Research article

Poincaré inequalities and Neumann problems for the variable exponent setting

  • Received: 10 April 2021 Accepted: 17 August 2021 Published: 24 September 2021
  • In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.

    Citation: David Cruz-Uribe, Michael Penrod, Scott Rodney. Poincaré inequalities and Neumann problems for the variable exponent setting[J]. Mathematics in Engineering, 2022, 4(5): 1-22. doi: 10.3934/mine.2022036

    Related Papers:

  • In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related to a degenerate $ p $-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in variable exponent spaces and solutions to a degenerate $ {p(\cdot)} $-Laplacian, a non-linear elliptic equation with nonstandard growth conditions.



    加载中


    [1] M. Biegert, A priori estimates for the difference of solutions to quasi-linear elliptic equations, Manuscripta Math., 133 (2010), 273–306. doi: 10.1007/s00229-010-0367-z
    [2] D. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Heidelberg: Birkhäuser/Springer, 2013.
    [3] D. Cruz-Uribe, K. Moen, S. Rodney, Matrix $\mathcal A_p$ weights, degenerate Sobolev spaces, and mappings of finite distortion, J. Geom. Anal., 26 (2016), 2797–2830. doi: 10.1007/s12220-015-9649-8
    [4] D. Cruz-Uribe, S. Rodney, Bounded weak solutions to elliptic PDE with data in Orlicz spaces, J. Differ. Equations, 297 (2021), 409–432. doi: 10.1016/j.jde.2021.06.025
    [5] D. Cruz-Uribe, S. Rodney, E. Rosta, Poincaré inequalities and neumann problems for the $p$-laplacian, Can. Math. Bull., 61 (2018), 738–753. doi: 10.4153/CMB-2018-001-6
    [6] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Heidelberg: Springer, 2011.
    [7] D. E. Edmunds, J. Lang, O. Méndez, Differential operators on spaces of variable integrability, Hackensack, NJ: World Scientific Publishing Co. Pte. Ltd., 2014.
    [8] E. B. Fabes, C. E. Kenig, R. P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Commun. Part. Diff. Eq., 7 (1982), 77–116. doi: 10.1080/03605308208820218
    [9] P. Harjulehto, P. Hästö, Út V. Lê, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal., 72 (2010), 4551–4574. doi: 10.1016/j.na.2010.02.033
    [10] K. Ho, I. Sim, Existence results for degenerate $p(x)$-Laplace equations with Leray-Lions type operators, Sci. China Math., 60 (2017), 133–146. doi: 10.1007/s11425-015-0385-0
    [11] Y. H. Kim, L. Wang, C. Zhang, Global bifurcation for a class of degenerate elliptic equations with variable exponents, J. Math. Anal. Appl., 371 (2010), 624–637. doi: 10.1016/j.jmaa.2010.05.058
    [12] L. Kong, A degenerate elliptic system with variable exponents, Sci. China Math., 62 (2019), 1373–1390. doi: 10.1007/s11425-018-9409-5
    [13] P. Lindqvist, Notes on the p-laplace equation, 2006, preprint.
    [14] G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355–426. doi: 10.1007/s10778-006-0110-3
    [15] A. Ron, Z. Shen, Frames and stable bases for shift-invariant subspaces of $L_2(\mathbf R^d)$, Can. J. Math., 47 (1995), 1051–1094. doi: 10.4153/CJM-1995-056-1
    [16] V. D. Rǎdulescu, D. D. Repovš, Partial differential equations with variable exponents, Boca Raton, FL: CRC Press, 2015.
    [17] E. T. Sawyer, R. L. Wheeden, Hölder continuity of weak solutions to subelliptic equations with rough coefficients, Mem. Amer. Math. Soc., 180 (2006), 847.
    [18] E. T. Sawyer, R. L. Wheeden, Degenerate Sobolev spaces and regularity of subelliptic equations, T. Am. Math. Soc., 362 (2010), 1869–1906.
    [19] R. E. Showalter, Monotone operators in Banach spaces and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1504) PDF downloads(131) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog