next we claim that

lim sup
δ̃→0+

lim sup
δ→0+

lim sup
ε→0+

Eε(uε,δ, ρε,δ) ≤ E(u, µ).

We have that
|∇2uε,δ| ≤ |∇2ψδ||zε,δ − u| + 2|∇ψδ||∇zε,δ − ∇u| + |∇2zε,δ|.

Since for |xN | ≥ max{ εL1

2
εL2

2 } it holds that ∇z1
ε = ∇z2

ε = ∇u, for such x and for δ sufficiently small we
obtain

|∇2uε,δ| ≤
C
δ2ε.

In the set {ψδ = 1} ∩ {0 < ϕδ < 1}, recalling that v1,2 ∈ W2,∞(Ω,Rd), for δ sufficiently small, it holds

|∇2uε,δ| = |∇2zε,δ| ≤ |∇2ϕδ||z1
ε − z2

ε| + 2|∇ϕδ||∇z1
ε − ∇z2

ε| + |∇
2z1
ε| + |∇

2z2
ε|

≤
C
δ2ε +

C
δ

+
C
ε
≤

C
δ2 +

C
ε
.

On {ψδ = 1} ∩ {ϕδ = 1} it holds

|∇uε,δ − ∇u| = |∇z1
ε| ≤ C, ∇2uε,δ = ∇2z1

ε

and similarly on {ψδ = 1} ∩ {ϕδ = 0}. On {ψδ = 0} it holds ∇uε,δ = ∇u, hence

|∇2uε,δ| = 0.

In the next estimates we may assume that max
{ εL1

2 ,
εL2

2

}
≤ h

3 . As a result, ϕδ is constant on
{
|xN | ≤

max
{ εL1

2 ,
εL2

2

}}
∩ {0 < ψδ < 1}, hence

|∇2uε,δ| ≤ |∇2ψδ||zε,δ − u| + 2|∇ψδ||∇zε,δ − ∇u| + |∇2zε,δ|

≤
C
δ2ε +

C
δ

+
C
ε
≤

C
δ2 +

C
ε

for δ sufficiently small. As a consequence of the previous estimates, setting

Jε := {|xN | > max{
εL1

2
,
εL2

2
}} and Kε := {

εL1

2
< |xN | <

εL1

2
+
√
ε},
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we get ∫
Ω∩Jε

1
ε
|∇uε,δ − ∇u|p + ε|∇2uε,δ|2 + ε(ρε,δ − |∇2uε,δ|)2 dx

≤
C
δpε

p−1 + 3
C
δ4ε

3 + 2ε
∫

Ω∩Kε

(
1

2
√
ε

(
γ1 + δ̃ −

∫
Q

max{|∇2v1| + λ1, 0}
))2

dx

+ 2εβ2 + 2ε
∫

Ω∩Kε

(
1

2
√
ε

(
γ2 + δ̃ −

∫
Q

max{|∇2v2| + λ2, 0}
))2

dx

≤
C
δpε

p−1 +
C
δ4ε

3 + 2εβ2 + C
√
ε,

∫
{ψδ=1}∩{0<ϕδ<1}∩Jε

1
ε
|∇uε,δ − ∇u|p + ε|∇2uε,δ|2 + ε(ρε,δ − |∇2uε,δ|)2 dx

≤

∣∣∣∣∣∣Kδ\K ∩
{
|xN | < max

{
εL1

2
,
εL2

2

}}∣∣∣∣∣∣
(
1
ε

(C
δ
ε −C

)p

+ 3ε
(C
δ2 +

C
ε

)2)
+ 2ε

(
µε,δ

(
Kδ\K ∩

{
|xN | < max

{
εL1

2
,
εL2

2

}}))2

≤ max{εL1, εL2}δN−1
(
1
ε

(C
δ
ε −C

)p

+ 3ε
(C
δ2 +

C
ε

)2)
+ εC

and ∫
{ψδ=0}

1
ε
|∇uε,δ − ∇u|p + ε|∇2uε,δ|2 + ε(ρε,δ − |∇2uε,δ|)2 dx ≤ εC.

Moreover, recalling that we have assumed that max
{ εL1

2 ,
εL2

2

}
≤ h

3 , we also get∫
{0<ψδ<1}∩Jε

1
ε
|∇uε,δ − ∇u|p + ε|∇2uε,δ|2 + ε(ρε,δ − |∇2uε,δ|)2 dx

≤

∣∣∣∣∣∣(Ω0,2δ\Ω0,δ) ×
(
−max

{
εL1

2
,
εL2

2

}
,max

{
εL1

2
,
εL2

2

})∣∣∣∣∣∣
(
1
ε

(C
δ
ε + C

)p

+ 3ε
(C
δ2 +

C
ε

)2)
+ 2ε

(
µε,δ

(
Ω0,2δ\Ω0,δ ×

(
−max

{
εL1

2
,
εL2

2

}
,max

{
εL1

2
,
εL2

2

})))2

≤ HN−1(Ω0,2δ\Ω0,δ) max{εL1, εL2}

(
1
ε

(C
δ
ε + C

)p

+ 3ε
(C
δ2 +

C
ε

)2)
+ εC.

Choosing η = ±a ⊗ eN in Remark 2.2 we observe that

W(ξ) ≤ C|min{ξ − a ⊗ eN , ξ + a ⊗ eN}|
p,

which, together with the above estimates, implies that

lim sup
δ→0+

lim sup
ε→0+

Eε(uε,δ, ρε,δ,Ω\{ψδ = 1} ∩ ({ϕδ = 0} ∪ {ϕδ = 1})) = 0. (4.5)
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We are left to estimate the energy on the set {ψδ = 1} ∩ ({ϕδ = 0} ∪ {ϕδ = 1}). To this end, without loss
of generality we may suppose that x0 < {|xN | ≤

εL1

2 } and δ̃ ≤ C. We have that

Eε(uε,δ, ρε,δ, {ψδ = 1} ∩ {ϕδ = 1})

≤

∫
Kδ

1
ε

W(∇uε,δ) + ε|∇2uε,δ|2 + ε(ρε,δ − |∇2uε,δ|2) dx

=

∫
Kδ

1
ε

W(∇z1
ε) + ε|∇2z1

ε|
2 + ε(ρε,δ − |∇2z1

ε|)
2 dx

=

∫
Kδ∩{|xN |<

εL1
2 }

1
ε

W(∇z1
ε) + ε|∇2z1

ε|
2 + ε(max{|∇2z1

ε| + λ1
ε, 0} − |∇

2z1
ε|)

2 dx

+

∫
Kδ∩{

εL1
2 <|xN |<

εL1
2 +
√
ε}

ε

(
1

2
√
ε

(
γ1 + δ̃ −

∫
Q

max{|∇2v1| + λ1, 0}
))2

dx +
√
εβχK(x0)

≤

∫
Kδ∩{|xN |<

εL1
2 }

1
ε

W(∇z1
ε) + ε(min{|∇2z1

ε|
2 + (λ1

ε)
2, 2|∇2z1

ε|
2} dx + C

√
ε

=

∫
K′δ×(− 1

2 ,
1
2 )

L1W
(
∇v1

(
x′

εL1 , xN

))
+

1
L1 min


∣∣∣∣∣∣∇2v1

(
x′

εL1 , xN

)∣∣∣∣∣∣2 + (λ1)2, 2

∣∣∣∣∣∣∇2v1
(

x′

εL1 , xN

)∣∣∣∣∣∣2
 dx + C

√
ε.

Using the periodicity of ∇v1 in the estimate above we get

lim
ε→0+

Eε(uε,δ, ρε,δ, {ψδ = 1} ∩ {ϕδ = 1}) ≤ HN−1(K′δ)F1/L1(v1, λ1) ≤ HN−1(K′δ)(Φ(γ1) + δ̃).

An analogous argument leads to the estimate of the energy on the set {ψδ = 1} ∩ {ϕδ = 0}, namely

lim
ε→0+

Eε(uε,δ, ρε,δ, {ψδ = 1} ∩ {ϕδ = 0}) ≤ HN−1(Ω0,2δ\K′)(Φ(γ1) + δ̃).

The last two inequalities together with (4.5) imply that

lim
δ̃→0+

lim
δ→0+

lim
ε→0+

Eε(uε,δ, ρε,δ) ≤ E(u, µ).

Using a diagonal argument, we have shown the assertion of the theorem if u and µ are as in (4.4).

Step A.2. We consider the case of finitely many interfaces, namely S ∇u = ∪n
h=1Ωsh , and

µ =

n∑
i=0

γiχKi +

m∑
i=0

βiδxi , γi, βi ≥ 0,Ki ⊂ S ∇u compact and pairwise disjoint, xi ∈ Ω\S ∇u.

By Theorem 2.6, we can suppose that near an interface Ωsh , u takes the form

u(x) = ±|xn − sh| + ch.

Therefore, we can (up to adding constants) apply Step A.1 to obtain a recovery sequence near the
interface Ωsh for any summand in the definition of µ. Since this construction is local and the sets Ωsh

as well as the sets Ki and {xi} have positive distance from each other, these local constructions can be
glued to give a recovery sequence for µ near Ωsh and then also for u, µ in Ω. We leave the details to the
reader.
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Step A.3. We now consider the case of infinitely many interfaces, namely S ∇u = ∪∞h=1Ωsh and we let
µ be a finite sum of terms as in Step A.2. As in the proof of [11, Theorem 5.5, Step 2], only α and
β can be accumulation points of the sequence (sh) (otherwise one could find a cylinder Z ⊂ Ω with
axis in direction of eN that intersects infinitely many of the Ωsh , and this would contradict the fact that∑

hH
N−1(Ωsh) < ∞). We can choose a decreasing sequence δk → 0+ such that {α+δk, β−δk}k∩{sh}h = ∅

and such that supp(µ) ⊂⊂ {α+ δk < xN < β− δk} for all k. Then it follows that u has only finitely many
interfaces in

Uk := Ω ∩ {α + δk < xN < β − δk}.

Therefore, we can apply Step A.2 and find for any given sequence εh → 0+ sequences (uk
h)h and (µh)h

such that

lim
h→∞

uk
h = u in W1,1(Ω,Uk), µh ⇀∗ µ in Ω, lim

h→∞
Eεh(u

k
h, µh,Uk) ≤ E(u, µ,Uk), (4.6)

where we used that supp(µ) ⊂⊂ Uk and that therefore the sequences µh which approximate µ in Step A.2
can be chosen in such a way that they not depend on k. By construction it holds

Eεh(u
k
h, µh,Uk) = Eεh(u

k
h, µh,Ω)

which implies by (4.6) that

lim
k→∞

lim
h→∞

Eεh(u
k
h, µh,Ω) ≤ lim

k→∞
E(u, µ,Uk) ≤ E(u, µ,Ω). (4.7)

The existence of a subsequence uk(h)
h with the desired properties follows by a diagonal argument.

Step B. Now we assume that µ is a finite positive Radon measure. It holds

0 ≤ g :=
dµ

dHN-1xS ∇u
∈ L1(S ∇u,H

N-1).

We observe that there exist functions

gk =

nk∑
i=0

γk,iχK′k,i
, K′k,i ⊂ S ∇u compact, pairwise disjoint

which satisfy
lim
k→∞

gk = g in L1(S ∇u,H
N−1), lim

k→∞
HN−1({gk < g}) = 0.

By the boundedness of µ, we find measures
∑mk

i=0 βk,iδxk,i supported outside S ∇u such that

mk∑
i=0

βk,iδxk,i ⇀
∗ µ − gHN−1xS ∇u.

It follows that

µk := gkH
N−1xS ∇u +

mk∑
i=0

βk,iδxk,i ⇀
∗ µ.
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Since the Γ- lim sup is lower semicontinuous and Φ is non-increasing and bounded, we can use the
result of Step A to obtain

Γ- lim suph→∞ Eεh(u, µ) ≤ lim inf
k→∞

Γ- lim suph→∞ Eεh(u, µk)

≤ lim inf
k→∞

E(u, µk) = lim inf
k→∞

∫
Ω

Φ(gk)dHN−1

≤ lim inf
k→∞

∫
Ω

Φ(g)dHN−1 + C lim
k→∞
HN−1({gk < g}) = E(u, µ)

for any sequence εh → 0+. This concludes the proof of the theorem. �

5. Conclusions

We investigated a family of Cahn-Hilliard type energies for gradient vector fields with a double-
well potential W having two rank-one connected wells A and B, supplemented by an additional term
modeling the interaction with a surfactant density.

We proved the Γ-convergence of these functionals to a limit energy E(u, µ), finite for deformations
u with ∇u ∈ BV (Ω, {A, B}) and for surfactant measures µ. The limit energy is of perimeter type and
can be expressed as

E(u, µ) =

∫
S ∇u

Φ

(
dµ

dHN-1xS ∇u

)
dHN-1 ,

where Φ is a nonincreasing surface tension density determined through an asymptotic cell problem.
The lim inf inequality follows by the blow-up method, while the lim sup construction exploits the

fact that the asymptotic problem defining Φ can be restricted to classes of functions with additional
regularity and periodicity.

From a modeling perspective, our Γ-convergence result shows that phase transitions are promoted
in regions where surfactant accumulates. This mechanism is fully consistent with the scalar fluid-
fluid case introduced by Perkins, Sekerka, Warren and Langer and considered in [19], and provides
a rigorous variational analysis of surfactant-driven solid-solid transitions. In this sense, our result
extends the classical gradient theory of phase transitions in presence of surfactant to a vectorial setting,
contributing to the mathematical understanding of phenomena relevant, for instance, in crystal growth,
metallurgy, and ceramics processing.
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Ann. Inst. H. Poincaré C Anal. Non Linéaire, 7 (1990), 67–90. https://doi.org/10.1016/s0294-
1449(16)30304-3

7. J. M. Ball, R. D. James, Fine phase mixtures as minimizers of energy, Arch. Rational Mech. Anal.,
100 (1987), 13–52. https://doi.org/10.1007/BF00281246

8. A. Braides, Gamma-convergence for beginners, Oxford Lecture Series
in Mathematics and its Applications, Oxford University Press, 2002.
https://doi.org/10.1093/acprof:oso/9780198507840.001.0001

9. M. Chermisi, G. Dal Maso, I. Fonseca, G. Leoni, Singular perturbation models in
phase transitions for second-order materials, Indiana Univ. Math. J., 60 (2011), 367–409.
https://doi.org/10.1512/iumj.2011.60.4346

10. M. Cicalese, E. N. Spadaro, C. I. Zeppieri, Asymptotic analysis of a second-order singular
perturbation model for phase transitions, Calc. Var. Partial Differential Equations, 41 (2011), 127–
150. https://doi.org/10.1007/s00526-010-0356-9

11. S. Conti, I. Fonseca, G. Leoni, A Γ-convergence result for the two-gradient theory of phase
transitions, Commun. Pure Appl. Math., 55 (2002), 857–936. https://doi.org/10.1002/cpa.10035

12. S. Conti, B. Schweizer, A sharp-interface limit for a two-well problem in geometrically linear
elasticity, Arch. Ration. Mech. Anal., 179 (2006), 413–452. https://doi.org/10.1007/s00205-005-
0397-y

13. S. Conti, B. Schweizer, Rigidity and gamma convergence for solid-solid phase
transitions with SO(2) invariance, Commun. Pure Appl. Math., 59 (2006), 830–868.
https://doi.org/10.1002/cpa.20115

14. R. Cristoferi, I. Fonseca, A. Hagerty, C. Popovici, A homogenization result in the gradient theory
of phase transitions, Interfaces Free Bound., 21 (2019), 367–408. https://doi.org/10.4171/ifb/426

15. G. Dal Maso, An introduction to Γ-convergence, Progress in Nonlinear Differential Equations and
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