Citation: François Murat, Alessio Porretta. The ergodic limit for weak solutions of elliptic equations with Neumann boundary condition[J]. Mathematics in Engineering, 2021, 3(4): 1-20. doi: 10.3934/mine.2021031
| [1] | Arisawa M, Lions PL (1998) On ergodic stochastic control. Commun Part Diff Eq 23: 2187-2217. |
| [2] | Bensoussan A, Frehse J (1987) On Bellman equation of ergodic type with quadratic growth Hamiltonian, In: Contributions to Modern Calculus of Variations, Wiley, 13-26. |
| [3] | Bardi M, Capuzzo-Dolcetta I (1997) Optimal Control and Viscosity Solutions of Hamilton-JacobiBellman Equations, Boston: Birkhäuser. |
| [4] | Bensoussan A, Lions JL, Papanicolaou G (1978) Asymptotic Analysis for Periodic Structures, Amsterdam: North-Holland. |
| [5] | Betta F, Mercaldo A, Murat F, et al. (2003) Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure. J Math Pure Appl 82: 90-124. |
| [6] | Betta F, Mercaldo A, Murat F, et al. (2005) Uniqueness results for nonlinear elliptic equations with a lower order term. Nonlinear Anal 63: 153-170. |
| [7] | Boccardo L, Gallouët T (1992) Nonlinear elliptic equations with right hand side measures. Commun Part Diff Eq 17: 641-655. |
| [8] | Capuzzo Dolcetta I, Menaldi JL (1988) Asymptotic behavior of the first order obstacle problem. J Differ Equations 75: 303-328. |
| [9] | Davini A, Fathi A, Iturriaga R, et al. (2016) Convergence of the solutions of the discounted equation. Invent Math 206: 29-55. |
| [10] | Droniou J, Vazquez JL (2009) Noncoercive convection-diffusion elliptic problems with Neumann boundary conditions. Calc Var 34: 413-434. |
| [11] | Gilbarg D, Trudinger N (1983) Partial Differential Equations of Second Order, 2 Eds., BerlinNew-York: Springer-Verlag. |
| [12] | Gimbert F (1985) Problèmes de Neumann quasilineaires. J Funct Anal 68: 65-72. |
| [13] | Ishii H, Mitake H, Tran HV (2017) The vanishing discount problem and viscosity Mather measures. Part 1: the problem on a torus. J Math Pure Appl 108: 125-149. |
| [14] | Leone C, Porretta A (1998) Entropy solutions for nonlinear elliptic equations in L1. Nonlinear Anal Theor 32: 325-334. |
| [15] | Lions PL (1985) Quelques remarques sur les problèmes elliptiques quasilinéaires du second ordre. J Anal Math 45: 234-254. |
| [16] | Lions PL (1996) Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, New York: The Clarendon Press. |
| [17] | Mitake H, Tran HV (2017) Selection problems for a discounted degenerate viscous HamiltonJacobi equation. Adv Math 306: 684-703. |
| [18] | Murat F, Soluciones renormalizadas de EDP elipticas no lineales, Preprint 93023 of Laboratoire d'Analyse Numérique, Université Paris VI, 1993. Available from: http://archive.schools.cimpa.info/anciensite/NotesCours/PDF/2009/Alexandrie_Murat_2.pdf. |
| [19] | Porretta A (2008) On the comparison principle for p-Laplace type operators with first order terms, In: On the Notion of Solutions to Nonlinear Elliptic Problems: Results and Developments, Quaderni di Matematica 23, Dept. Math. Seconda Univ. Napoli, Caserta, 459-497. |
| [20] | Porretta A, Elliptic equations with first-order terms, notes of the CIMPA School, Alexandria, 2009. Available from: http://archive.schools.cimpa.info/anciensite/NotesCours/PDF/2009/Alexandrie_Porretta.pdf. |
| [21] | Stampacchia G (1965) Le problème de Dirichlet pour les equations élliptiques du second ordre à coefficients discontinus, Ann I Fourier 15: 189-258. |
| [22] | Ziemer WP (1989) Weakly Differentiable Functions, New York: Springer-Verlag. |