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Abstract: We consider the so-called ergodic problem for weak solutions of elliptic equations in
divergence form, complemented with Neumann boundary conditions. The simplest example reads as
the following boundary value problem in a bounded domain of RN:−div(A(x)∇u) + λ = H(x,∇u) in Ω,

A(x)∇u · ~n = 0 on ∂Ω,

where A(x) is a coercive matrix with bounded coefficients, and H(x,∇u) has Lipschitz growth in the
gradient and measurable x-dependence with suitable growth in some Lebesgue space (typically,
|H(x,∇u)| ≤ b(x)|∇u| + f (x) for functions b(x) ∈ LN(Ω) and f (x) ∈ Lm(Ω), m ≥ 1). We prove that
there exists a unique real value λ for which the problem is solvable in Sobolev spaces and the solution
is unique up to addition of a constant. We also characterize the ergodic limit, say the singular limit
obtained by adding a vanishing zero order term in the equation. Our results extend to weak solutions
and to data in Lebesgue spaces Lm(Ω) (or in the dual space (H1(Ω))′), previous results which were
proved in the literature for bounded solutions and possibly classical or viscosity formulations.
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1. Introduction and statement of the main results

Let Ω be a bounded, sufficiently regular, connected domain in RN , N ≥ 1, and let ~n denote the
outward normal unit vector on the boundary ∂Ω. It is well known (see e.g., [12, 15]) that, if H(x, p)
is a Lipschitz function for (x, p) ∈ Ω × RN , then there is a unique real number λ such that the elliptic
problem −∆u + H(x,∇u) + λ = 0 in Ω,

∇u · ~n = 0 on ∂Ω
(1.1)

admits a solution, and this solution is unique up to a constant. The simplest example of this type of
problems occurs in the linear case, when H(x,∇u) = b(x) · ∇u − f (x). If b(x) is a Lipschitz
continuous, divergence free vector field, then λ is the average value of f ; if b(x) is not divergence free,
the uniqueness of λ is a consequence of Fredholm theory for linear operators (see e.g., [10]), in which
case λ =

∫
Ω

f (x)ϕ1 dx, where ϕ1 is the first eigenfunction of the adjoint problem (normalized so that∫
Ω
ϕ1 = 1).
If H is a nonlinear function, the existence and uniqueness of λ was proved in [15] assuming that

H(x, p) satisfies fairly general structure conditions with respect to p and enough regularity with respect
to x.

The real number λ appearing in this kind of problems is sometimes called additive eigenvalue and
is definitively a critical value which plays a role in many different contexts. If H(x, p) is convex in
p, then λ can be interpreted as the optimal value of an ergodic stochastic control problem; we refer
the reader to [2, 3, 12, 15] and especially to [1] for an extensive presentation of the ergodic stochastic
control setting. In that framework, it is natural to obtain λ as the limit of ε uε, where uε solves the
approximating coercive problem−∆u + H(x,∇u) + ε u = 0 in Ω,

∇u · ~n = 0 on ∂Ω.
(1.2)

Indeed, from Bellman’s principle, (1.2) is the equation solved by the value function of an infinite
horizon stochastic control problem, where ε is the discount factor. The vanishing discount limit leads,
through time averaging, to the ergodic control problem represented by (1.1), and λ = lim

ε→0
ε uε. This

interpretation awarded to λ the name of ergodic constant, and to the singular limit of solutions of (1.2),
as ε→ 0, the name of ergodic limit.

The constant λ is also a critical value for the long time behavior of the evolution problem, since it
represents the asymptotic speed of time-dependent solutions: typically, a solution of the evolution
problem vt − ∆v + H(x,∇v) = 0 (with Neumann conditions) satisfies v(x, t)

t→∞
' u(x) + λt for some

stationary solution u of (1.1). Again, this is consistent with the ergodicity property of the underlying
controlled stochastic trajectory, but of course the long time convergence itself does not need the
convexity of H, at least for Lipschitz nonlinearities. Finally, λ also plays a crucial role in
homogenization problems (in which context problem (1.1) is referred to as the cell problem), see [4].

A huge literature has been devoted so far to the existence and characterization of ergodic constants,
as well as to the study of ergodic limits and of the long time behavior of evolution problems, at the
point that it is impossible here to recall such a long list of contributions. Most papers concerned with
the above issues treat the problem in the framework of viscosity solutions’ theory, for both second
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and first order Hamilton-Jacobi-Bellman equations. This explains why this kind of results were proved
under many different structure conditions on the “Hamiltonian” H(x,∇u) as well as on the second order
operator, but mostly assuming a regular dependence with respect to x. This regularity is often required
for verification theorems, whenever the application to stochastic control is the main motivation.

The purpose of this note is to give a prototype result of existence, uniqueness of the ergodic constant
and a characterization of the ergodic limit under natural assumptions for elliptic operators in divergence
form, replacing the L∞ framework (and most times continuity, needed for viscosity solutions) with the
L2-setting which is natural for weak solutions in the Sobolev space H1(Ω). To be precise, we consider
the elliptic problem −div(A(x)∇u) + λ = H(x,∇u) + χ in Ω,

A(x)∇u · ~n = 0 on ∂Ω,
(1.3)

where χ ∈
(
H1(Ω)

)′
(the dual space of H1(Ω)), A(x) is a measurable matrix such that

A(x) ∈ L∞(Ω)N×N , A(x)ξ · ξ ≥ α|ξ|2 , (1.4)

for some α > 0, and where H(x, p) is a Carathéodory function (measurable in x, continuous in p)
satisfying the following linear growth condition (this is for N ≥ 3)

|H(x, p)| ≤ b(x)|p| + f (x) , for some b(x) ∈ LN(Ω), f (x) ∈ L
2N

N+2 (Ω), (1.5)

for almost every x ∈ Ω and for every p ∈ RN .
Let us stress that f (x) (and therefore H(x, 0)) is not assumed to be bounded, and only belongs to

L(2∗)′(Ω), where 2∗ = 2N
N−2 is the Sobolev exponent for N ≥ 3. The case N = 1, 2 is mentioned later, see

Remark 2.4. Due to Sobolev embedding, the condition b ∈ LN(Ω) is the usual threshold for Lebesgue
summability of drift terms in elliptic equations, see e.g., [11]; in fact b(x)|∇u| ∈ L

2N
N+2 (Ω) whenever

∇u ∈ L2(Ω) and b(x) ∈ LN(Ω).
Here and below, we assume that Ω is a Lipschitz bounded and connected domain in RN; the

Lipschitz regularity being just one possible condition which ensures that the Sobolev embedding (and
the Poincaré-Wirtinger inequality) hold true.

Eventually, for the purpose of uniqueness, we will also assume the following Lipschitz condition
upon H, namely that

|H(x, p) − H(x, q)| ≤ b(x) |p − q| , b(x) ∈ LN(Ω), (1.6)

for almost every x ∈ Ω and every p, q ∈ RN .

The first main result that we prove in this note is the following.

Theorem 1.1. Let N ≥ 3. Assume that A(x) satisfies (1.4) and that H(x, p) satisfies (1.5). Then there
exist a constant λ ∈ R and a function u ∈ H1(Ω) which satisfy the elliptic problem (1.3) in the weak
sense, i.e., ∫

Ω

A(x)∇u∇ϕ + λ

∫
Ω

ϕ =

∫
Ω

H(x,∇u)ϕ + 〈χ, ϕ〉 ∀ϕ ∈ H1(Ω) .

In addition, if H satisfies (1.6), problem (1.3) is solvable for a unique constant λ and the corresponding
weak solution u is unique up to addition of a constant.
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Even if the result of Theorem 1.1 is quite simple, it seems new to the best of our knowledge, except
for the linear case, which was treated in [10] through Fredholm theory. As usual, the existence of the
constant λ is proved by considering the singular ergodic limit, as ε→ 0, of solutions uε of−div(A(x)∇uε) + ε uε = H(x,∇uε) + χ in Ω,

A(x)∇uε · ~n = 0 on ∂Ω.
(1.7)

Here the main difference, compared to the classical case ( [15]), is that the uniform estimate of εuε,
usually given by the maximum principle, is not available because of the more singular x-dependence
of the Hamiltonian. In fact, we directly estimate ‖∇uε‖L2(Ω) as a first, and then crucial, step; this is done
with a similar strategy as suggested in [20] for the Dirichlet problem.

As a consequence of Theorem 1.1, and of our structure conditions, we eventually give a complete
description of the limit of uε, assuming further that H(x, p) is differentiable with respect to p. In that
case, the limit of uε can be fully characterized in terms of the additive eigenvalue of the linearized
problem: this is the (non homogeneous) linear problem−div(A(x)∇w) + θ = Hp(x,∇ū) · ∇w − ū in Ω,

A(x)∇w · ~n = 0 on ∂Ω,
(1.8)

where ū is the unique solution of (1.3) such that
∫

Ω
ū = 0.

Theorem 1.2. Assume that H(x, p) satisfies (1.5), (1.6) and H is differentiable with respect to p with
Hp(x, p) := ∂H(x,p)

∂p being continuous in p, for a.e. x ∈ Ω. Let uε be the unique solution of (1.7) and
(λ, ū) be the unique solution of (1.3) such that

∫
Ω

ū = 0. Then we have

lim
ε→0

(
uε −

λ

ε
− ū

)
= θ

where the limit is in H1(Ω), and θ is the unique constant for which problem (1.8) is solvable. Moreover,
we also have (in L2(Ω))

∇uε = ∇ū + ε∇w + o(ε) as ε→ 0,

where w is the unique solution of (1.8) with zero average.

The equivalent of this result for much more general diffusion operators and Hamiltonians, but with
a smooth dependence on x, is proved in many recent papers through viscosity solutions’ methods, see
e.g., [13,17] for second order problems, where this is called the selection problem, since the constant θ
selects the limit of uε among all possible solutions of the ergodic problem (1.3). Of course, this is much
simpler for elliptic equations rather than for first order (or degenerate elliptic) problems, as treated e.g.,
in [9] or in the pioneering paper [8].

The proofs of Theorem 1.1 and Theorem 1.2 are given in the next Section. Later we briefly address
some extension of our results to nonlinear divergence form operators (Theorem 2.5) and to more
singular x-dependence, including the case of data f (x) in Lebesgue spaces Lm(Ω), m ≥ 1 (see
Theorem 2.9 and Theorem 2.10).
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2. Proof of the results

Let us recall that, in the following, Ω is a bounded connected domain in RN , N ≥ 3, with Lipschitz
boundary, and we denote by ~n the outward normal unit vector to the boundary ∂Ω. The Sobolev space
is denoted by H1(Ω) and its dual by

(
H1(Ω)

)′
. We start with a characterization of all possible weak

subsolutions of a Neumann elliptic problem.

Lemma 2.1. Let w ∈ H1(Ω) and λ ∈ R satisfy−div(A(x)∇w) = B(x) + λ in Ω,

A(x)∇w · ~n = 0 on ∂Ω,
(2.1)

where the matrix A(x) satisfies (1.4) and the function B(x) ∈ L
2N

N+2 (Ω) satisfies

|B(x)| ≤ b(x) |∇w(x)| for some b ∈ LN(Ω). (2.2)

Then, we have λ = 0 and the function w(x) is constant in Ω.

Proof. We divide the proof in three steps.

Step 1. We prove that w ∈ L∞(Ω).
This is standard, but we sketch the argument for the reader’s convenience, following [21]. For k > 0

we use Gk(w) := (w − k)+ as test function in problem (2.1). Then, using the ellipticity of A(x) and
condition (2.2), we get

α

∫
Ω

|∇Gk(w)|2dx ≤
∫

Ω

[b(x)|∇w| + λ] Gk(w) dx (2.3)

Let us set Ak := {x ∈ Ω : w(x) > k}. Since the integral in the right-hand side is restricted in the set Ak,
we deduce, using Hölder inequality,

α

∫
Ω

|∇Gk(w)|2 dx ≤
(∫

Ak∩{|∇w|,0}
|b|N

) 1
N

‖∇Gk(w)‖L2(Ω)‖Gk(w)‖L2∗ (Ω)

+ |λ| ‖Gk(w)‖L2∗ (Ω)|Ak|
1− 1

2∗ .

This readily implies ∫
Ω

|∇Gk(w)|2 dx ≤ c
(∫

Ak∩{|∇w|,0}
|b|N

) 2
N

‖Gk(w)‖2L2∗ (Ω)

+ c |λ| ‖Gk(w)‖L2∗ (Ω)|Ak|
1− 1

2∗ ,

(2.4)

where, here and below, c denotes possibly different numbers only depending on α,N,Ω. By Poincaré-
Wirtinger inequality we deduce

‖Gk(w) −
∫

Ω

−Gk(w)‖2L2∗ (Ω) ≤ c
(∫

Ak

|b|N
) 2

N

‖Gk(w)‖2L2∗ (Ω) + c |λ|‖Gk(w)‖L2∗ (Ω)|Ak|
1− 1

2∗
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which implies

‖Gk(w)‖2L2∗ (Ω) ≤ c
(∫

Ak

|b|N
) 2

N

‖Gk(w)‖2L2∗ (Ω)

+ c |λ|‖Gk(w)‖L2∗ (Ω)|Ak|
1− 1

2∗ + c
∣∣∣∣∣∫

Ω

Gk(w)
∣∣∣∣∣2 .

(2.5)

We estimate last term as∣∣∣∣∣∫
Ω

Gk(w)
∣∣∣∣∣2 ≤ ‖Gk(w)‖2L2∗ (Ω)|Ak|

2− 2
2∗ ≤ ‖Gk(w)‖2L2∗ (Ω)

(
‖w‖L1(Ω)

k

)2− 2
2∗

.

Using this estimate in (2.5), we obtain that

‖Gk(w)‖2L2∗ (Ω)

1 − c
(∫

Ak

|b|N
) 2

N

− c
(
‖w‖L1(Ω)

k

)2− 2
2∗
 ≤ c |λ|‖Gk(w)‖L2∗ (Ω)|Ak|

1− 1
2∗ .

Let us take k0 sufficiently large such that, for every k ≥ k0,

1 − c
(∫

Ak

|b|N
) 2

N

− c
(
‖w‖L1(Ω)

k

)2− 2
2∗

≥
1
2
.

Then we have
‖Gk(w)‖L2∗ (Ω) ≤ 2c |λ| |Ak|

1− 1
2∗ ∀k ≥ k0 .

Hence ∫
Ω

Gk(w) ≤ ‖Gk(w)‖L2∗ (Ω)|Ak|
1− 1

2∗ ≤ 2c |λ| |Ak|
2− 2

2∗ .

Recall that 2 − 2
2∗ = 1 + 2

N , and, for a.e. k, we have d
dk

∫
Ω

Gk(w) = −|Ak|. This means that the function
ϕ(k) :=

∫
Ω

Gk(w) is a non increasing function which satisfies ϕ ≤ 2c |λ|(−ϕ′)1+ 2
N for all k ≥ k0. It

follows that ϕ(k1) = 0 for some k1 > k0. Hence w(x) ≤ k1 a.e. in Ω. Repeating the argument for −w,
we conclude that w ∈ L∞(Ω).

Step 2. We prove that λ = 0.
To this purpose, we reason by contradiction. Suppose that λ < 0. Since w ∈ L∞(Ω), for ε sufficiently

small we have λ + εw ≤ 0. Hence w satisfies−div(A(x)∇w) + εw ≤ b(x)|∇w| , in Ω,
A(x)∇w · ~n = 0 on ∂Ω.

This implies (with the same proof as e.g., [20, Proposition 2.1]) that w ≤ 0. Since w + c is still a
solution of (2.1), whatever is the constant c ∈ R, we easily get a contradiction. Of course the same
argument applies if λ > 0. We conclude that λ = 0.

Step 3. We now prove that w is a constant. To this purpose, we recall that the median of a function
u ∈ H1(Ω) is defined as

med (u) := sup{k ∈ R : meas({u > k}) ≥
|Ω|

2
} .
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As for the average of u, a Poincaré type inequality holds for u − med (u), see e.g., [22]. Namely there
exists a constant C (only depending on N,Ω) such that

‖u −med (u)‖L2(Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H1(Ω)

and therefore, by Sobolev inequality, we have, for a possibly different constant C,

‖u −med (u)‖L2∗ (Ω) ≤ C‖∇u‖L2(Ω) ∀u ∈ H1(Ω) . (2.6)

We now normalize our solution w so that

med (w) = 0 .

This implies that med (ψ(w)) = 0 for every nondecreasing Lipschitz function ψ : R → R such that
ψ(0) = 0. In particular, we have that med (Gk(w)) = 0 for all k > 0, where now Gk(s) = (|s|−k)+sign(s).
Defining Ak = {x : |w(x)| > k}, we obtain as in (2.4) (with the additional information now that λ = 0):∫

Ω

|∇Gk(w)|2 ≤ c
(∫

Ak∩{|∇w|,0}
|b|N

) 2
N

‖Gk(w)‖2L2∗ (Ω)

and so by (2.6) we deduce

‖Gk(w)‖2L2∗ (Ω) ≤ c
(∫

Ak∩{|∇w|,0}
|b|N

) 2
N

‖Gk(w)‖2L2∗ (Ω) .

This inequality now yields that w = 0. In fact, assume by contradiction that M := sup |w| > 0 and take
a sequence of k < M, k ↑ M. Since k < M, we have ‖Gk(w)‖2

L2∗ (Ω)
, 0 (otherwise this contradicts the

definition of M), so the previous inequality implies

1 ≤ c
(∫

Ak∩{|∇w|,0}
|b|N

) 2
N

.

But, as k ↑ M, we have |Ak ∩ {|∇w| , 0}| → 0, because ∇w = 0 a.e. in the set {|w| = M}. Hence we
reach a contradiction. This implies that w = 0, so w coincides with its median, and it is a constant. �

Remark 2.2. We notice that this lemma remains true for a nonlinear divergence form operator
−div(a(x,∇u)) which satisfies

a(x, p) · p ≥ α|p|2 for some α > 0. (2.7)

We now analyze the limit, as ε → 0, of the elliptic problem (1.7). For the purposes of Theorem
1.2, it is convenient to state this kind of result in a slightly more general form, where the Hamiltonian
H(x, p) may possibly depend on ε as well.

Lemma 2.3. Assume that A(x) satisfies (1.4), and that Hε(x, p) is a sequence of Carathéodory functions
satisfying

|Hε(x, p)| ≤ b(x)|p| + f (x) , for some b(x) ∈ LN(Ω), f (x) ∈ L
2N

N+2 (Ω), (2.8)
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for almost every x ∈ Ω and for every p ∈ RN .

For χ ∈
(
H1(Ω)

)′
, and ε > 0, let uε be solutions of the elliptic problem−div(A(x)∇uε) + ε uε = Hε(x,∇uε) + χ in Ω,

A(x)∇uε · ~n = 0 on ∂Ω,
(2.9)

and assume that there exists a function H(x, p) such that

Hε(x, p)→ H(x, p) for every p ∈ RN , and almost every x ∈ Ω.

Then there exist a constant λ ∈ R and a function u ∈ H1(Ω) such that, up to a subsequence,

εuε → λ and uε −
∫

Ω

−uε → u

where the limits are in the (strong) topology of H1(Ω). Moreover, (λ, u) solve problem (1.3).

Proof. We first claim that

∃ K > 0 (independent of ε): ‖∇uε‖L2(Ω) ≤ K ∀ε > 0 . (2.10)

We proceed by contradiction and suppose that (2.10) is not true. This implies the existence of a
subsequence of uε, not relabeled, such that ‖∇uε‖L2(Ω) → ∞. We set

wε :=
uε −

∫
Ω
− uε

‖∇uε‖L2(Ω)
.

Since wε has zero average and ‖∇wε‖L2(Ω) = 1, we deduce that wε is weakly relatively compact in H1(Ω)
and strongly in L2(Ω) by Rellich’s theorem. We observe that wε satisfies

− div(A(x)∇wε) + εwε =
1

‖∇uε‖L2(Ω)

[
Hε(x,∇uε) + χ

]
−

ε

|Ω|

∫
Ω

uε

‖∇uε‖L2(Ω)
in Ω. (2.11)

Last term is a sequence of real numbers that we estimate, integrating (2.9), as

ε

∫
Ω

uε

‖∇uε‖L2(Ω)
=

1
‖∇uε‖L2(Ω)

∫
Ω

Hε(x,∇uε) +
1

‖∇uε‖L2(Ω)
〈χ, 1〉

≤
1

‖∇uε‖L2(Ω)

∫
Ω

[b(x)|∇uε| + f (x)] +
‖χ‖(H1(Ω))′ |Ω|

1
2

‖∇uε‖L2(Ω)

≤
1

‖∇uε‖L2(Ω)
[‖b‖L2(Ω)‖∇uε‖L2(Ω) + ‖ f ‖L1(Ω) + ‖χ‖(H1(Ω))′ |Ω|

1
2 ] ,

where we used (2.8) as well. Since b ∈ LN(Ω) (N ≥ 2) and f ∈ L1(Ω), and since ‖∇uε‖L2(Ω) diverges,

the right-hand side is bounded. Hence ε
|Ω|

∫
Ω

uε

‖∇uε‖L2(Ω)
is a bounded sequence and there exists a real value

λ ∈ R such that, up to subsequences (not relabeled here), we have

ε

|Ω|

∫
Ω

uε

‖∇uε‖L2(Ω)
→ λ . (2.12)
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Now we use once more (2.8) to estimate

1
‖∇uε‖L2(Ω)

|Hε(x,∇uε)| ≤ b(x)|∇wε| +
f (x)

‖∇uε‖L2(Ω)
. (2.13)

Since b ∈ LN(Ω) and wε is bounded in H1(Ω), the product b(x)|∇wε| is bounded in L
2N

N+2 (Ω). In addition,
it is also equi-integrable: indeed, for any set E, one has∫

E
|b(x)∇wε|

2N
N+2 ≤ ‖∇wε‖

2N
N+2

L2(Ω)

(∫
E

b(x)N

) 2
N+2

≤ C
(∫

E
b(x)N

) 2
N+2

and last term (independent of ε) goes to zero as |E| → 0. Thus, in view of (2.13), the term
1

‖∇uε‖L2(Ω)
Hε(x,∇uε) is bounded and equi-integrable in L

2N
N+2 (Ω). Therefore, we havewε is bounded in H1(Ω),

−div(A(x)∇wε) + εwε = hε +
χ

‖∇uε‖L2(Ω)

(2.14)

for some hε bounded and equi-integrable in L
2N

N+2 (Ω).
This implies that wε is actually strongly compact in H1(Ω). We recall the argument for the reader’s

convenience. The key point is that, if w is a weak limit of wε, then∫
Ω

hε(wε − w)
ε→0
→ 0 . (2.15)

In fact, we have ∫
Ω

hε(wε − w) =

∫
Ω

hεTk(wε − w) +

∫
Ω

hεGk(wε − w)

where Tk(s) = max(min(s, k),−k) is the truncation function and Gk(s) is the difference s − Tk(s). By
Hölder inequality, since wε − w is bounded in L2∗(Ω) one has, by definition of Gk(·):

∣∣∣∣∣∫
Ω

hεGk(wε − w)
∣∣∣∣∣ ≤ C


∫

{|wε−w|>k}

|hε|
2N

N+2


N+2
2N

where last term vanishes as k → ∞, uniformly with respect to ε, since hε is equi-integrable in L
2N

N+2 (Ω).
Therefore one has ∫

Ω

hε(wε − w) =

∫
Ω

hεTk(wε − w) + rk

where rk
k→∞
→ 0 uniformly with respect to ε. But hε is bounded in L

2N
N+2 (Ω) while Tk(wε−w)→ 0 strongly

in Lp(Ω) for any p < ∞ due to Rellich theorem; hence the first integral in the right-hand side converges
to zero as ε→ 0. Therefore, by letting ε→ 0 and then k → ∞, we deduce that (2.15) holds true. With
(2.15) in hands, it is now easy to deduce from (2.14) that

‖∇wε − ∇w‖2L2(Ω) ≤
1
α

∫
Ω

A(x)∇(wε − w) · ∇(wε − w)
ε→0
→ 0.
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We have obtained so far that there exists a function w ∈ H1(Ω) such that, up to subsequences,

wε → w strongly in H1(Ω).

In particular, this implies, up to subsequences, that ∇wε → ∇w almost everywhere in Ω. Therefore,
as a consequence of (2.13), the term 1

‖∇uε‖L2(Ω)
Hε(x,∇uε) weakly converges in L

2N
N+2 (Ω) towards some

function B(x) which satisfies |B(x)| ≤ b(x)|∇w(x)| a.e. in Ω.
Finally, due to (2.11), (2.12), (2.13), w satisfies (in weak sense)−div(A(x)∇w) ≤ b(x)|∇w| + λ in Ω,

A(x)∇w · ~n = 0 on ∂Ω.
(2.16)

By Lemma 2.1 we deduce that w is constant, and since
∫

Ω
w = 0 this means w(x) ≡ 0. But this is a

contradiction with the fact that wε strongly converges to w in H1(Ω) and ‖∇wε‖L2(Ω) = 1 for every ε.
The contradiction proves that the assertion (2.10) is true.

Thanks to (2.10), now we integrate (2.9) and we get

ε

∣∣∣∣∣∫
Ω

uε
∣∣∣∣∣ =

∣∣∣∣∣∫
Ω

Hε(x,∇uε) + 〈χ, 1〉
∣∣∣∣∣ ≤ ∫

Ω

b(x)|∇uε| + f (x) + |〈χ, 1〉| ≤ C ,

due to the growth condition (2.8). Therefore, ε
∫

Ω
uε is a bounded sequence, and there exists a real

value λ ∈ R such that, up to subsequences,

ε

∫
Ω

− uε → λ .

We now set ûε : uε −
∫

Ω
− uε. Then ûε is bounded in H1(Ω) and solves

− div(A(x)∇ûε) + ε ûε = Hε(x,∇ûε) + χ − ε

∫
Ω

− uε in Ω. (2.17)

With the same arguments used before for wε, we can show that ûε is strongly compact in H1(Ω), so
there exists a function u ∈ H1(Ω) such that ûε → u in H1(Ω). We may also assume that ∇ûε → ∇u
almost everywhere in Ω, and therefore almost uniformly as well; since Hε(x,∇ûε) is equi-integrable and
Hε(x, p) → H(x, p), we can deduce that Hε(x,∇ûε) converges to H(x,∇u) (which belongs to L

2N
N+2 (Ω)

due to (2.8)). Finally, passing to the limit in (2.17), we obtain that (u, λ) is a solution to problem
(1.3). �

The proof of Theorem 1.1 immediately follows from the above two results.

Proof of Theorem 1.1. For ε > 0, let uε be the solution of the elliptic problem (1.7). Applying
Lemma 2.3, we have that, up to subsequences, εuε → λ and uε−

∫
Ω
− uε → u, where (λ, u) gives a solution

to problem (1.3).
Now we assume further the condition (1.6) and we prove uniqueness of λ and u (up to a constant).

This is a straightforward consequence of Lemma 2.1. Indeed, let (u1, λ1) and (u2, λ2) be solutions to
problem (1.3). Then w := u1 − u2 is a solution to−div(A(x)∇w) = H(x,∇u1) − H(x,∇u2) + λ1 − λ2 in Ω,

A(x)∇w · ~n = 0 on ∂Ω,

Mathematics in Engineering Volume 3, Issue 4, 1–20.



11

where we have, due to (1.6),

|H(x,∇u1) − H(x,∇u2)| ≤ b(x)|∇w| .

From Lemma 2.1 we deduce that λ1 = λ2 and that u1 − u2 is a constant. �

Given the solution uε of (1.7), we now investigate the behavior of uε− λ
ε
− ū where (λ, ū) is a solution

of the ergodic problem (1.3). In order to fix a reference solution, we normalize ū so that
∫

Ω
ū = 0. So

(λ, ū) is uniquely defined from Theorem 1.1, provided (1.6) holds. The proof of Theorem 1.2 now
follows as a Corollary of the previous results.

Proof of Theorem 1.2. Let us define

vε :=
1
ε

(
uε −

λ

ε
− ū

)
.

One can check that vε solves−div(A(x)∇vε) + ε vε = 1
ε

[H(x,∇uε) − H(x,∇ū)] − ū in Ω,
A(x)∇vε · ~n = 0 on ∂Ω.

(2.18)

We notice that, thanks to (1.6), the function

H̃ε(x, p) :=
1
ε

[
H(x, εp + ∇ū) − H(x,∇ū)

]
satisfies

|H̃ε(x, p)| ≤ b(x)|p| , |H̃ε(x, p) − H̃ε(x, q)| ≤ b(x)|p − q|

and, from the differentiability of H, we have

H̃ε(x, p)→ Hp(x,∇ū) · p for every p ∈ RN and a.e. x ∈ Ω.

Therefore Lemma 2.3 applies and we deduce that there exists a constant θ ∈ R and a function w ∈
H1(Ω) such that

εvε → θ , vε −
∫

Ω

−vε → w

where the limits are in the strong topology of H1(Ω) and (θ,w) is the unique couple which satisfies the
linear elliptic problem (1.8) with the normalized condition

∫
Ω

w = 0. We stress that the uniqueness of
the limit couple implies that the whole sequence vε converges.

Coming back from vε to uε, this means that

lim
ε→0

(
uε −

λ

ε
− ū

)
= θ

where the limit is meant in H1(Ω), and in addition

1
ε

(
uε −

∫
Ω

−uε − ū
)
→ w .

This latter convergence yields the first order expansion for the gradient in L2(Ω):

∇uε = ∇ū + ε∇w + o(ε) as ε→ 0.

�
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Remark 2.4. The case N = 2 can be dealt with in exactly the same way as before, except that the
threshold summability of the drift term should be adapted to the Sobolev embedding of dimension
two. Since for N = 2 the space H1(Ω) is embedded in Lp(Ω) for every p < ∞, but not in L∞(Ω), one
needs here b(x) ∈ Lq(Ω) for some q > 2 in order that the product b(x)|∇u| belongs to the dual space(
H1(Ω)

)′
. Therefore, conditions (1.5) and (1.6) should be changed into

|H(x, p)| ≤ b(x)|p| + f (x) , for some b(x) ∈ Lq(Ω), q > 2, and f (x) ∈ Lm(Ω), m > 1, (2.19)

and respectively,

|H(x, p) − H(x, q)| ≤ b(x) |p − q| , b(x) ∈ Lq(Ω), q > 2, (2.20)

for almost every x ∈ Ω and for every p, q ∈ RN .
Replacing assumptions (1.5) and (1.6) with, respectively, (2.19) and (2.20), the results stated in

Theorem 1.1 and Theorem 1.2 are true for the dimension N = 2, and the proof remains the same up to
the obvious modifications in the Lebesgue spaces which are involved.

A similar remark holds true for the case of dimension N = 1; in that case it is enough to assume
b(x) ∈ L2(Ω) and f (x) ∈ L1(Ω).

2.1. Extensions to nonlinear operators

In this subsection we give a short extension of the result of Theorem 1.1 to the case of nonlinear
operators. To this purpose, we introduce a function a(x, p) : Ω × RN → RN which is assumed to be
measurable with respect to x, for every p ∈ RN , and continuous with respect to p, for a.e. x ∈ Ω. We
assume that a(x, p) satisfies the following monotonicity and growth conditions:

(a(x, p) − a(x, q)) · (p − q) ≥ α |p − q|2 , for some α ∈ R, α > 0, (2.21)

and
|a(x, p)| ≤ β (|p| + k(x)) for some β ∈ R, k(x) ∈ L2(Ω), (2.22)

for almost every x ∈ Ω and every p, q ∈ RN .
Notice that (2.21)–(2.22) imply also the coercivity condition

a(x, p) · p ≥ α|p|2 − k̃(x) , where α ∈ R, α > 0, k̃(x) ∈ L1(Ω). (2.23)

We also assume that a(x, p) satisfies the following asymptotic condition for |p| → ∞:

for a.e. x ∈ Ω, every p ∈ RN , ∃ lim
t→∞

a(x, tp)
t

. (2.24)

Of course, the case a(x, p) = A(x) · p + K(x), for a matrix A(x) satisfying (1.4) and a vector field
K ∈ L2(Ω), is the simplest example where conditions (2.21)–(2.24) are satisfied.

Thanks to (2.21)–(2.24), we can extend Theorem 1.1 to a nonlinear setting. Notice that additional
terms in the equation, belonging to

(
H1(Ω)

)′
, can be included here in the vector field a(x, p) or in the

local function H(x, p).
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Theorem 2.5. Assume that a(x, p) satisfies (2.21)–(2.24), and that H(x, p) satisfies (1.5) (or it satisfies
(2.19) if N = 2). Then there exist a constant λ ∈ R and a function u ∈ H1(Ω) which solve, in the weak
sense, the elliptic problem −div(a(x,∇u)) + λ = H(x,∇u) in Ω,

a(x,∇u) · ~n = 0 on ∂Ω.
(2.25)

In addition, if (1.6) holds true (respectively, (2.20) if N = 2), then λ is unique and u is unique up to
addition of a constant.

Proof. For ε > 0, we consider the approximating problem−div(a(x,∇uε)) + ε uε = H(x,∇uε) in Ω,
a(x,∇uε) · ~n = 0 on ∂Ω.

(2.26)

Then we aim at showing that the a priori estimate (2.10) holds true and we proceed, as in Lemma 2.3,
by contradiction. This allows us to build a sequence wε such that ‖∇wε‖L2(Ω) = 1, wε has zero average
and satisfies

− div
(
a(x, ‖∇uε‖L2(Ω)∇wε)
‖∇uε‖L2(Ω)

)
+ εwε =

H(x,∇uε)
‖∇uε‖L2(Ω)

−
ε

|Ω|

∫
Ω

uε

‖∇uε‖L2(Ω)
in Ω, (2.27)

where ‖∇uε‖L2(Ω) → ∞. As in Lemma 2.3, last term is a relatively compact sequence of real numbers,
and we observe that the right-hand side is bounded and equi-integrable in L

2N
N+2 (Ω), so that wε satisfieswε is bounded in H1(Ω),

−div(âε(x,∇wε)) + εwε = hε
(2.28)

for some hε bounded and equi-integrable in L
2N

N+2 (Ω), where

âε(x, p) :=
a(x, ‖∇uε‖L2(Ω) p)
‖∇uε‖L2(Ω)

.

Now, let w be a weak limit of wε in H1(Ω), and a strong limit in L2(Ω). Notice that we have that∫
Ω

âε(x,∇w)∇(wε − w)→ 0

because âε(x,∇w) is strongly convergent in L2(Ω) due to (2.24) and (2.22), by Lebesgue’s theorem.
Therefore, using (2.28) and (2.15) as well, we deduce that

lim
ε→0

∫
Ω

(âε(x,∇wε) − âε(x,∇w))∇(wε − w) = 0 . (2.29)

Notice that âε satisfies (2.21) for the same α > 0, and for every ε > 0. Then (2.29) implies that wε → w
strongly in H1(Ω) (and, up to a subsequence, ∇wε → ∇w almost everywhere in Ω). Now, for every
ϕ ∈ H1(Ω), we set

â(x,∇ϕ(x)) := lim
ε→0

âε(x,∇ϕ(x)) (2.30)
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which exists after (2.24) and belongs to L2(Ω) due to (2.22). It is a consequence of (2.29) and a
standard monotonicity argument (sometimes known as Minty’s argument) that âε(x,∇wε(x)) converges
to â(x,∇w(x)) weakly in L2(Ω). Finally, passing to the limit in (2.27), we obtain that w is a weak
solution of −div(â(x,∇w(x))) + λ = B(x) in Ω,

â(x,∇w(x)) · ~n = 0 on ∂Ω

for some λ ∈ R and some B(x) ∈ L
2N

N+2 (Ω) satisfying condition (2.2). Since â(x, p) satisfies (2.7)
(because â(x, 0) = 0 and (2.21) holds), we deduce from Lemma 2.1, Remark 2.2, that λ = 0 and that
w is constant (hence w = 0 because it has zero average). We get a contradiction with ‖∇w‖L2(Ω) = 1.
This proves that the a priori estimate (2.10) holds true, that is ‖∇uε‖L2(Ω) is uniformly bounded. Then
the compactness of uε in H1(Ω) follows in a similar way as before, using (2.21), and we conclude as in
Theorem 1.1 the existence of λ ∈ R, u ∈ H1(Ω) which solve problem (2.25).

By using (1.6) and (2.21), the uniqueness of λ and the uniqueness of u, up to a constant, are proved
exactly as in Theorem 1.1. Even if the problem is nonlinear, and Lemma 2.1 cannot be literally applied,
the arguments are exactly the same as used in Lemma 2.1, now applied to w := u1−u2; the nonlinearity
of the operator is readily handled with assumption (2.21). �

Remark 2.6. Condition (2.24) is assumed here in order that we can follow the same approach used
before in the proof of Theorem 1.1. We believe this condition to be unnecessary for a similar result
to hold for general nonlinear operators, however removing this condition would need a substantial
change in the method of proof (e.g. using symmetrization methods), which is beyond the scope of this
note.

Remark 2.7. The result remains true for the case of dimension N = 1, up to requiring b ∈ L2(Ω) and
f ∈ L1(Ω) in assumptions (1.5) and (1.6).

2.2. Extensions to more singular data

The same approach as before can be used in case of more singular dependence with respect to x.
We have in mind here that the assumption (1.5) is replaced by

|H(x, p)| ≤ b(x)|p| + f (x) , for some b(x) ∈ LN(Ω), f (x) ∈ Lm(Ω), (2.31)

for almost every x ∈ Ω and for every p ∈ RN , where m ≥ 1, so that data can belong to Lebesgue spaces
of any order.

Of course, if m ≥ 2N
N+2 , assumption (2.31) implies (1.5), so there is nothing new to be proved. By

contrast, if m < 2N
N+2 , we cannot expect the solutions to belong to H1(Ω) anymore; however it is still

possible to obtain similar results in a setting of generalized solutions. We recall below the notion of
renormalized solutions. The truncation function is denoted, as before, by Tk(s) := max(min(s, k),−k).
In what follows we suppose that N > 1.

Definition 2.8. A function u, belonging to W1,q(Ω) for every q < N
N−1 , is a renormalized solution of

problem (2.25) if:

(i) Tk(u) ∈ H1(Ω) for every k > 0, and H(x,∇u) ∈ L1(Ω).
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(ii) For every function h : R→ R which is C1 with compact support, it holds∫
Ω

a(x,∇u)∇(h(u)ϕ) + λ

∫
Ω

h(u)ϕ =

∫
Ω

H(x,∇u)h(u)ϕ ∀ϕ ∈ H1(Ω) ∩ L∞(Ω) . (2.32)

(iii)

lim
n→∞

1
n

∫
{n<|u|<2n}

|∇u|2 = 0 . (2.33)

We recall that this notion of solution, introduced by P. L. Lions and F. Murat (in a joint paper
unpublished, whose content can be found in [16, 18]) is nowadays currently used as a formulation of
elliptic problems with L1-data, or even Radon measures. For similar problems with first order terms
having linear growth, we refer e.g., to [5].

It is to be noted that, in the renormalized formulation, the truncations of the solution belong to the
energy space H1(Ω), so that (2.32) makes sense for any h with compact support. Condition (2.33),
in turn, implies that renormalized solutions are also distributional solutions. To this purpose one can
take h = S

(
r
n

)
where S (t) is a piecewise linear function, supported in [−2, 2], such that S (t) ≡ 1 for

t ∈ [−1, 1]; then S
(

r
n

)
→ 1 as n→ ∞ and the distributional formulation (with test functions ϕ ∈ C1(Ω))

is recovered thanks to (2.33).
Up to replacing the

(
H1(Ω)

)′
formulation with the renormalized setting, Theorem 2.5 admits a

natural extension which is the following one. We recall (see [7]) that elliptic equations (including
possibly nonlinear divergence form operators with discontinuous coefficients) with source terms in
Lm(Ω), m < 2N

N+2 , admit solutions which belong to W1,m∗(Ω), where m∗ is the Sobolev exponent
(Nm)/(N − m).

Theorem 2.9. Let N ≥ 3. Assume that a(x, p) satisfies (2.21)–(2.24) and that H(x, p) satisfies (2.31)
for some 1 < m < 2N

N+2 . Then there exists a constant λ ∈ R and a function u ∈ W1,m∗(Ω) which is
a renormalized solution of (2.25). In addition, if (1.6) holds true, λ is unique and u is unique up to
addition of a constant.

Proof. We only sketch the main steps, and the main differences with the arguments of Theorem 2.5.
We start with the solutions uε of the approximating problem−div(a(x,∇uε)) + ε uε = Hε(x,∇uε) in Ω,

a(x,∇uε) · ~n = 0 on ∂Ω,
(2.34)

where Hε(x, p) = T 1
ε
(H(x, p)). Here the truncation of H is only needed if one wants to work, at fixed

ε, with the more comfortable setting of finite energy solutions. Then we claim that there exists K > 0
independent of ε, such that

‖∇uε‖Lm∗ (Ω) ≤ K ∀ε > 0 . (2.35)

The proof of (2.35) is done, as before, by contradiction. In this case we build a subsequence, not
relabeled, such that ‖∇uε‖Lm∗ (Ω) → ∞ and we define

wε =
uε −

∫
Ω
− uε

‖∇uε‖Lm∗ (Ω)
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which solves

− div(â(x,∇wε)) + εwε =
Hε(x,∇uε)
‖∇uε‖Lm∗ (Ω)

−
ε

|Ω|

∫
Ω

uε

‖∇uε‖Lm∗ (Ω)
in Ω, (2.36)

where âε(x, p) is defined now as

âε(x, p) :=
a(x, ‖∇uε‖Lm∗ (Ω) p)
‖∇uε‖Lm∗ (Ω)

.

Compared to Theorem 2.5, we now have that the right-hand side is bounded and equi-integrable in
Lm(Ω), hence wε satisfies wε is bounded in W1,m∗(Ω),

−div(âε(x,∇wε)) + εwε = hε
(2.37)

for some hε which is bounded and equi-integrable in Lm(Ω). One can prove now that wε is actually
strongly compact in W1,m∗(Ω). The argument needs a modification of what is done in Lemma 2.3: first
of all, by only using that hε is weakly converging in L1(Ω), one can prove (see e.g., [14, 18]) that

lim
ε→0

∫
Ω

(âε(x,∇Tk(wε)) − âε(x,∇Tk(w)))∇(Tk(wε) − Tk(w)) = 0

which yields, thanks to (2.21),

Tk(wε)→ Tk(w) in H1(Ω), for every k > 0. (2.38)

To estimate Gk(wε) = wε − Tk(wε), we take

[(σ + |Gk(wε)|)γ − σγ]sign(wε)

as test function in (2.37), for σ, γ > 0. We get

γ

∫
Ω

âε(x,∇wε)∇Gk(wε) (σ + |Gk(wε)|)γ−1 ≤

∫
Ω

hε[(σ + |Gk(wε)|)γ − σγ]sign(wε)

which implies, using (2.23) and the definition of â,

γ α

∫
Ω

|∇Gk(wε)|2 (σ + |Gk(wε)|)γ−1 ≤

∫
Ω

hε|(σ + |Gk(wε)|)γ − σγ|

+
γ

‖∇uε‖2
Lm∗ (Ω)

∫
Ω

k̃(x) (σ + |Gk(wε)|)γ−1 .
(2.39)

We choose γ =
N(m−1)
N−2m , so that |wε|

γ = |wε|
m∗∗
m′ is bounded in Lm′(Ω) due to the bound of wε in W1,m∗(Ω)

and Sobolev embedding. Moreover, we have γ < 1 since m < 2N
N+2 . Taking for instance σ = 1, the

previous inequality implies

γ α

∫
Ω

|∇Gk(wε)|2 (1 + |Gk(wε)|)γ−1 ≤ 2
∫
{|wε |>k}

|hε|(1 + |wε|)γ +
γ

‖∇uε‖2
Lm∗ (Ω)

‖k̃‖L1(Ω)
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≤ C
(∫
{|wε |>k}

|hε|m
) 1

m

+
C

‖∇uε‖2
Lm∗ (Ω)

.

Due to the equi-integrability of hε in Lm(Ω) we deduce∫
Ω

|∇Gk(wε)|2 (1 + |Gk(wε)|)γ−1 ≤ δk +
C

‖∇uε‖2
Lm∗ (Ω)

(2.40)

where δk denotes a quantity which vanishes as k → ∞ uniformly with respect to ε. From Hölder
inequality, since m∗ < 2 we have∫

Ω

|∇Gk(wε)|m
∗

≤

(∫
Ω

|∇Gk(wε)|2 (1 + |Gk(wε)|)γ−1
)m∗

2
(∫

Ω

(1 + |Gk(wε)|)
(1−γ)m∗

2−m∗

)1−m∗
2

.

The precise value of γ yields (1−γ)m∗

2−m∗ = m∗∗, so last term is bounded and from (2.40) we deduce∫
Ω

|∇Gk(wε)|m
∗

≤ C δ
m∗
2

k +
C

‖∇uε‖m∗
Lm∗ (Ω)

.

Putting together this information with (2.38), it follows that wε → w strongly in W1,m∗(Ω). In particular,
up to a subsequence, ∇wε → ∇w almost everywhere in Ω. This implies that Hε(x,∇uε)

‖∇uε‖Lm∗ (Ω)
weakly converges

to some function B(x) in Lm(Ω), and, because of (2.31) and the a.e. convergence of ∇wε, it follows that
B satisfies (2.2). If the vector filed â(x, p) is defined as in (2.30), then by passing to the limit we obtain
a function w such thatw ∈ W1,m∗(Ω),

−div(â(x,∇w)) + λ = B(x) with B(x) ∈ Lm(Ω) satisfying (2.2).

Now we get a contradiction by showing that w = 0. This needs a slight refinement of the argument of
Lemma 2.1; indeed, w does not belong a priori to H1(Ω). However, from (2.39) one obtains, letting
first ε→ 0 and then σ→ 0, the inequality

γ α

∫
Ω

|∇Gk(w)|2 |Gk(w)|γ−1 ≤

∫
Ω

[b(x) |∇w| + |λ|] |Gk(w)|γ . (2.41)

This replaces now the starting inequality (2.3) of Lemma 2.1; using that∫
Ω

|∇Gk(w)|m
∗

≤

(∫
Ω

|∇Gk(w)|2 |Gk(w)|γ−1
)m∗

2
(∫

Ω

|Gk(w)|
(1−γ)m∗

2−m∗

)1−m∗
2

≤ C
(∫

Ω

[b(x) |∇Gk(w)| + |λ|] |Gk(w)|γ
)m∗

2
(∫

Ω

|Gk(w)|
(1−γ)m∗

2−m∗

)1−m∗
2

and the equalities γm′ = m∗∗ and (1−γ)m∗

2−m∗ = m∗∗, one can prove with similar steps as in Lemma 2.1
that w ∈ L∞(Ω). Once w is proved to be bounded, then it has also finite energy and the conclusion of
Lemma 2.1 applies. This completes the contradiction argument and concludes the proof of the a priori
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estimate (2.35). Once uε is proved to be bounded in W1,m∗(Ω), we repeat the same argument to deduce
that uε −

∫
Ω
− uε is relatively compact and converges, up to subsequences, to some u ∈ W1,m∗(Ω). Due to

(2.31), this implies that H(x,∇uε) → H(x,∇u) in Lm(Ω). By well-known results (see e.g., [5, 18]), the
limit function u is a weak and a renormalized solution of the limiting problem (2.25).

Let us now sketch the uniqueness part. Assume that λ1, u1 and λ2, u2 are (renormalized) solutions
of the problem. Then it is possible to prove, using renormalization arguments (e.g., the arguments used
for the obtention of inequality (3.14) in [19, Theorem 3.1]), that u1, u2 satisfy

γ

∫
Ω

(a(x,∇u1) − a(x,∇u2))∇Gk(u1 − u2) (σ + |Gk(w)|)γ−1

≤

∫
Ω

|H(x,∇u1) − H(x,∇u2)| |(σ + |Gk(w)|)γ − σγ| + |λ1 − λ2|

∫
Ω

|(σ + |Gk(w)|)γ − σγ|

where w = u1 − u2 and γ =
N(m−1)
N−2m as before. The reader may check that all terms here are well defined

because of the precise value of γ and since u1, u2 ∈ W1,m∗(Ω). Using (2.21) and (1.6) it follows that

γ α

∫
Ω

|∇Gk(w)|2 (σ + |Gk(w)|)γ−1 ≤

∫
Ω

b(x) |∇w| |(σ + |Gk(w)|)γ − σγ|

+ |λ1 − λ2|

∫
Ω

|(σ + |Gk(w)|)γ − σγ| .

By letting σ → 0 one gets inequality (2.41) with λ = λ1 − λ2. This inequality allows us to show that
w ∈ L∞(Ω) as we said before. Now, let us assume for instance that λ1 > λ2; since u1 − u2 ∈ L∞(Ω),
then ε(u1 − u2) < λ1 − λ2 for ε sufficiently small. Therefore, we get that u1, u2 are, respectively, a
renormalized sub and super solution of the same equation

−div(a(x,∇u)) + εu = H(x,∇u) + εu2 − λ2 .

This implies (e.g., as in [19, Theorem 3.1], or in [6]) that u1 ≤ u2, which yields a contradiction, because
u1, u2 are solutions up to addition of any constant. We notice here that, if u is a renormalized solution
of (2.25), then it can be easily proved that u + c is also a renormalized solution, whenever c ∈ R. The
contradiction obtained proves that λ1 = λ2. Then, we replace u1 with u1 − med (u1 − u2); now again
from inequality (2.41) (obtained before for w = u1 − u2 − med (u1 − u2) and λ = λ1 − λ2 = 0) we can
deduce that w = 0, i.e., u1 − u2 = med (u1 − u2). Hence the two solutions differ by a constant. �

Finally, we conclude by observing that a similar result can be proved in the limiting case m = 1, up
to requiring that b(x) ∈ Lq(Ω) for some q > N. More precisely, we have the following result, whose
proof can be done with similar arguments as indicated above.

Theorem 2.10. Let N ≥ 2. Assume that a(x, p) satisfies (2.21)–(2.24) and that H(x, p) satisfies (2.31)
with m = 1 and b(x) ∈ Lq(Ω) for some q > N. Then there exists a constant λ ∈ R and a renormalized
solution u of (2.25). In addition, if (1.6) holds true with b(x) ∈ Lq(Ω) for some q > N, then λ is unique
and u is unique up to addition of a constant.
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