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Poincaré inequalities and Neumann problems for the variable exponent
setting

David Cruz-Uribe1,∗, Michael Penrod1 and Scott Rodney2

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL 35487, USA
2 Department of Mathematics, Physics and Geology, Cape Breton University, Sydney, NS B1M1A2,

CA

* Correspondence: Email: dcruzuribe@ua.edu.

Abstract: In an earlier paper, Cruz-Uribe, Rodney and Rosta proved an equivalence between weighted
Poincaré inequalities and the existence of weak solutions to a family of Neumann problems related
to a degenerate p-Laplacian. Here we prove a similar equivalence between Poincaré inequalities in
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1. Introduction

Poincaré inequalities play a central role in the study of regularity for elliptic equations. For specific
degenerate elliptic equations, an important problem is to show the existence of such an inequality;
however, an extensive theory has been developed by assuming their existence. See, for example,
[17,18]. In [5], the first and third authors, along with E. Rosta, gave a characterization of the existence
of a weighted Poincaré inequality, adapted to the solution space of degenerate elliptic equations, in
terms of the existence and regularity of a weak solution to a Neumann problem for a degenerate p-
Laplacian equation.

The goal of the present paper is to extend this result to the setting of variable exponent spaces. Here,
the relevant equations are degenerate p(·)-Laplacians. The basic operator is the p(·)-Laplacian: given
an exponent function p(·) (see Section 2 below), let

∆p(·)u = − div(|∇u|p(·)−2∇u).
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This operator arises in the calculus of variations as an example of nonstandard growth conditions, and
has been extensively studied by a number of authors: see [7,9,14,16] and the extensive references they
contain. We are interested in a degenerate version of this operator,

Lu = − div(|
√

Q∇u|p(·)−2Q∇u),

where Q is a n × n, positive semi-definite, self-adjoint, measurable matrix function. These operators
have also been studied, though nowhere nearly as extensively: see, for instance, [10–12]. This paper is
part of an ongoing project to develop a general regularity theory for these operators.

In order to state our main result, we first give some definitions and notation that will be used
throughout our work. Let Ω ⊂ Rn be a fixed domain (open and connected), and let E be a bounded
subdomain with E ⊆ Ω. Given an exponent function p(·), we let Lp(·)(E) denote the associated variable
Lebesgue space; for a precise definition, see Section 2 below.

LetSn denote the collection of all positive semi-definite, n×n self-adjoint matrices. Let Q : Ω→ Sn

be a measurable, matrix-valued function whose entries are Lebesgue measurable. We define

γ(x) = |Q(x)|op = sup
|ξ|=1
|Q(x)ξ|

to be the pointwise operator norm of Q(x); this function will play an important role in our results. We
will generally assume that γ1/2 lies in the variable Lebesgue space Lp(·)(E). More generally, let v be a
weight on Ω: i.e., a non-negative function in L1

loc(Ω). Given a function f on E, we define the weighted
average of f on E by

fE,v =
1

v(E)

∫
E

f (x)v(x)dx = −

∫
E

f dv.

If v = 1 we write simply fE. Again, we will generally assume that v ∈ Lp(·)(E).

Remark 1.1. In this paper we do not assume any connection between weight v and the matrix Q.
However, in many situations it is common to assume that v is the largest eigenvalue of Q: that is,
v = |Q|op. See, for instance, [3, 4].

The next two definitions are central to our main result.

Definition 1.2. Given p(·) ∈ P(E), a weight v and a measurable, matrix-valued function Q, suppose
v, γ1/2 ∈ Lp(·)(E). Then the pair (v,Q) is said to have the Poincaré property of order p(·) on E if there
is a positive constant C0 = C0(E, p(·)) such that for all f ∈ C1(E),

‖ f − fE,v‖Lp(·)(v;E) ≤ C0‖∇ f ‖
L

p(·)
Q (E). (1.1)

Remark 1.3. The assumption that v, γ1/2 ∈ Lp(·)(E) ensures that both sides of inequality (1.1) are
finite.

Definition 1.4. Given p(·) ∈ P(E), a weight v and a measurable matrix-valued function Q, suppose
v, γ1/2 ∈ Lp(·)(E). Then the pair (v,Q) is said to have the p(·)-Neumann property on E if the following
hold:
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1). Given any f ∈ Lp(·)(v; E), there exists a weak solution (u, g) f ∈ H̃1,p(·)
Q (v; E) to the degenerate

Neumann problemdiv
(∣∣∣∣√Q(x)∇u(x)

∣∣∣∣p(x)−2
Q(x)∇u(x)

)
= | f (x)|p(x)−2 f (x)v(x)p(x) in E

nT · Q(x)∇u(x) = 0 on ∂E,
(1.2)

where n is the outward unit normal vector of ∂E.
2). Any weak solution (u, g) f ∈ H̃1,p(·)

Q (v; E) of (1.2) is regular: that is, there is a positive constant
C1 = C1(p(·), v, E) such that

‖u‖Lp(·)(v;E) ≤ C1‖ f ‖
r∗−1
p∗−1

Lp(·)(v;E), (1.3)

where p∗ and r∗ are defined by

p∗ =

p+ if ‖g‖
L

p(·)
Q (E) < 1

p− if ‖g‖
L

p(·)
Q (E) ≥ 1

and r∗ =

p+ if ‖ f ‖Lp(·)(v;E) ≥ 1
p− if ‖ f ‖Lp(·)(v;E) < 1

. (1.4)

Remark 1.5. The degenerate, variable exponent Sobolev space, H̃1,p(·)
Q (v; E), will be defined in

Section 2. Here we note that the definition will require the assumption that v, γ1/2 ∈ Lp(·)(E).

Remark 1.6. The vector function g should be thought of as a weak gradient of f ; we avoid the notation
∇ f since in the degenerate setting it is often not a weak derivative in the classical sense. See the
discussion after Definition 2.15.

Remark 1.7. While the PDE in (1.2) is stated in terms of a classical Neumann problem, we make
no assumptions about the regularity of the boundary ∂E in our definition of a weak solution. In the
constant exponent case, as noted in [5, Remark 2.10], our definition of weak solution is equivalent to
this classical formulation if we assume sufficient regularity.

Our main result shows that these two properties are equivalent under certain minimal assumptions
on the exponent function p(·), the weight v, and the operator norm of the matrix function Q.

Theorem 1.8. Let p(·) ∈ P(E) with 1 < p− ≤ p+ < ∞. Suppose v is a weight in Ω and Q is a
measurable matrix function with v, γ1/2 ∈ Lp(·)(E). Then the pair (v,Q) has the Poincaré property of
order p(·) on E if and only if (v,Q) has the p(·)-Neumann property on E.

This result is a generalization of the main result in [5]; when p(·) is constant Theorem 1.8 is
equivalent to it. However, this is not immediately clear. In the constant exponent case, the exponent
on the right-hand side of the regularity estimate corresponding to (1.3) is 1. This is because in the
constant exponent case the PDE is homogeneous and we can normalize the equation, but this is no
longer possible in the variable exponent case. But, in the constant exponent case, we have that r∗−1

p∗−1 = 1.
More significantly, there is also a difference in the definition of weighted spaces and the formulation

of the Poincaré inequality. Denote the weight that appears in [5] by w; there we assumed that w ∈ L1(E)
and defined a function f to be in Lp(w) if ∫

E
| f |pw dx < ∞,
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However, in the present case, if p(·) = p is a constant exponent, then we have that f ∈ Lp(v; E) if∫
E
| f v|p dx =

∫
E
| f |vp dx < ∞.

Therefore, to pass between our current setting and that in [5], we need to define w by v = w1/p.
This leads to a substantial difference in the statement of the Poincaré inequality. In [5] the left-hand

side of the Poincaré inequality is (assuming v = w1/p)( ∫
E
| f (x) − fE,w|

pw dx
)1/p

= ‖ f − fE,w‖Lp(v;E);

on the other hand, in Definition 1.2 the left-hand side is( ∫
E
| f (x) − fE,v|

pw dx
)1/p

= ‖ f − fE,v‖Lp(v;E).

These would appear to be different conditions, but, in fact, these two versions of the Poincaré inequality
are equivalent. Moreover, we have that if we use the more standard, unweighted average fE in the
Poincaré inequality, then this implies Definition 1.2. The converse, however, requires a additional
assumption on v. Versions of the following result are part of the folklore of PDEs; we first encountered
it as a passing remark in [8]. For completeness, we give a proof in the appendix.

Proposition 1.9. Given 1 < p < ∞ and a bounded set E, suppose v ∈ Lp(E) and set w = vp. Then,

‖ f − fE,v‖Lp(v;E) ≈ ‖ f − fE,w‖Lp(v;E),

where the implicit constants depend on E, p and v. Moreover, we also have that

‖ f − fE,v‖Lp(v;E) . ‖ f − fE‖Lp(v;E).

Finally, if we assume that v−1 ∈ Lp′(E), then

‖ f − fE‖Lp(v;E) . ‖ f − fE,v‖Lp(v;E).

Remark 1.10. The hypothesis that v−1 ∈ Lp′(E) is satisfied, for instance, if we assume that vp is in the
Muckenhoupt class Ap.

The remainder of this paper is organized as follows. In Section 2 we first state the basic definitions
and properties of exponent functions and variable Lebesgue spaces needed for our results. We then
define matrix weighted variable exponent spaces, and use these to define the degenerate Sobolev spaces
where our solutions live. An important technical step is proving that these spaces have the requisite
properties. We then give the precise definition of weak solutions used in Definition 1.4. In Sections 3
and 4 we prove Theorem 1.8, each section dedicated to one implication. The proof is similar in outline
to the proof in [5], but differs significantly in detail as we address the problems that arise from working
in variable exponent spaces. Finally, in Appendix A we prove Proposition 1.9.
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2. Preliminaries

We begin this section by reviewing the basic definitions, notation, and properties of exponent
functions and variable Lebesgue spaces. For complete information, we refer the interested reader
to [2].

Definition 2.1. An exponent function is a Lebesgue measurable function p(·) : E → [1,∞]. Denote
the collection of all exponent functions on E by P(E). Define the set E∞ = {x ∈ E : p(x) = ∞} and let

p−(E) = p− = ess inf
x∈E

p(x), and p+(E) = p+ = ess sup
x∈E

p(x).

Definition 2.2. Given p(·) ∈ P(E) and a Lebesgue measurable function f , define the modular
functional (or simply the modular) associated with p(·) by

ρp(·),E( f ) =

∫
E\E∞
| f (x)|p(x)dx + ‖ f ‖L∞(E∞).

If f is unbounded on E∞ or f (·)p(·) < L1(E\E∞) then we define ρp(·),E( f ) = +∞. When |E∞| = 0 we let
‖ f ‖L∞(E∞) = 0; when |E\E∞| = 0, then ρp(·),E( f ) = ‖ f ‖L∞(E∞). In situations where there is no ambiguity
we will simply write ρp(·)( f ) or ρ( f ).

Definition 2.3. Let p(·) ∈ P(E) and let v be a weight on E.

1). We define the variable Lebesgue space Lp(·)(E) to be the collection of all Lebesgue measurable
functions f : E → R satisfying

‖ f ‖Lp(·)(E) = inf
{
µ > 0 : ρ

(
f
µ

)
≤ 1

}
< ∞.

2). We define the weighted variable Lebesgue space Lp(·)(v; E) to be the collection of all Lebesgue
measurable functions satisfying

‖ f ‖Lp(·)(v;E) = ‖ f v‖Lp(·)(E) < ∞.

Theorem 2.4. [2] Let p(·) ∈ P(E). Then Lp(·)(E) is a Banach space. The space Lp(·)(E) is separable if
and only if p+ < ∞, and Lp(·)(E) is reflexive if and only if 1 < p− ≤ p+ < ∞.

The previous theorem can be extended to weighted variable Lebesgue spaces. This will be useful
when proving facts variable exponent spaces of vector-valued functions. The following result was
proved in [6]. The setting there is slightly different as they considered the spaces Lp(·)(µ) where µ is a
measure. However, if we let dµ = vp(·)dx, then their results immediately transfer into our setting, since
with our hypothesis µ is a σ-finite measure when p+ < ∞ (which is needed to prove separability).

Theorem 2.5. Let p(·) ∈ P(E) and suppose v ∈ Lp(·)(E). Then:

1). Lp(·)(v; E) is a Banach space.
2). Lp(·)(v; E) is separable if p+ < ∞.
3). Lp(·)(v; E) is reflexive if 1 < p− ≤ p+ < ∞.
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A useful result about variable Lebesgue spaces is the extension of Hölder’s inequality to the variable
exponent norm.

Theorem 2.6. [2, Theorem 2.26], Hölder’s inequality Given p(·), p′(·) ∈ P(E) with 1
p(x) + 1

p′(x) = 1 for
a.e. x ∈ E, if f ∈ Lp(·)(E) and g ∈ Lp′(·)(E), then f g ∈ L1(E) and∫

E
| f (x)g(x)|dx ≤ Kp(·)‖ f ‖Lp(·)(E)‖g‖Lp′(·)(E),

where Kp(·) ≤ 4 is a constant depending only on p(·).

The next two results are technical lemmas that we will need in the proof of our main result.

Proposition 2.7. [2, Corollary 2.23] Given p(·) ∈ P(E), suppose |E∞| = 0. If ‖ f ‖p(·) ≥ 1, then

‖ f ‖p−
p(·) ≤ ρ( f ) ≤ ‖ f ‖p+

p(·).

If 0 ≤ ‖ f ‖p(·) < 1, then
‖ f ‖p+

p(·) ≤ ρ( f ) ≤ ‖ f ‖p−
p(·).

Proposition 2.8. [2, Proposition 2.21] Given p(·) ∈ P(E), for all nontrivial f ∈ Lp(·)(E), ρ( f /‖ f ‖p(·)) =

1 if and only if p+(E/E∞) < ∞.

The next result generalizes the trivial identity ‖ f p−1‖p′ = ‖ f ‖p−1
p to the setting of variable Lebesgue

spaces.

Theorem 2.9. Let E ⊆ Rn and p(·) ∈ P(E) with 1 < p− ≤ p+ < ∞, and f be measurable on E. Then,
‖| f |p(·)−1‖Lp′(·)(E) is finite if and only if ‖ f ‖Lp(·)(E) is finite. In particular,

‖ f ‖l∗−1
Lp(·)(E) ≤ ‖| f |

p(·)−1‖Lp′(·)(E) ≤ ‖ f ‖
b∗−1
Lp(·)(E) (2.1)

where l∗ and b∗ are given by

l∗ =

p+ if ‖ f ‖Lp(·)(E) < 1
p− if ‖ f ‖Lp(·)(E) ≥ 1

b∗ =

p− if ‖ f ‖Lp(·)(E) < 1
p+ if ‖ f ‖Lp(·)(E) ≥ 1.

.

Proof. Let µp′ = ‖| f |p(·)−1‖Lp′(·)(E) and assume µp′ < ∞. Then µ1/(l∗−1)
p′ ≥ µ

1/(p(x)−1)
p′ for almost every x,

and so ∫
E

 | f (x)|

µ1/(l∗−1)
p′


p(x)

dx ≤
∫

E

 | f (x)|

µ
1/(p(x)−1)
p′


p(x)

dx ≤
∫

E

(
| f (x)|p(x)−1

µp′

)p′(x)

dx = ρp′(·),E

(
| f |p(·)−1

µp′

)
.

Since p− > 1, we have ess sup p′(x) < ∞. Thus, by Proposition 2.8, the modular above equals 1.
Hence, by definition of the Lp(·)(E) norm, ‖ f ‖Lp(·)(E) ≤ µ

1/(l∗−1)
p′ , or equivalently,

‖ f ‖l∗−1
Lp(·)(E) ≤ ‖| f |

p(·)−1‖Lp′(·)(E) < ∞.
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Now let µp = ‖ f ‖Lp(·)(E), and assume µp < ∞. Then the proof is essentially the same: µb∗−1
p ≥

µ
1/(p′(x)−1)
p a.e., and so∫

E

 | f (x)|p(x)−1

µb∗−1
p

p′(x)

dx ≤
∫

E

 | f (x)|p(x)−1

µ
1/(p′(x)−1)
p

p′(x)

dx =

∫
E

(
| f (x)|
µp

)p(x)

dx = ρp(·),E

(
f
µ

)
.

Since p+ < ∞, by Proposition 2.8 the above modular equals 1. Hence,

‖| f |p(·)−1‖Lp′(·)(E) ≤ µ
b∗−1
p = ‖ f ‖b∗−1

Lp(·)(E) < ∞.

�

Remark 2.10. The definitions of the exponents l∗ and b∗ clearly depend on the given function. It will
be clear from context what function these exponents are dependent on, so we will not express this
explicitly in our proofs.

We now define the matrix-weighted, vector-valued Lebesgue space Lp(·)
Q (E).

Definition 2.11. Given a measurable matrix function Q : E → Sn and p(·) ∈ P(E), define the
matrix-weighted variable Lebesgue spaceLp(·)

Q (E) to be the collection of all measurable, vector-valued
functions f : E → Rn satisfying

‖f‖
L

p(·)
Q (E) = ‖|

√
Qf|‖Lp(·)(E) < ∞.

To construct the Q-weighted Sobolev spaces, and to prove existence results for the PDE (1.2), we
show that Lp(·)

Q (E) is a separable, reflexive Banach space.

Theorem 2.12. Let Q : E → Sn be a positive semi-definite, self-adjoint, measurable, matrix-valued
function on E such that γ1/2 ∈ Lp(·)(E). Then Lp(·)

Q (E) is a Banach space. Moreover, it is separable if
p+ < ∞ and and reflexive if 1 < p− ≤ p+ < ∞.

The proof of Theorem 2.12 requires some basic facts from linear algebra, as well as some results
about matrix functions. If x = (x1, . . . , xn) ∈ Rn and 1 ≤ r ≤ ∞, we recall the `r norms on Rn:

|x|r =

 n∑
j=1

|x j|
r


1/r

and |x|∞ = sup
1≤ j≤n

|x j|.

When r = 2, |x|r is the Euclidean norm and we denote it by | · |2 = | · |. Recall that in finite dimensions,
all norms are equivalent. In particular, we have that for all x ∈ Rn,

|x|2 ≤ |x|1 ≤
√

n|x|2, |x|∞ ≤ |x|2 ≤
√

n|x|∞, |x|∞ ≤ |x|1 ≤ n|x|∞. (2.2)

We say that an n× n matrix function Q(·) is positive semi-definite on E if for every nonzero ξ ∈ Rn,
ξT Q(x)ξ ≥ 0 for almost every x ∈ Ω. We say Q is self-adjoint if qi j = q ji for 1 ≤ i, j ≤ n. Recall that
every finite, self-adjoint matrix is diagonalizable; for matrix functions this can be done measurably.

Lemma 2.13. [15, Lemma 2.3.5] Let Q be a finite, self-adjoint matrix whose entries are Lebesgue
measurable functions on some domain E. Then for every x ∈ E, Q(x) is diagonalizable, i.e., there
exists a matrix U whose entries are Lebesgue measurable functions on E such that UT QU is a diagonal
matrix and U(x) is orthogonal for every x ∈ E.
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Equivalently, there is a measurable diagonal matrix function D(x) (whose entries are the non-
negative eigenvalues of Q(x)) and an orthogonal matrix function U(x) such that for almost every x ∈ E

Q(x) = UT (x)D(x)U(x)

In particular, given such a matrix Q, we define its square root by√
Q(x) = UT (x)

√
D(x)U(x),

where
√

D(x) takes the square root of each entry of D(x) along the diagonal.

Remark 2.14. As mentioned in [18, Remark 5] and as a consequence of the proof of Lemma 2.13, the
eigenvalues {λ j(x)}nj=1 and eigenvectors {v j(x)}nj=1 associated to a self-adjoint, positive semi-definite
measurable matrix function, Q : E → Sn are also measuarable functions on E.

Proof of Theorem 2.12. Since Q(x) self-adjoint, by Lemma 2.13, Q(x) is diagonalizable. By Remark
2.14, let λ1(x), . . . , λn(x) be the measurable eigenvalues of Q(x) and let v1(x), . . . , vn(x) be measurable
eigenvectors with |v j(x)| = 1 for almost every x ∈ E, 1 ≤ j ≤ n. Hence, {v j(x)}nj=1 forms a basis for Rn

for almost every x ∈ E. Fix f ∈ Lp(·)
Q (E); then we can write f as

f(x) =

n∑
j=1

f̃ j(x)v j(x), (2.3)

where f̃ j = fT v j is the jth component of f with respect to the basis {v j}
n
j=1. Completeness, separability

and reflexivity are a consequence of the following equivalence of norms: for all f ∈ Lp(·)
Q (E),

1
n

n∑
j=1

‖ f̃ j‖Lp(·)(λ1/2
j ;E) ≤ ‖f‖Lp(·)

Q (E) ≤

n∑
j=1

‖ f̃ j‖Lp(·)(λ1/2
j ;E). (2.4)

Suppose for the moment that (2.4) holds. To show that Lp(·)
Q (E) is complete, let {fk}

∞
k=1 be a Cauchy

sequence in Lp(·)
Q (E). Let ε > 0 and choose N ∈ N such that for every l,m > N, ‖fl − fm‖Lp(·)

Q (E) < ε/n.
Inequality (2.4) then shows for l,m > N,

n∑
j=1

‖(fl − fm)T v j‖Lp(·)(λ1/2
j ;E) ≤ n‖fl − fm‖Lp(·)

Q (E) < ε.

Thus, for 1 ≤ j ≤ n, {fT
k v j}

∞
k=1 is Cauchy in Lp(·)(λ1/2

j ; E). By Theorem 2.5, Lp(·)(λ1/2
j ; E) is complete.

Thus, there exists g̃ j ∈ Lp(·)(λ1/2
j ; E) such that, as k → ∞,

‖fT
k v j − g̃ j‖Lp(·)(λ1/2;E) → 0. (2.5)

Define g : E → Rn by setting g(x) =
∑n

j=1 g̃ j(x)v j(x). Since g̃ j ∈ Lp(·)(λ1/2
j ; E), 1 ≤ j ≤ n, by (2.4),

g ∈ Lp(·)
Q (E). Furthermore, we have that

‖fk − g‖
L

p(·)
Q (E) ≤

n∑
j=1

‖fT
k v j − g̃ j‖Lp(·)(λ1/2

j ;E).
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If we combine this with (2.5), we get that fk → g in Lp(·)
Q (E). Therefore, Lp(·)

Q (E) is complete.
Similarly, (2.4) implies Lp(·)

Q (E) is separable when p+ < ∞. Fix ε > 0. Since λ1/2
j ≤ γ

1/2 ∈ Lp(·)(E),
again by Theorem 2.5, Lp(·)(λ1/2

j ; E) is separable, and so for each j there is a countable, dense subset
D j ⊆ Lp(·)(λ1/2

j ; E). Thus, for each j = 1, . . . , n, there exists d j ∈ D j such that

‖ f̃ j − d j‖Lp(·)(λ1/2
j ;E) <

ε

n
.

Define d ∈ D1 × · · · × Dn by setting d =
∑n

j=1 d jv j. Then by (2.4),

‖f − d‖
L

p(·)
Q (E) ≤

n∑
j=1

‖ f̃ j − d j‖Lp(·)(λ1/2
j ;E) < ε.

Thus, D1 × · · · × Dn is a countable dense subset of Lp(·)
Q (E), and so Lp(·)

Q (E) is separable.
Finally, (2.4) implies Lp(·)

Q (E) is reflexive when 1 < p− ≤ p+ < ∞. Equation (2.3) induces the map

T : Lp(·)
Q (E)→

n∏
j=1

Lp(·)(λ1/2
j ; E),

defined by T (f) = ( f̃1, . . . , f̃ j). Clearly, T is linear. T is also bijective because of the norm equivalence
(2.4).

Finally, T is continuous: by the norm equivalence (2.4) we have that

‖T (fk) − T (f)‖∏
j Lp(·)(λ1/2

j ;E) =

n∑
j=1

‖ f̃ jk − f̃ j‖Lp(·)(λ1/2
j );E ≤ n‖fk − f‖

L
p(·)
Q (E).

In the same way we have that T−1 is continuous since

‖fk − f‖
L

p(·)
Q (E) ≤

n∑
j=1

‖ f̃ jk − f̃ j‖Lp(·)(λ1/2
j ;E).

Therefore, Lp(·)
Q (E) is isomorphic to the product space

n∏
j=1

Lp(·)(λ1/2
j ; E). Finite products of reflexive

spaces are reflexive; hence, Lp(·)
Q (E) is a reflexive Banach space.

To complete the proof we need to prove inequality (2.4). Since |
√

Q(x)ξ|2 = ξT Q(x)ξ for any ξ ∈ Rn

and almost every x ∈ E, we have that

|
√

Q(x)f(x)|2 =

n∑
j=1

| f̃ j(x)
√

Q(x)v j(x)|2 =

n∑
j=1

| f̃ j(x)|2vT
j (x)Q(x)v j(x) =

n∑
j=1

| f̃ j(x)|2λ j(x).

Hence,

|
√

Q(x)f(x)| =

 n∑
j=1

| f̃ j(x)|2λ j(x)


1/2
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almost everywhere in E.
Inequality (2.4) is now straightforward to prove. Define F̃ : E → Rn by

F̃(x) = (| f̃1(x)|λ1/2
1 (x), . . . , | f̃n(x)|λ1/2

n (x)).

By (2.3) we have that
‖f‖
L

p(·)
Q (E) = ‖|

√
Q(x)f(x)|‖Lp(·)(E) = ‖|F̃(x)|‖Lp(·)(E).

By (2.2) and the triangle inequality,

‖|F̃(x)|‖Lp(·)(E) ≤ ‖|F̃(x)|1‖Lp(·)(E) ≤

n∑
j=1

‖| f̃ jλ
1/2
j |‖Lp(·)(E) =

n∑
j=1

‖ f̃ j‖Lp(·)(λ1/2
j ;E).

To show the reverse inequality, we again use (2.2) and the definition of | · |∞ to get

‖|F̃(x)|‖Lp(·)(E) ≥
1
n

n∑
j=1

‖|F̃(x)|∞‖Lp(·)(E) ≥
1
n

∞∑
j=1

‖| f̃ j(x)λ1/2
j (x)|‖Lp(·)(E) =

1
n

n∑
j=1

‖ f̃ j‖Lp(·)(λ1/2
j ;E).

This completes the proof of (2.4). �

We now use these variable exponent spaces to define the degenerate Sobolev spaces where solutions
in Definition 1.4 will live. Initially, we will give them as collections of equivalence classes of Cauchy
sequences of C1(E) functions.

Definition 2.15. Given p(·) ∈ P(E), a weight v, and a matrix function Q, suppose v, γ1/2 ∈ Lp(·)(E).
Define the Sobolev space H1,p(·)

Q (v; E) to be the abstract completion of C1(E) with respect to the norm

‖ f ‖H1,p(·)
Q (v;E) = ‖ f ‖Lp(·)(v;E) + ‖∇ f ‖

L
p(·)
Q (E). (2.6)

Remark 2.16. With our hypotheses on v and γ this definition makes sense, since they guarantee that
for any f ∈ C1(E) the right-hand side of (2.6) is finite.

While this space is defined abstractly, we can give a concrete representation of each equivalence
class in it. Since we assume v, γ1/2 ∈ Lp(·)(E), by Theorems 2.4 and 2.12, the spaces Lp(·)(v; E) and
L

p(·)
Q (E) are complete. Therefore, if {un}n is a sequence of C1(E) functions that is Cauchy with respect

to the norm in (2.6), we have that this sequence is Cauchy in Lp(·)(v; E) and Lp(·)
Q (E) and so converges

to a unique pair of functions (u, g) ∈ Lp(·)(v; E)×Lp(·)
Q (E). We stress that while the function g plays the

role of ∇u, it cannot in general be identified with a weak derivative of u in the classical sense, even in
the constant exponent case. For additional details, see [5].

Theorem 2.17. Let p(·) ∈ P(E) and suppose v, γ1/2 ∈ Lp(·)(E). Then H1,p(·)
Q (v; E) is a Banach space. If

p+ < ∞, then it is separable, and if 1 < p− ≤ p+ < ∞, it is reflexive.

Proof. Recall that a closed subspace of a separable, reflexive Banach space is also a separable, reflexive
Banach space. Hence, by Theorems 2.4 and 2.12, it suffices to show that H1,p(·)

Q (v; E) is isometrically
isomorphic to a closed subspace of Lp(·)(v; E)×Lp(·)

Q (E). Given a sequence {un}n of C1(E) functions that
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is Cauchy with respect to (2.6), denote its associated equivalence class in H1,p(·)
Q (E) by [{un}n]. Then

we have that

‖[{un}n]‖H1,p(·)
Q (E) = lim

n→∞

(
‖un‖Lp(·)(v;E) + ‖∇un‖Lp(·)

Q (E)

)
= ‖u‖Lp(·)(v;E) + ‖g‖

L
p(·)
Q (E),

where the pair (u, g) ∈ Lp(·)(v; E) × Lp(·)
Q (E) is the unique limit described above. (Note that this limit

does not depend on the representative chosen from the equivalence class.)
The existence of this pair lets us define a natural map

I : H1,p(·)
Q (v; E)→ Lp(·)(v; E) × Lp(·)

Q (E)

by I([{un}n]) = (u, g). Clearly, I is linear and an isometry by construction. Finally, if (u, g) is a limit
point of the image, then by a diagonalization argument we can construct a sequence {un}n in C1(E)
that converges to it in the product norm. But then the sequence is Cauchy in H1,p(·)

Q (v; E) norm, and
so (u, g) is contained in the image of H1,p(·)

Q (v; E). Thus, H1,p(·)
Q (v; E) is isometrically isomorphic to a

closed subspace of Lp(·)(v; E) × Lp(·)
Q (E) and our proof is complete. �

It is well known that when considering Neumann boundary value problems, any solution is unique
only up to addition of constants. In other words if u were a solution of the Neumann problem (1.2), then
we should have that u + c is also a solution for any constant c. Therefore, in defining weak solutions
we will restrict our attention to the “mean-zero” subspace of H1,p(·)

Q (v; E).

Definition 2.18. Given the space H1,p(·)
Q (v; E) of Definition 2.15, we define

H̃1,p(·)
Q (v; E) =

{
(u, g) ∈ H1,p(·)

Q (v; E) :
∫

E
u(x)v(x)dx = 0

}
For our analysis we will need to prove that H̃1,p(·)

Q (v; E) inherits the properties of its parent space
from Theorem 2.17.

Theorem 2.19. Given p(·) ∈ P(E), suppose v, γ1/2 ∈ Lp(·)(E). Then H̃1,p(·)
Q (v; E) is a Banach space.

Furthermore, H̃1,p(·)
Q (v; E) is separable if p+ < ∞, and is reflexive if 1 < p− ≤ p+ < ∞.

Proof. To show that H̃1,p(·)
Q (v; E) is a Banach space, it will suffice to show that H̃1,p(·)

Q (v; E) is a closed
subspace of the Banach space H1,p(·)

Q (v; E). Let {(u j, g j)}∞j=1 be a Cauchy sequence in H̃1,p(·)
Q (v; E). Since

H1,p(·)
Q (v; E) is complete, there is an element (u, g) ∈ H1,p(·)

Q (v; E) such that u j → u in Lp(·)(v; E) and
g j → g in Lp(·)

Q (E). Since u j ∈ H̃1,p(·)
Q (v; E) for each j, we have that

∫
E

u j(x)v(x)dx = 0. Thus, by
Hölder’s inequality (Theorem 2.6) we get∣∣∣∣∣∫

E
u(x)v(x)dx

∣∣∣∣∣ =

∣∣∣∣∣∫
E
(u(x) − u j(x))v(x)dx

∣∣∣∣∣
≤

∫
E
|u(x) − u j(x)|v(x)dx ≤ Kp(·)‖(u − u j)v‖Lp(·)(E)‖1‖Lp′(·)(E).
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Since E is bounded, ‖1‖Lp′(·)(E) < ∞. This follows at once from [2, Corollary 2.48]. Since u j → u in
Lp(·)(v; E), it follows that the right-hand side converges to 0. Hence,∫

E
u(x)v(x)dx = 0

and so (u, g) ∈ H̃1,p(·)
Q (v; E). Thus, H̃1,p(·)

Q (v; E) is a closed subspace of H1,p(·)
Q (v; E).

If p+ < ∞, then H1,p(·)
Q (v; E) is separable, and so every closed subspace, in particular H̃1,p(·)

Q (v; E),
is also separable. Finally, if 1 < p− ≤ p+ < ∞, then H1,p(·)

Q (v; E) is reflexive, and since every closed
subspace of a reflexive Banach space is reflexive, H̃1,p(·)

Q (v; E) is as well. �

As part of the proof of Theorem 1.8, we will need to apply the Poincaré inequality to any element
of H̃1,p(·)

Q (v; E) and not just to C1(E) functions. To prove we can do this, we need the following lemma.

Lemma 2.20. Given p(·) ∈ P(E) with p+ < ∞, suppose v, γ1/2 ∈ Lp(·)(E). Then the set C1(E) ∩
H̃1,p(·)

Q (v; E) is dense in H̃1,p(·)
Q (v; E).

Proof. Fix (u, g) ∈ H̃1,p(·)
Q (v; E). Since C1(E) is dense in H̃1,p(·)

Q (v; E) ⊆ H1,p(·)
Q (v; E), there exists a

sequence of functions uk ∈ C1(E) such that (uk,∇uk) → (u, g) in norm. Let yk = uk − (uk)E,v ∈

C1(E)∩ H̃1,p(·)
Q (v; E); then ∇yk = ∇uk, and so to prove (yk,∇yk)→ (u, g) it will suffice to show uk − yk =

(uk)E,v → 0 in Lp(·)(v; E). Since (u, g) ∈ H̃1,p(·)
Q (v; E), we have uE,v = 0, and so by Hölder’s inequality

(Theorem 2.6)

(uk)E,v =
1

v(E)

∫
E
(uk − u)v dx ≤ Kp(·)‖uk − u‖Lp(·)(v;E)‖1‖Lp′(·)(E).

Since E is bounded, ‖1‖Lp′(·)(v;E) < ∞ as in the previous proof. Thus (uk)E,v → 0. Consequently,

‖(uk)E,v‖Lp(·)(v;E) = |(uk)E,v|‖1‖Lp(·)(v;E)

converges to zero since 1 ∈ Lp(·)(v; E). �

Theorem 2.21. If Definition 1.2 holds, then the Poincaré inequality

‖u‖Lp(·)(v;E) ≤ C0‖g‖Lp(·)
Q (E)

holds for every pair (u, g) ∈ H̃1,p(·)
Q (v; E).

Proof. By Lemma 2.20, for every (u, g) ∈ H̃1,p(·)
Q (v; E), there exists a sequence of functions {uk}

∞
k=1 ⊆

C1(E)∩ H̃1,p(·)
Q (v; E) such that ‖uk‖Lp(·)(v;E) → ‖u‖Lp(·)(v;E) and ‖∇uk‖Lp(·)

Q (v;E) → ‖g‖Lp(·)
Q (v;E) as k → ∞. Since

uk ∈ H̃1,p(·)
Q (v; E), (uk)E,v = 0 for k ∈ N. Hence, by Definition 1.2,

‖u‖Lp(·)(v;E) = lim
k→∞
‖uk‖Lp(·)(v;E) = lim

k→∞
‖uk − (uk)E,v‖Lp(·)(v;E) ≤ C0 lim

k→∞
‖∇uk‖Lp(·)

Q (v;E) = C0‖g‖Lp(·)
Q (v;E).

�

Finally, we define a weak solution to the degenerate p(·)-Laplacian from Definition 1.4.

Definition 2.22. Let E ⊆ Rn be a bounded open set, p(·) ∈ P(E), and v, γ1/2 ∈ Lp(·)(E). Given
f ∈ Lp(·)(v; E), the pair (u, g) f ∈ H̃1,p(·)

Q (v; E) is a weak solution to the Neumann problem (1.2) if for all
test functions ϕ ∈ C1(E) ∩ H̃1,p(·)

Q (v; E),∫
E
|
√

Q(x)g(x)|p(x)−2(∇ϕ(x))T Q(x)g(x)dx = −

∫
E
| f (x)|p(x)−2 f (x)ϕ(x)(v(x))p(x)dx.
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3. p(·)-Neumann implies p(·)-Poincaré

In this section we will give the first half of the proof of Theorem 1.8. Fix p(·) ∈ P(E), 1 < p− ≤ p+ <

∞, let v be a weight in Ω with v ∈ Lp(·)(E), and Q a measurable matrix function with γ1/2 ∈ Lp(·)(E).
Assume that the Definition 1.4 holds. We will show that the Poincaré inequality in Definition 1.2 holds.

We begin by showing that the regularity condition (1.3) in Definition 1.4 actually implies a stronger
condition.

Lemma 3.1. Let p(·), v, Q be as defined above. Then there exists a constant C = C(p(·), v, E) such
that for any f ∈ Lp(·)(v; E) and any corresponding weak solution (u, g) f ∈ H̃1,p(·)

Q (v; E) of (1.2),

‖g‖p∗−1

L
p(·)
Q (E)

≤ C‖ f ‖r∗−1
Lp(·)(v;E),

where p∗ and r∗ are defined by (1.4).

Proof. Let f ∈ Lp(·)(v; E) and (u, g) f be a weak solution of (1.2) with data f . By Proposition 2.7,
Hölder’s inequality, the regularity estimate (1.3), and Theorem 2.9, and using the weak solution (u, g) f

itself as a test function in the definition of weak solution, we have that

‖g‖p∗
L

p(·)
Q (E)

≤

∫
E
|
√

Q(x)g(x)|p(x)dx

=

∫
E
|
√

Q(x)g(x)|p(x)−2g(x)T Q(x)g(x)dx

= −

∫
E
| f (x)|p(x)−2 f (x)u(x)v(x)p(x)dx

≤

∫
E
| f (x)|p(x)−1v(x)p(x)−1|u(x)|v(x)dx

≤ Kp(·)‖( f v)p(·)−1‖Lp′(·)(E)‖uv‖Lp(·)(E)

≤ Kp(·)‖ f ‖
r∗−1
Lp(·)(v;E)‖u‖Lp(·)(v;E).

≤ Kp(·)C1‖ f ‖
r∗−1
Lp(·)(v;E)‖ f ‖

r∗−1
p∗−1

Lp(·)(v;E).

Note that in the second to last inequality, we used that fact that in this case the exponent b∗ in
Theorem 2.9 equals r∗. Therefore, if we raise both sides to the power of (p∗ − 1)/p∗, we get

‖g‖p∗−1

L
p(·)
Q (E)

≤ C‖ f ‖r∗−1
Lp(·)(v;E),

where C = C(p(·), v, E). �

To prove that the Poincaré inequality holds, fix f ∈ C1(E). We will first consider the special case
where fE,v = 0 and ‖ f ‖Lp(·)(v;E) = 1. Then by Proposition 2.8, the definition of weak solution with f as
our test function, Hölder’s inequality, and Theorem 2.9,

‖ f ‖Lp(·)(v;E) =

∫
E
| f (x)v(x)|p(x)dx
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=

∫
E
| f (x)|p(x)−2 f (x) f (x)v(x)p(x)dx

≤

∫
E
|
√

Q(x)g(x)|p(x)−2|∇ f (x)T Q(x)g(x)|dx

≤

∫
E
|
√

Q(x)g(x)|p(x)−1|
√

Q(x)∇ f (x)|dx

≤ Kp(·)‖|
√

Qg|p(·)−1‖p′(·)‖∇ f ‖
L

p(·)
Q (E)

≤ Kp(·)‖g‖b∗−1
L

p(·)
Q (E)
‖∇ f ‖

L
p(·)
Q (E).

By Lemma 3.1 and our assumption that ‖ f ‖Lp(·)(v;E) = 1, we find

‖ f ‖Lp(·)(v;E) ≤ C‖∇ f ‖
L

p(·)
Q (E),

where C = C(p(·), v, E). This is what we wanted to prove.

To prove the general case, let f0 = f − fv,E, and f1 = f0/‖ f0‖Lp(·)(v;E). Then f1 has zero mean and
‖ f1‖Lp(·)(v;E) = 1, so by the previous case f1 satisfies the Poincaré inequality. But by the homogeneity of
this inequality, and since ‖ f0‖Lp(·)(v;E)∇ f1 = ∇ f0 = ∇ f , we have that f satisfies the Poincaré inequality
as well. This completes the proof.

4. p(·)-Poincaré implies p(·)-Neumann

In this section we will give the second half of the proof of Theorem 1.8. Fix p(·) ∈ P(E), 1 < p− ≤
p+ < ∞, let v be a weight in Ω with v ∈ Lp(·)(E), and Q a measurable matrix function with γ1/2 ∈

Lp(·)(E). Assume that the Poincaré inequality in Definition 1.2 holds. We will show that Definition 1.4
holds by showing that a weak solution to (1.2) exists and that the regularity estimate (1.3) is satisfied.

To show the existence of a weak solution to the Neumann problem (1.2), we will apply Minty’s
theorem [19]. To state it, we introduce some notation. Given a reflexive Banach space B, denote its
dual space by B∗. Given a functional α ∈ B∗, write its value at ϕ ∈ B as α(ϕ) = 〈α, ϕ〉. Thus, if
β : B → B∗ and u ∈ B, then we have β(u) ∈ B∗ and so its value at ϕ is denoted by β(u)(ϕ) = 〈β(u), ϕ〉.

Theorem 4.1. (Minty’s Theorem, [19]) Let B be a reflexive, separable Banach space and fix Γ ∈ B∗.
Suppose that T : B → B∗ is a bounded operator that is:

1). Monotone: 〈T (u) − T (ϕ), u − ϕ〉 ≥ 0 for all u, ϕ ∈ B;
2). Hemicontinuous: for z ∈ R, the mapping z→ 〈T (u + zϕ), ϕ〉 is continuous for all u, ϕ ∈ B;
3). Almost Coercive: there exists a constant λ > 0 so that 〈T (u), u〉 > 〈Γ, u〉 for any u ∈ B satisfying
‖u‖B > λ.

Then the set of u ∈ B such that T (u) = Γ is non-empty.

To apply Minty’s theorem to prove the existence of a weak solution, let B = H̃1,p(·)
Q (v; E). Note that

with our hypotheses, by Theorem 2.19, H̃1,p(·)
Q (v; E) is a reflexive, separable Banach space. We now

define the operators Γ and T using the right and left-hand sides of the equation in Definition 2.22.
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Definition 4.2. Given f ∈ Lp(·)(v; E), define Γ = Γ f : H̃1,p(·)
Q (v; E)→ R by setting

〈Γ,w〉 = −

∫
E
| f (x)|p(x)−2 f (x)w(x)(v(x))p(x)dx

for any w = (w,h) ∈ H̃1,p(·)
Q (v; E).

Remark 4.3. Γ f clearly depends on f ∈ Lp(·)(v; E). But for ease of notation we will simply write Γ

where f is understood in context.

Definition 4.4. Define T : H̃1,p(·)
Q (v; E)→

(
H̃1,p(·)

Q (v; E)
)∗

by setting

〈T (u),w〉 =

∫
E

∣∣∣∣ √Q(x)g(x)
∣∣∣∣p(x)−2

hT (x)Q(x)g(x)dx

for u = (u, g), w = (w,h) ∈ H̃1,p(·)
Q (v; E),

Clearly, u = (u, g) is a weak solution of (1.2) if and only if 〈T (u),w〉 = 〈Γ,w〉 for all w ∈

H̃1,p(·)
Q (v; E). Therefore, we will have shown that a weak solution exists if we can show that the operators

Γ f and T satisfy the hypotheses of Minty’s Theorem.

Lemma 4.5. Given f ∈ Lp(·)(v; E), Γ = Γ f is a bounded, linear functional on H̃1,p(·)
Q (v; E).

Proof. We first show that Γ is linear. Let u = (u, g), w = (w,h) be in H̃1,p(·)
Q (v; E). Then for all α, β ∈ R,

〈Γ, αu + βw〉 = −

∫
E
| f (x)|p(x)−2 f (x)(αu(x) + βw(x))(v(x))p(x)dx = α〈Γ,u〉 + β〈Γ,w〉.

To show that Γ is bounded, it will suffice to show that there exists a constant C = C( f , v, p(·)) such
that

|〈Γ,w〉| ≤ C‖wv‖Lp(·)(E), (4.1)

since ‖wv‖Lp(·)(E) = ‖w‖Lp(·)(v;E) ≤ ‖w‖H̃1,p(·)
Q (v;E). By Hölder’s inequality,

|〈Γ,w〉| =
∣∣∣∣∣∫

E
| f (x)|p(x)−2 f (x)w(x)v(x)p(x) dx

∣∣∣∣∣
≤

∫
E
| f (x)|p(x)−1v(x)p(x)−1w(x)v(x) dx ≤ Kp(·)‖| f v|p(·)−1‖Lp′(·)(E)‖wv‖Lp(·)(E).

Since f ∈ Lp(·)(v; E), by Theorem 2.9 we have that

‖| f v|p(·)−1‖Lp′(·)(E) ≤ ‖ f ‖
b∗−1
Lp(·)(v;E) < ∞.

Therefore, if we let C = Kp(·)‖| f v|p(·)−1‖Lp′(·)(E), we have that (4.1) holds. �

We now prove that T is bounded, monotone, hemicontinuous.

Lemma 4.6. T is a bounded operator.
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Proof. We will prove that T is bounded by showing the operator norm of T is uniformly bounded.
The norm of T : H̃1,p(·)

Q (v; E)→
(
H̃1,p(·)

Q (v; E)
)∗

is given by

‖T ‖op = sup{|T (u)|op : ‖u‖H1,p(·)
Q (v;E) = 1},

where |T (u)|op = sup{|〈T (u),w〉| : ‖w‖H1,p(·)
Q (v;E) = 1}. Thus, it will suffice to show that there exists a

constant C such that for all u,w ∈ H̃1,p(·)
Q (v; E) with ‖u‖H1,p(·)

Q (v;E) = ‖w‖H1,p(·)
Q (v;E) = 1, |〈T (u),w〉| ≤ C.

By Theorem 2.9, for any f ∈ Lp(·)(v; E), ‖| f |p(·)−1‖Lp′(·)(E) ≤ ‖ f ‖
p∗−1
Lp(·)(E). Therefore, by Hölder’s inequality

we have that

|〈T (u),w〉| =
∣∣∣∣∣∫

E
|
√

Q(x)g(x)|p(x)−2(h(x))T Q(x)g(x)dx
∣∣∣∣∣

≤

∫
E
|
√

Q(x)g(x)|p(x)−1|
√

Q(x)h(x)|dx

≤ Kp(·)‖|
√

Qg|p(·)−1‖Lp′(·)(E)‖|
√

Qh‖Lp(·)(E)

≤ Kp(·)‖|
√

Qg|‖b∗−1
Lp(·)(E)‖|

√
Qh|‖Lp(·)(E)

= Kp(·)‖g‖b∗−1
L

p(·)
Q (E)
‖h‖

L
p(·)
Q (E)

≤ Kp(·).

Thus, T is bounded. �

Lemma 4.7. T is Monotone.

Proof. Let u = (u, g) and w = (w,h) be in H̃1,p(·)
Q (v; E). Then

〈T (u) − T (w),u − w〉
= 〈T (u),u − w〉 − 〈T (w),u − w〉

=

∫
E
|
√

Qg|p(·)−2(g − h)T Qg − |
√

Qh|p(·)−2(g − h)T Qh dx

=

∫
E
(
√

Q(g − h))T (|
√

Qg|p(·)−2
√

Qg) − (
√

Q(g − h))T (|
√

Qh|p(·)−2
√

Qh) dx

=

∫
E
(
√

Q(g − h))T
[
|
√

Qg|p(·)−2
√

Qg − |
√

Qh|p(·)−2
√

Qh
]

dx

=

∫
E
〈|
√

Qg|p(·)−2
√

Qg − |
√

Qh|p(·)−2
√

Qh,
√

Qg −
√

Qh〉Rn dx,

where 〈·, ·〉Rn denotes the inner product on Rn. For each x ∈ E, the integrand is of the form

〈|s|p−2s − |r|p−2r, s − r〉Rn ,

where s, r ∈ Rn and p > 1. But as noted in [13, p. 74] (see also [1, Section 4]), this expression is
nonnegative. Thus, T is monotone. �

Lemma 4.8. T is Hemicontinuous.
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Proof. Let z, y ∈ R and let u = (u, g), w = (w,h) be in H̃1,p(·)
Q (v; E). Define ψ = g + zh and γ = g + yh.

Then

〈T (u + zw) − T (uu + yw),w〉

=

∫
E
|
√

Qψ|p(·)−2hT Qψ − |
√

Qγ|p(·)−2hT Qγ dx

=

∫
E
(
√

Qh)T
[
|
√

Qψ|p(·)−2
√

Qψ − |
√

Qγ|p(·)−2
√

Qγ
]

dx

=

∫
E
(
√

Qh)T
[
|r|p(·)−2r − |s|p(·)−2s

]
dx (4.2)

where r =
√

Qψ and s =
√

Qγ. Define E+ = {x ∈ E : p(x) > 2} and E− = {x ∈ E : p(x) ≤ 2}. We will
show that the integral (4.2) tends to 0 as z→ y by estimating it over E+ and E− separately.

Observe that our choice of r, s gives

r − s =
√

Q(ψ − γ) =
√

Q(zh − yh) = (z − y)
√

Qh. (4.3)

Hence,
‖|r − s|‖Lp(·)(E) = |z − y|‖|

√
Qh|‖Lp(·)(E) ≤ |z − y|‖w‖H1,p(·)

Q (v;E) (4.4)

Furthermore, by an inequality from [13, pp. 43, 73] (see also [1, Section 4]), we have that for
r, s ∈ Rn and p > 2, ∣∣∣|r|p−2r − |s|p−2s

∣∣∣ ≤ (p − 1)|r − s|(|s|p−2 + |r|p−2).

If we combine this inequality with (4.3) and apply them to (4.2) over E+, we get that∣∣∣∣∣∫
E+

(
√

Qh)T
[
|r|p(x)−2r − |s|p(x)−2s

]
dx

∣∣∣∣∣
≤

∫
E+

|
√

Qh||p(x) − 1||r − s|(|s|p(x)−2 + |r|p(x)−2) dx

≤ |z − y||p+ − 1|
∫

E+

|
√

Qh|2
∣∣∣|s|p(x)−2 + |r|p(x)−2

∣∣∣ dx. (4.5)

Since p(x) > 2 on E+, by Hölder’s inequality, Theorem 2.6, with exponents p(·)
2 ,

p(·)
p(·)−2 we have∫

E+

|
√

Qh|2
∣∣∣|s|p(·)−2 + |r|p(·)−2

∣∣∣ dx ≤ Kp(·)/2‖|
√

Qh|2‖Lp(·)/2(E+)

∥∥∥|s|p(·)−2 + |r|p(·)−2
∥∥∥

L
p(·)

p(·)−2 (E+)
.

By Proposition 2.7, since ‖|
√

Qh|‖Lp(·)(E) is finite, we have that∫
E+

∣∣∣∣|√Qh|2
∣∣∣∣p(x)/2

dx =

∫
E+

|
√

Qh|p(x)dx < ∞,

and so by the same result we have that ‖|
√

Qh|2‖p(·)/2 < ∞.
By the triangle inequality,

‖|s|p(·)−2 + |r|p(·)−2‖
L

p(·)
p(·)−2 (E+)

≤ ‖|s|p(·)−2‖
L

p(·)
p(·)−2 (E+)

+ ‖|r|p(·)−2‖
L

p(·)
p(·)−2 (E+)

.
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Observe that
|s|(p(·)−2)·p(·)/(p(·)−2) = |s|p(·) = |

√
Qγ|p(·) = |

√
Q(g + yh)|p(·).

Since g,h ∈ Lp(·)
Q (E), ‖|

√
Q(g + yh)|‖Lp(·)(E+) < ∞. But then, again by Proposition 2.7,∫

E+

∣∣∣∣|√Q(g + yh)|p(x)−2
∣∣∣∣p(x)/(p(x)−2)

dx =

∫
E+

|
√

Q(g + yh)|p(x)dx < ∞,

and so ‖|s|p(·)−2‖
L

p(·)
p(·)−2 (E+)

< ∞. Similarly, ‖|r|p(·)−2‖
L

p(·)
p(·)−2 (E+)

is finite. Therefore,∫
E+

|
√

Qh|2
∣∣∣|s|p(x)−2 + |r|p(x)−2

∣∣∣ dx < ∞,

and so (4.5) converges to 0 as z→ y.

Now consider the domain E−. By [13, p. 43] (see also [1, Section 4]) we have that for r, s ∈ Rn and
1 < p ≤ 2,

||s|p−2s − |r|p−2r| ≤ C(p)|s − r|p−1.

The constant C(p) varies continuously in p; since for x ∈ E−, 1 < p− ≤ p(x) ≤ 2, we must have that

C = sup
x∈E−

C(p(x)) < ∞.

If we apply this estimate, Hölder’s inequality, Theorem 2.9, and (4.4) to (4.2), we get∣∣∣∣∣∫
E−

(
√

Qh)T
[
|r|p(x)−2r − |s|p(x)−2s

]
dx

∣∣∣∣∣
≤

∫
E−
|
√

Qh|
∣∣∣|r|p(x)−2r − |s|p(x)−2s

∣∣∣ dx

≤ C
∫

E−
|
√

Qh||s − r|p(x)−1 dx

≤ CKp(·)‖h‖Lp(·)
Q (E−)

∥∥∥|s − r|p(·)−1
∥∥∥

Lp′(·)(E)

≤ CKp(·)‖h‖Lp(·)
Q (E−)‖|s − r|‖b∗−1

Lp(·)(E)

≤ CKp(·)‖h‖Lp(·)
Q (E−)(|z − y|‖w‖H1,p(·)

Q (v;E))
b∗−1.

Thus, the integral (4.2) converges to 0 on E− as z→ y, and so T is hemicontinuous.
�

Lemma 4.9. T is almost coercive.

Remark 4.10. The proof of Lemma 4.9 is the only part of the proof that requires the Poincaré inequality
(1.1).

Proof. Fix f ∈ Lp(·)(v; E) and let Γ = Γ f . We need to find λ > 0 sufficiently large that for any
u = (u, g) ∈ H̃1,p(·)

Q (v; E) such that ‖u‖H1,p(·)
Q (v;E) > λ, 〈T (u),u〉 > 〈Γ,u〉. Suppose first that λ > 1 + C0

where C0 is as in Poincaré inequality (1.1). By Lemma 2.20, and since u has mean zero, we have that

λ < ‖u‖H1,p(·)
Q (v;E) = ‖u‖Lp(·)(v;E) + ‖g‖

L
p(·)
Q (E) ≤ (C0 + 1)‖g‖

L
p(·)
Q (E).
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Hence, ‖g‖
L

p(·)
Q (E) > 1.

By Proposition 2.7 and the Poincaré inequality (1.1) we have that

〈T (u),u〉 =

∫
E
|
√

Qg|p(x)−2gT Qgdx =

∫
E
|
√

Qg|p(x)dx ≥ ‖g‖p−
L

p(·)
Q (E)

≥
1

Cp−
0

‖u‖p−
Lp(·)(v;E).

Consequently,
(Cp−

0 + 1)〈T (u),u〉 ≥ ‖g‖p−
L

p(·)
Q (E)

+ ‖u‖p−
Lp(·)(v;E) ≥ 21−p−‖u‖p−

H1,p(·)
Q (v;E)

. (4.6)

By Hölder’s inequality,

|〈Γ,u〉| =
∣∣∣∣∣∫

E
| f (x)|p(x)−2 f (x)u(x)v(x)p(x)dx

∣∣∣∣∣ ≤ ∫
E
| f (x)|p(x)−1v(x)p(x)−1|u(x)|v(x)dx

≤ Kp(·)‖( f v)p(·)−1‖Lp′(·)(E)‖u‖Lp(·)(v;E) ≤ Kp(·)‖( f v)p(·)−1‖Lp′(·)(E)‖u‖H1,p(·)
Q (v;E).

Since f ∈ Lp(·)(v; E), ‖ f v‖Lp(·)(E) < ∞, and so by Theorem 2.9, ‖| f v|p(·)−1‖Lp′(·)(E) < ∞. Let C( f ) =

Kp(·)‖( f v)p(·)−1‖Lp′(·)(E); then we have

C( f )‖u‖H1,p(·)
Q (v;E) = C( f )‖u‖1−p−

H1,p(·)
Q (v;E)

‖u‖p−
H1,p(·)

Q (v;E)
≤ C( f )‖u‖1−p−

H1,p(·)
Q (v;E)

Cp−
0 + 1
21−p−

〈T (u),u〉.

Let C = C( f )Cp−
0 +1

21−p− ; then
|〈Γ,u〉| ≤ C‖u‖1−p−

H1,p(·)
Q (v;E)

〈T (u),u〉.

Therefore, if we further assume that λ > C1/(p−−1), then

‖u‖H1,p(·)
Q (v;E) > λ > C

1/(p−−1).

This in turn implies C‖u‖1−p−
H1,p(·)

Q (v;E)
< 1. Thus, we have that

|〈Γ,u〉| < 〈T (u),u〉

and our proof is complete. �

We have now shown that the hypotheses of Minty’s theorem are satisfied, and so a weak solution
exists. To complete the proof, we need to prove that the regularity estimate (1.3) holds. This is
established in the next lemma.

Lemma 4.11. There is a positive constant C = C(p(·), E) such that for any f ∈ Lp(·)(v; E) and any
corresponding weak solution (u, g) f ∈ H̃1,p(·)

Q (v; E),

‖u‖Lp(·)(v;E) ≤ C‖ f ‖
r∗−1
p∗−1

Lp(·)(v;E),

where p∗ and r∗ are defined by (1.4).
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Proof. By Definition 2.22, Proposition 2.7, Theorem 2.9 and the Poincaré inequality (1.1), we have
that

‖g‖p∗
L

p(·)
Q (E)

≤

∫
E
|
√

Qg|p(x)−2gT Qgdx

= −

∫
E
| f |p(x)−2 f uvp(x)dx

≤

∫
E
| f |p(x)−1vp(x)−1|u|vdx

≤ Kp(·)‖| f v|p(·)−1‖Lp′(·)(E)‖uv‖Lp(·)(E)

≤ Kp(·)C0‖| f v|p(·)−1‖Lp′(·)(E)‖g‖Lp(·)
Q (E)

≤ Kp(·)C0‖ f v‖r∗−1
Lp(·)(E)‖g‖Lp(·)

Q (E)

= Kp(·)C0‖ f ‖
r∗−1
Lp(·)(v;E)‖g‖Lp(·)

Q (E).

If we combine this inequality with the Poincaré inequality, we get

‖u‖Lp(·)(v;E) ≤ C0‖g‖Lp(·)
Q (E) ≤ C0(Kp(·)C0)1/(p∗−1)‖ f ‖(r∗−1)/(p∗−1)

Lp(·)(v;E) ≤ C0(Kp(·)C0)1/(p−−1)‖ f ‖(r∗−1)/(p∗−1)
Lp(·)(v;E) ,

which is the desired inequality. �
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A. Estimates for the weighted Poincaré inequality

In this section we prove Proposition 1.9. As we noted above, versions of this result appear to be
known, but we have not found the proof in the literature. Recall that E is bounded, v ∈ Lp(E), and
w = vp, so w ∈ L1(E). Fix f ∈ C1(E); then

∣∣∣ fE,w − fE,v

∣∣∣ =

∣∣∣∣∣ 1
v(E)

∫
E
( fE,w − f )w1/p dx

∣∣∣∣∣ ≤ K1

(∫
E
| f − fE,w|

pw dx
)1/p

= K1‖ f − fE,w‖Lp(v;E),

where K1 = |E|1/p′

v(E) . But then we have that

‖ f − fE,v‖Lp(v;E) ≤ ‖ f − fE,w‖Lp(v;E) + ‖ fE,w − fE,v‖Lp(v;E) ≤ (1 + K1w(E)1/p)‖ f − fE,w‖Lp(v;E).
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Conversely, if we switch the roles of v and w in the first calculation above, we get that∣∣∣ fE,w − fE,v

∣∣∣ =
1

w(E)

∫
E
( fE,v − f )vvp−1 dx ≤ K2‖ f − fE,v‖Lp(v;E),

where K2 = w(E)−1/p. Then we can argue as we did before to get

‖ f − fE,w‖Lp(v;E) ≤ (1 + K2w(E)1/p)‖ f − fE,v‖Lp(v;E) = 2‖ f − fE,v‖Lp(v;E).

Similarly, if we take w = 1 in the first argument, we get that

‖ f − fE,v‖Lp(v;E) ≤ (1 + K3)‖ f − fE‖Lp(v;E),

where K3 = |E|
v(E) . On the other hand, to prove the converse inequality, we have

| fE,v − fE | =

∣∣∣∣∣ 1
|E|

∫
E
( f − fE,v)vv−1 dx

∣∣∣∣∣ ≤ K4‖ f − fE,v‖Lp(v;E),

where

K4 =
1
|E|

( ∫
E

v−p′ dx
)1/p′

< ∞

by our assumption that v−1 ∈ Lp′(E). The argument then continues as before.
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