Research article

Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations

  • Received: 08 June 2018 Accepted: 16 August 2018 Published: 21 September 2018
  • We consider elliptic equations in planar domains with mixed boundary conditions of Dirichlet-Neumann type. Sharp asymptotic expansions of the solutions and unique continuation properties from the Dirichlet-Neumann junction are proved.

    Citation: Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang. Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations[J]. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84

    Related Papers:

  • We consider elliptic equations in planar domains with mixed boundary conditions of Dirichlet-Neumann type. Sharp asymptotic expansions of the solutions and unique continuation properties from the Dirichlet-Neumann junction are proved.


    加载中


    [1] Adolfsson V, Escauriaza L (1997) C1,α domains and unique continuation at the boundary. Comm Pure Appl Math 50: 935–969. doi: 10.1002/(SICI)1097-0312(199710)50:10<935::AID-CPA1>3.0.CO;2-H
    [2] Adolfsson V, Escauriaza L, Kenig C (1995) Convex domains and unique continuation at the boundary. Rev Mat Iberoam 11: 513–525.
    [3] Brändle C, Colorado E, de Pablo A, et al. (2013) A concave-convex elliptic problem involving the fractional Laplacian. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 143: 39–71. doi: 10.1017/S0308210511000175
    [4] Caffarelli L, Silvestre L (2007) An extension problem related to the fractional Laplacian. Commun Part Diff Eq 32: 1245–1260. doi: 10.1080/03605300600987306
    [5] Carleman T (1939) Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes. Ark Mat Astr Fys 26: 9.
    [6] Dal Maso G, Orlando G, Toader R (2015) Laplace equation in a domain with a rectilinear crack: higher order derivatives of the energy with respect to the crack length. NoDEA Nonlinear Diff 22: 449–476. doi: 10.1007/s00030-014-0291-0
    [7] Doktor P, Zensek A (2006) The density of infinitely differentiable functions in Sobolev spaces with mixed boundary conditions. Appl Math 51: 517–547. doi: 10.1007/s10492-006-0019-5
    [8] Fall MM, Felli V (2014) Unique continuation property and local asymptotics of solutions to fractional elliptic equations. Commun Part Diff Eq 39: 354–397. doi: 10.1080/03605302.2013.825918
    [9] Felli V, Ferrero A (2013) Almgren-type monotonicity methods for the classification of behaviour at corners of solutions to semilinear elliptic equations. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 143: 957–1019. doi: 10.1017/S0308210511001314
    [10] Felli V, Ferrero A (2014) On semilinear elliptic equations with borderline Hardy potentials. J Anal Math 123: 303–340. doi: 10.1007/s11854-014-0022-9
    [11] Felli V, Ferrero A, Terracini S (2011) Asymptotic behavior of solutions to Schrödinger equations near an isolated singularity of the electromagnetic potential. J Eur Math Soc 13: 119–174.
    [12] Felli V, Ferrero A, Terracini S (2012) On the behavior at collisions of solutions to Schrödinger equations with many-particle and cylindrical potentials. Discrete Contin Dyn-A 32: 3895–3956. doi: 10.3934/dcds.2012.32.3895
    [13] Felli V, Ferrero A, Terracini S (2012) A note on local asymptotics of solutions to singular elliptic equations via monotonicity methods. Milan J Math 80: 203–226. doi: 10.1007/s00032-012-0174-y
    [14] Garofalo N, Lin FH (1986) Monotonicity properties of variational integrals, Ap weights and unique continuation. Indiana U Math J 35: 245–268. doi: 10.1512/iumj.1986.35.35015
    [15] Hartman P (1964) Ordinary Differential Equations, Wiley, New York.
    [16] Kassmann M, Madych WR (2007) Difference quotients and elliptic mixed boundary value problems of second order. Indiana U Math J 56: 1047–1082. doi: 10.1512/iumj.2007.56.2836
    [17] Krantz SG (2006) Geometric function theory. Explorations in complex analysis, Cornerstones, Birkhäuser Boston, Inc., Boston, MA.
    [18] Kukavica I (1998) Quantitative uniqueness for second-order elliptic operators. Duke Math J 91: 225–240. doi: 10.1215/S0012-7094-98-09111-6
    [19] Kukavica I, Nyström K (1998) Unique continuation on the boundary for Dini domains. Proc Amer Math Soc 126: 441–446. doi: 10.1090/S0002-9939-98-04065-9
    [20] Lazzaroni G, Toader R (2011) Energy release rate and stress intensity factor in antiplane elasticity. J Math Pures Appl 95: 565–584. doi: 10.1016/j.matpur.2011.01.001
    [21] Ros-Oton X, Serra J (2014) The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J Math Pures Appl 101: 275–302. doi: 10.1016/j.matpur.2013.06.003
    [22] Ros-Oton X, Serra J (2016) Regularity theory for general stable operators. J Differ Equations 260: 8675–8715. doi: 10.1016/j.jde.2016.02.033
    [23] Ros-Oton X, Serra J (2016) Boundary regularity for fully nonlinear integro-differential equations. Duke Math J 165: 2079–2154. doi: 10.1215/00127094-3476700
    [24] Serra J (2015) Regularity for fully nonlinear nonlocal parabolic equations with rough kernels. Calc Var Partial Dif 54: 615–629. doi: 10.1007/s00526-014-0798-6
    [25] Savaré G (1997) Regularity and perturbation results for mixed second order elliptic problems. Commun Part Diff Eq 22: 869–899. doi: 10.1080/03605309708821287
    [26] Tao X, Zhang S (2005) Boundary unique continuation theorems under zero Neumann boundary conditions. B Aust Math Soc 72: 67–85. doi: 10.1017/S0004972700034882
    [27] Tao X, Zhang S (2008) Weighted doubling properties and unique continuation theorems for the degenerate Schrödinger equations with singular potentials. J Math Anal Appl 339: 70–84. doi: 10.1016/j.jmaa.2007.06.042
    [28] Wolff TH (1992) A property of measures in R$^N$ and an application to unique continuation. Geom Funct Anal.
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4140) PDF downloads(817) Cited by(4)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog