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Abstract: We consider the so-called ergodic problem for weak solutions of elliptic equations in
divergence form, complemented with Neumann boundary conditions. The simplest example reads as
the following boundary value problem in a bounded domain of R”:

—div(A(x)Vu) + A = H(x, Vu) in Q,
Ax)Vu-ni=0 on 0QQ,

where A(x) is a coercive matrix with bounded coeflicients, and H(x, Vu) has Lipschitz growth in the
gradient and measurable x-dependence with suitable growth in some Lebesgue space (typically,
|H(x,Vu)| < b(x)|Vu| + f(x) for functions b(x) € L¥(Q) and f(x) € L™(Q), m > 1). We prove that
there exists a unique real value A for which the problem is solvable in Sobolev spaces and the solution
is unique up to addition of a constant. We also characterize the ergodic limit, say the singular limit
obtained by adding a vanishing zero order term in the equation. Our results extend to weak solutions
and to data in Lebesgue spaces L™(Q) (or in the dual space (H'(Q))’), previous results which were
proved in the literature for bounded solutions and possibly classical or viscosity formulations.
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1. Introduction and statement of the main results

Let Q be a bounded, sufficiently regular, connected domain in RN, N > 1, and let 77 denote the
outward normal unit vector on the boundary 0Q. It is well known (see e.g., [12, 15]) that, if H(x, p)
is a Lipschitz function for (x, p) € Q x RY, then there is a unique real number A such that the elliptic
problem
—Au+Hx,Vu)+1=0 in Q, 11
Vu-i=0  ondQ (LD

admits a solution, and this solution is unique up to a constant. The simplest example of this type of
problems occurs in the linear case, when H(x,Vu) = b(x) - Vu — f(x). If b(x) is a Lipschitz
continuous, divergence free vector field, then A is the average value of f; if b(x) is not divergence free,
the uniqueness of A is a consequence of Fredholm theory for linear operators (see e.g., [10]), in which
case A = fQ f(x)¢1 dx, where ¢, is the first eigenfunction of the adjoint problem (normalized so that
Joer=1.

If H is a nonlinear function, the existence and uniqueness of A4 was proved in [15] assuming that
H(x, p) satisfies fairly general structure conditions with respect to p and enough regularity with respect
to x.

The real number A appearing in this kind of problems is sometimes called additive eigenvalue and
is definitively a critical value which plays a role in many different contexts. If H(x, p) is convex in
p, then A can be interpreted as the optimal value of an ergodic stochastic control problem; we refer
the reader to [2, 3, 12, 15] and especially to [1] for an extensive presentation of the ergodic stochastic
control setting. In that framework, it is natural to obtain A as the limit of € u,, where u, solves the
approximating coercive problem

(1.2)

—Au+H(x,Vu)+eu=0 in Q,
Vu-i=0 on 0Q.

Indeed, from Bellman’s principle, (1.2) is the equation solved by the value function of an infinite
horizon stochastic control problem, where ¢ is the discount factor. The vanishing discount limit leads,
through time averaging, to the ergodic control problem represented by (1.1), and 1 = lirréeug. This

interpretation awarded to A the name of ergodic constant, and to the singular limit of solutions of (1.2),
as € — 0, the name of ergodic limit.

The constant A is also a critical value for the long time behavior of the evolution problem, since it
represents the asymptotic speed of time-dependent solutions: typically, a solution of the evolution

problem v, — Av + H(x,Vv) = 0 (with Neumann conditions) satisfies v(x, t) S u(x) + Ar for some
stationary solution u of (1.1). Again, this is consistent with the ergodicity property of the underlying
controlled stochastic trajectory, but of course the long time convergence itself does not need the
convexity of H, at least for Lipschitz nonlinearities. Finally, A also plays a crucial role in
homogenization problems (in which context problem (1.1) is referred to as the cell problem), see [4].
A huge literature has been devoted so far to the existence and characterization of ergodic constants,
as well as to the study of ergodic limits and of the long time behavior of evolution problems, at the
point that it is impossible here to recall such a long list of contributions. Most papers concerned with
the above issues treat the problem in the framework of viscosity solutions’ theory, for both second

Mathematics in Engineering Volume 3, Issue 4, 1-20.



3

and first order Hamilton-Jacobi-Bellman equations. This explains why this kind of results were proved
under many different structure conditions on the “Hamiltonian” H(x, Vu) as well as on the second order
operator, but mostly assuming a regular dependence with respect to x. This regularity is often required
for verification theorems, whenever the application to stochastic control is the main motivation.

The purpose of this note is to give a prototype result of existence, uniqueness of the ergodic constant
and a characterization of the ergodic limit under natural assumptions for elliptic operators in divergence
form, replacing the L™ framework (and most times continuity, needed for viscosity solutions) with the
L?-setting which is natural for weak solutions in the Sobolev space H'(Q). To be precise, we consider
the elliptic problem

—div(A(x)Vu) + A = H(x,Vu) + x in Q, (13)
AX)Vu-i=0  ondQ, '
where y € (H ! (Q))’ (the dual space of H'(Q2)), A(x) is a measurable matrix such that
A) e L2(QMN,  AWE - £ > alél, (1.4)

for some @ > 0, and where H(x, p) is a Carathéodory function (measurable in x, continuous in p)
satisfying the following linear growth condition (this is for N > 3)

|H(x, p)| < b(x)|p| + f(x), for some b(x) € LN(Q), f(x) € L (), (1.5

for almost every x € Q and for every p € RY.

Let us stress that f(x) (and therefore H(x,0)) is not assumed to be bounded, and only belongs to
L7(Q), where 2* = 2% is the Sobolev exponent for N > 3. The case N = 1,2 is mentioned later, see
Remark 2.4. Due to Sobolev embedding, the condition b € L¥(Q) is the usual threshold for Lebesgue
summability of drift terms in elliptic equations, see e.g., [11]; in fact b(x)|Vu| € L%(Q) whenever
Vu € L*(Q) and b(x) € LN(Q).

Here and below, we assume that Q is a Lipschitz bounded and connected domain in RY; the
Lipschitz regularity being just one possible condition which ensures that the Sobolev embedding (and
the Poincaré-Wirtinger inequality) hold true.

Eventually, for the purpose of uniqueness, we will also assume the following Lipschitz condition
upon H, namely that

[H(x, p) = H(x, @)l < b(x)Ip—ql,  b(x) € L(Q), (1.6)
for almost every x € Q and every p,q € RY.

The first main result that we prove in this note is the following.

Theorem 1.1. Let N > 3. Assume that A(x) satisfies (1.4) and that H(x, p) satisfies (1.5). Then there
exist a constant A € R and a function u € H'(Q) which satisfy the elliptic problem (1.3) in the weak
sense, i.e.,

f A(x)VuVe + A f ¢ = f H(x, Vi) + {x, ) VYo e H(Q).
Q Q Q

In addition, if H satisfies (1.6), problem (1.3) is solvable for a unique constant A and the corresponding
weak solution u is unique up to addition of a constant.
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Even if the result of Theorem 1.1 is quite simple, it seems new to the best of our knowledge, except
for the linear case, which was treated in [10] through Fredholm theory. As usual, the existence of the
constant A is proved by considering the singular ergodic limit, as € — 0, of solutions u, of
—div(A(x)Vu®) + eu® = H(x,Vu®) + x in Q, (1.7)
AX)Vu? =0  onoQ. '

Here the main difference, compared to the classical case ( [15]), is that the uniform estimate of eu®,
usually given by the maximum principle, is not available because of the more singular x-dependence
of the Hamiltonian. In fact, we directly estimate ||[Vu®||;2(q) as a first, and then crucial, step; this is done
with a similar strategy as suggested in [20] for the Dirichlet problem.

As a consequence of Theorem 1.1, and of our structure conditions, we eventually give a complete
description of the limit of ©®, assuming further that H(x, p) is differentiable with respect to p. In that
case, the limit of u® can be fully characterized in terms of the additive eigenvalue of the linearized
problem: this is the (non homogeneous) linear problem

(1.8)

—div(A(x)Vw) + 6 = H,(x,Vir) - Vw — it in Q,
Ax)Vw -1 =0 on 092,

where i is the unique solution of (1.3) such that fg u=0.

Theorem 1.2. Assume that H(x, p) satisfies (1.5), (1.6) and H is differentiable with respect to p with

H,(x,p) = a%;p) being continuous in p, for a.e. x € Q. Let u® be the unique solution of (1.7) and

(4, i) be the unique solution of (1.3) such that fg i =0. Then we have

lim (us—f—u)ze
-0 E

where the limit is in H'(Q), and 6 is the unique constant for which problem (1.8) is solvable. Moreover
we also have (in L*(Q))

Vu® = Vi + eVw + 0(g) ase — 0,
where w is the unique solution of (1.8) with zero average.

The equivalent of this result for much more general diffusion operators and Hamiltonians, but with
a smooth dependence on x, is proved in many recent papers through viscosity solutions’ methods, see
e.g., [13,17] for second order problems, where this is called the selection problem, since the constant
selects the limit of #® among all possible solutions of the ergodic problem (1.3). Of course, this is much
simpler for elliptic equations rather than for first order (or degenerate elliptic) problems, as treated e.g.,
in [9] or in the pioneering paper [8].

The proofs of Theorem 1.1 and Theorem 1.2 are given in the next Section. Later we briefly address
some extension of our results to nonlinear divergence form operators (Theorem 2.5) and to more
singular x-dependence, including the case of data f(x) in Lebesgue spaces L"(Q), m > 1 (see
Theorem 2.9 and Theorem 2.10).
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2. Proof of the results

Let us recall that, in the following, Q is a bounded connected domain in R, N > 3, with Lipschitz
boundary, and we denote by 7 the outward normal unit vector to the boundary dQ. The Sobolev space
is denoted by H'(Q) and its dual by (H 1(Q))l. We start with a characterization of all possible weak
subsolutions of a Neumann elliptic problem.

Lemma 2.1. Let w € H'(Q) and A € R satisfy

—div(A(x)Vw) = B(x) + 4 in Q, 2.1
AXVw-1=0  ondQ, '
where the matrix A(x) satisfies (1.4) and the function B(x) € L%(Q) satisfies
|B(x)| < b(x) |[Vw(x)| for some b € LN(Q). 2.2)

Then, we have A = 0 and the function w(x) is constant in Q.

Proof. We divide the proof in three steps.

Step 1. We prove that w € L*(Q).

This is standard, but we sketch the argument for the reader’s convenience, following [21]. For k > 0
we use Gi(w) := (w — k), as test function in problem (2.1). Then, using the ellipticity of A(x) and
condition (2.2), we get

a/flVGk(w)Izdxs f[b(x)le|+/l] Gr(w)dx (2.3)
Q Q

Let us set Ay := {x € Q : w(x) > k}. Since the integral in the right-hand side is restricted in the set A,
we deduce, using Holder inequality,

o f |VGk<w>|2dxs( f |b|”) NGl 2@ IGK W 2 @)
Q ArN{[Vw|£0}
+ 1 IG W)l Al

This readily implies

2
VG (W)’ dx < ¢ ( f |b|N) G W)
\fg; g ArN{|Vw|#0} ¢ L2 © (24)
+ Al IGeW)ll o)Al ™7

where, here and below, ¢ denotes possibly different numbers only depending on «, N, Q. By Poincaré-
Wirtinger inequality we deduce

2
”G1<<W>—kaW)llimmSC( f |b|N) IGUIE g + € UGl ALl
Q Ax

Mathematics in Engineering Volume 3, Issue 4, 1-20.



which implies

mmm;@s4fwﬂu@wmmD
A

5 (2.5)

-3
+ UG 2 @ lAul > + ¢

kaAw)
Q

2-%
||W||L1(Q)) 2

We estimate last term as

f Gi(w)
o

Using this estimate in (2.5), we obtain that

2 2
i Wl L
mmm;@b—{fw@ ﬂ{—FL < ¢ |G W)l 2 e lAxl ™7 .
A

2
2

< G W2 AT < G W7 (

L7 (Q) L2 (Q)

k

Let us take k, sufficiently large such that, for every k > kq,

T (Il 1
1—c(f |b|N) —c(ﬂ) > -
N k 2

IG W)l oy < 2¢ [ANIAL'™F Yk > k.

Then we have

Hence
ka(W) = ”G"(W)”LZ*(Q>|A1¢|1_2L* < 2¢|Al AP F
Q

Recall that 2 — £ = 1 + %, and, for a.e. k, we have % [ Gi(w) = —|A;|. This means that the function
pk) = fg G, (w) is a non increasing function which satisfies ¢ < 2c¢ |/1|(—g0’)1+% for all k > ky. It
follows that ¢(k;) = O for some k; > ky. Hence w(x) < k; a.e. in Q. Repeating the argument for —w,
we conclude that w € L*(Q).

Step 2. We prove that 4 = 0.
To this purpose, we reason by contradiction. Suppose that 4 < 0. Since w € L*(Q), for ¢ sufficiently
small we have 4 + ew < 0. Hence w satisfies

—div(A(x)Vw) + ew < b(x)|Vw]|, in Q,
AX)Vw-i=0 on 0Q.

This implies (with the same proof as e.g., [20, Proposition 2.1]) that w < 0. Since w + c is still a
solution of (2.1), whatever is the constant ¢ € R, we easily get a contradiction. Of course the same
argument applies if 4 > 0. We conclude that A = 0.

Step 3. We now prove that w is a constant. To this purpose, we recall that the median of a function
u € H'(Q) is defined as

med (u) := sup{k € R : meas({u > k}) > %}.
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As for the average of u, a Poincaré type inequality holds for # — med (u), see e.g., [22]. Namely there
exists a constant C (only depending on N, Q) such that

lu — med W)l| 20 < CllVullpy — Yue H'(Q)
and therefore, by Sobolev inequality, we have, for a possibly different constant C,
lu = med @)l o) < ClVullzy — Yue H'Q). (2.6)
We now normalize our solution w so that
med (w) =0.

This implies that med (¢(w)) = O for every nondecreasing Lipschitz function ¢ : R — R such that
¥ (0) = 0. In particular, we have that med (G(w)) = 0 for all kK > 0, where now G(s) = (|s|—k),sign(s).
Defining A; = {x : |[w(x)| > k}, we obtain as in (2.4) (with the additional information now that A4 = 0):

2
N
fwmes4f wﬂn&w%m»
Q ArN{|Vw|£0}

and so by (2.6) we deduce

2
N
2 N 2
mmmw®s4f w)u@wmmw
ArN{|Vw|£0}

This inequality now yields that w = 0. In fact, assume by contradiction that M := sup |w| > 0 and take
a sequence of k < M, k T M. Since k < M, we have ||Gk(w)||i2* @ # 0 (otherwise this contradicts the
definition of M), so the previous inequality implies

%
1< c( f |b|N) )
ArN{|Vw|£0}

But, as k T M, we have |A; N {|{Vw| # 0}] — 0, because Vw = 0 a.e. in the set {{w| = M}. Hence we
reach a contradiction. This implies that w = 0, so w coincides with its median, and it is a constant. O

Remark 2.2. We notice that this lemma remains true for a nonlinear divergence form operator

—div(a(x, Vu)) which satisfies

a(x,p)-p > alp for some a > 0. 2.7

We now analyze the limit, as € — 0, of the elliptic problem (1.7). For the purposes of Theorem
1.2, it is convenient to state this kind of result in a slightly more general form, where the Hamiltonian
H(x, p) may possibly depend on € as well.

Lemma 2.3. Assume that A(x) satisfies (1.4), and that H.(x, p) is a sequence of Carathéodory functions
satisfying
|Ho(x, p)| < b(x)|p| + f(x), for some b(x) € LN(Q), f(x) € L%(Q), (2.8)
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for almost every x € Q and for every p € RY.
For y € (H 1(Q))/, and € > 0, let u® be solutions of the elliptic problem

—div(A(x)Vu®) + eu® = H(x, Vu®) + in Q, (2.9)

AX)Vu? -t=0  onoQ, '
and assume that there exists a function H(x, p) such that

H.(x,p) — H(x, p) for every p € RN, and almost every x € Q.
Then there exist a constant A € R and a function u € H'(Q) such that, up to a subsequence,
eu® — A and ME—JCf—>u
Q
where the limits are in the (strong) topology of H'(Q). Moreover, (A, u) solve problem (1.3).
Proof. We first claim that
3 K > 0 (independent of ):  [[Vu®|| 20 < K Ye>0. (2.10)

We proceed by contradiction and suppose that (2.10) is not true. This implies the existence of a
subsequence of u®, not relabeled, such that ||Vu®|| 2y — o0. We set

& _ &
u j{)u

We 1= .
IVue|| 2

Since w, has zero average and |[Vw,||;2) = 1, we deduce that w, is weakly relatively compact in H Q)
and strongly in L*(Q) by Rellich’s theorem. We observe that w, satisfies

div(A(X)Vw,) + L Vi) + 4] = o e inQ @2.11)
—div(A)Vw,) + ew, = ——— [Ho(x, VUl) + ] - ——— ) .
IVue| 2 Q2 [[Vur|| 2

Last term is a sequence of real numbers that we estimate, integrating (2.9), as

Jo 1

1
& = H.(x,Vu®) + ———(x, 1)
IVuell2)  IIVUe|lr2 ) L IVu?|l 2
el 1y 1212

VU2

1
S -
VU]l 2

fQ [DOIVU’] + f(x0)] +

< ——IlIb vVu?® + o) + Q2 ,
< ||VM£||L2(Q)[|| ||L2(Q)|| u ||L2(Q) £l Q) ||X||(H1(Q)) €22 ]
where we used (2.8) as well. Since b € LN(Q) (N > 2) and f € L'(Q), and since ||Vu?|| 12(q) diverges,

et
101 TV 2,

A € R such that, up to subsequences (not relabeled here), we have

E
& fgu

— - A
Q2 [[Vur|| 2

the right-hand side is bounded. Hence is a bounded sequence and there exists a real value

(2.12)
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Now we use once more (2.8) to estimate

|H(x, Vu®)| < b(x)[Vw,| + _ S

. (2.13)
Vel 2 VU] 20

Since b € L¥(Q) and w,. is bounded in H'(Q), the product b(x)|Vw,| is bounded in L (). In addition,
it is also equi-integrable: indeed, for any set E, one has

bv%<v%bNﬁ
e < v (| b

< C( f b(x)N)M
E

and last term (independent of &) goes to zero as |E| — 0. Thus, in view of (2.13), the term

W H.(x, Vu®) is bounded and equi-integrable in L%(Q). Therefore, we have
L2(Q)

_dIV(A(X)VWS) +ew, = h. + X (214)

€ ”VME”LZ(Q)

{wg is bounded in H'(Q),

for some &, bounded and equi-integrable in L Q).
This implies that w, is actually strongly compact in H'(€2). We recall the argument for the reader’s
convenience. The key point is that, if w is a weak limit of w,, then

f how, —w) > 0. (2.15)
Q

fhs(ws -w) = fhsTk(Ws -w)+ fhsGk(Wa - W)
Q Q Q

where T;(s) = max(min(s, k), —k) is the truncation function and Gy(s) is the difference s — Ty(s). By
Holder inequality, since w, — w is bounded in L? () one has, by definition of G ():

f hsGk(Wa - W)‘ <C f Ihsl%
Q

|[we—w|>k}

In fact, we have

N+2
2N

where last term vanishes as k — oo, uniformly with respect to &, since A, is equi-integrable in L7 (Q).

Therefore one has
fhs(ws - W) = fhsTk(Ws - W) + Iy
Q Q

where ry gy 0 uniformly with respect to &. But A, is bounded in L%(Q) while T (w,—w) — 0 strongly
in LP(Q) for any p < oo due to Rellich theorem; hence the first integral in the right-hand side converges
to zero as € — 0. Therefore, by letting € — 0 and then k — oo, we deduce that (2.15) holds true. With
(2.15) in hands, it is now easy to deduce from (2.14) that

! .
w%—wﬁmégjﬁmw%—mvwfw>io
Q
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We have obtained so far that there exists a function w € H'(€) such that, up to subsequences,
we — w  strongly in H'(Q).
In particular, this implies, up to subsequences, that Vw, — Vw almost everywhere in €. Therefore,
as a consequence of (2.13), the term W H.(x, Vu®) weakly converges in L () towards some
12(Q)

function B(x) which satisfies |B(x)| < b(x)|Vw(x)| a.e. in Q.
Finally, due to (2.11), (2.12), (2.13), w satisfies (in weak sense)

{—div(A(x)Vw) <bXVwl+A  inQ, (2.16)

AX)Vw -1 =0 on 0Q.
By Lemma 2.1 we deduce that w is constant, and since fg w = 0 this means w(x) = 0. But this is a
contradiction with the fact that w, strongly converges to w in H'(Q) and ||[Vw,|| 2@ = 1 for every e.

The contradiction proves that the assertion (2.10) is true.
Thanks to (2.10), now we integrate (2.9) and we get

Ik
Q

due to the growth condition (2.8). Therefore, & fQ u® is a bounded sequence, and there exists a real
value A € R such that, up to subsequences,
e J( u® — 1.
Q

We now set u® : u® — Jgug. Then u* is bounded in H'(Q) and solves

&

ng(x, Vu®) + (x, 1)
0

< f BOIVite] + £ + [t DI < C
Q

— div(A(x)Vu®) + sut = H(x, Vue) + y — & fus in Q. 2.17)
Q

With the same arguments used before for w,, we can show that u* is strongly compact in H'(Q), so
there exists a function u € H'(Q) such that ¥ — u in H'(Q). We may also assume that Vu# — Vu
almost everywhere in Q, and therefore almost uniformly as well; since H,(x, Vu#) is equi-integrable and
H.(x, p) — H(x, p), we can deduce that H,(x, Vi) converges to H(x, Vi) (which belongs to L%(Q)
due to (2.8)). Finally, passing to the limit in (2.17), we obtain that (u, 1) is a solution to problem
(1.3). O

The proof of Theorem 1.1 immediately follows from the above two results.

Proof of Theorem 1.1. For £ > 0, let u° be the solution of the elliptic problem (1.7). Applying
Lemma 2.3, we have that, up to subsequences, su® — A and u‘g—jfgu‘E — u, where (4, u) gives a solution
to problem (1.3).

Now we assume further the condition (1.6) and we prove uniqueness of A and u (up to a constant).
This is a straightforward consequence of Lemma 2.1. Indeed, let (u;,4,) and (u,, 4,) be solutions to
problem (1.3). Then w := u; — u, is a solution to

—div(A(x)Vw) = H(x,Vu;) — H(x,Vuy) + 41 — A, in Q,
AX)Vw-71=0 on 0Q,
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where we have, due to (1.6),
|H(x,Vu;) — H(x, Vuy)| < b(x)|Vw].

From Lemma 2.1 we deduce that A; = A, and that u; — u, is a constant. O

Given the solution u® of (1.7), we now investigate the behavior of u® — f — i where (A, 1) is a solution
of the ergodic problem (1.3). In order to fix a reference solution, we normalize & so that fQ u=0.So
(4, ) is uniquely defined from Theorem 1.1, provided (1.6) holds. The proof of Theorem 1.2 now
follows as a Corollary of the previous results.

Proof of Theorem 1.2. Let us define

One can check that v* solves
—div(A()VV) + v = L [H(x, Vuf) — H(x, Vit)] — it in Q, 2.18)
AV -7=0  ondQ. '

We notice that, thanks to (1.6), the function
- 1
Hy(x,p) := —[H(x,ep + Vi) — H(x, Vii)]
&
satisfies

|H.(x, p)l < b(x)Ipl, |H,.(x, p) — Ho(x,q)| < b(x)|p - gl

and, from the differentiability of H, we have
H.(x,p) > H,(x,Vii)-p  forevery p e R¥ and ae. x € Q.

Therefore Lemma 2.3 applies and we deduce that there exists a constant § € R and a function w €
H'(Q) such that

a’® -0, vS—JC/‘S—wv
Q

where the limits are in the strong topology of H'(Q) and (6, w) is the unique couple which satisfies the
linear elliptic problem (1.8) with the normalized condition fQ w = 0. We stress that the uniqueness of
the limit couple implies that the whole sequence v* converges.

Coming back from v* to u®, this means that

) A
lim (u’s———u)ze
e—0 E

where the limit is meant in H'(Q), and in addition

1
—(us—ﬁta—ﬁ)—)w.
2 Q

This latter convergence yields the first order expansion for the gradient in L>(Q):
Vu® = Vi + eVw + 0(e) ase — 0.

O
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Remark 2.4. The case N = 2 can be dealt with in exactly the same way as before, except that the
threshold summability of the drift term should be adapted to the Sobolev embedding of dimension
two. Since for N = 2 the space H'(Q) is embedded in L?(Q) for every p < oo, but not in L¥(L2), one
needs here b(x) € L4(Q) for some g > 2 in order that the product b(x)|Vu| belongs to the dual space
(H ! (Q))’. Therefore, conditions (1.5) and (1.6) should be changed into

|H(x, p)| < b(x)|p| + f(x), forsome b(x) € L1(Q), g > 2, and f(x) € L"(Q), m > 1, (2.19)
and respectively,
|H(x, p) = H(x,¢)| < b(x)|p = ql, b(x) € L(Q), g > 2, (2.20)

for almost every x € Q and for every p,q € RY.

Replacing assumptions (1.5) and (1.6) with, respectively, (2.19) and (2.20), the results stated in
Theorem 1.1 and Theorem 1.2 are true for the dimension N = 2, and the proof remains the same up to
the obvious modifications in the Lebesgue spaces which are involved.

A similar remark holds true for the case of dimension N = 1; in that case it is enough to assume
b(x) € L*(Q) and f(x) € L'(Q).

2.1. Extensions to nonlinear operators

In this subsection we give a short extension of the result of Theorem 1.1 to the case of nonlinear
operators. To this purpose, we introduce a function a(x, p) : Q x R¥ — RY which is assumed to be
measurable with respect to x, for every p € RY, and continuous with respect to p, for a.e. x € Q. We
assume that a(x, p) satisfies the following monotonicity and growth conditions:

(a(x, p) —a(x,q)) - (p—q) = alp— g, forsome @ € R, @ >0, (2.21)

and
la(x, p)| < B(Ip| + k(x)) for some 8 € R, k(x) € L*(Q), (2.22)

for almost every x € Q and every p,q € RY.
Notice that (2.21)—(2.22) imply also the coercivity condition

a(x,p)-p > alpl’ —k(x),  where@ € R, a@ > 0, k(x) € L'(Q). (2.23)
We also assume that a(x, p) satisfies the following asymptotic condition for |p| — oo:

, 1
forae. x€ Q,every pe RY, 3 lim a(x, 1p) ) (2.24)

t—o0 t

Of course, the case a(x, p) = A(x) - p + K(x), for a matrix A(x) satisfying (1.4) and a vector field
K € L*(Q), is the simplest example where conditions (2.21)—(2.24) are satisfied.

Thanks to (2.21)—(2.24), we can extend Theorem 1.1 to a nonlinear setting. Notice that additional
terms in the equation, belonging to (H 1(Q)) , can be included here in the vector field a(x, p) or in the
local function H(x, p).
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Theorem 2.5. Assume that a(x, p) satisfies (2.21)—(2.24), and that H(x, p) satisfies (1.5) (or it satisfies
(2.19) if N = 2). Then there exist a constant A € R and a function u € H'(Q) which solve, in the weak
sense, the elliptic problem

{—div(a(x, Vu)) +A=H(x,Vu)  inQ, (2.25)

a(x,Vu)-71=0 on 0Q.

In addition, if (1.6) holds true (respectively, (2.20) if N = 2), then A is unique and u is unique up to
addition of a constant.

Proof. For € > 0, we consider the approximating problem

(2.26)

—div(a(x, Vu?®)) + eu® = H(x, Vu®) in Q,
a(x,Vu®) -1 =0 on 0.

Then we aim at showing that the a priori estimate (2.10) holds true and we proceed, as in Lemma 2.3,
by contradiction. This allows us to build a sequence w, such that |[Vw,||;2q) = 1, w, has zero average
and satisfies

in Q, (2.27)

_div(a(?@||VM8||L2(Q)VW8)) W = H(x, Vu®) £ fgu‘g
Vel 22 © Vel 19 IVEEll2g)

where [|[Vu®||2q) — o0. As in Lemma 2.3, last term is a relatively compact sequence of real numbers,
and we observe that the right-hand side is bounded and equi-integrable in L¥iz (Q), so that w, satisfies

w, is bounded in H'(Q),
(2.28)

—div(ag(x,Vw,)) + ew, = h,
for some 4, bounded and equi-integrable in Ly (Q), where

a(x, ||VM8||L2(Q)P)
IVue|| 2

ag(x, p) =
Now, let w be a weak limit of w, in H'(€2), and a strong limit in L*(2). Notice that we have that
f a.(x, Vw)V(w, —w) — 0
Q

because a,(x, Vw) is strongly convergent in L*(2) due to (2.24) and (2.22), by Lebesgue’s theorem.
Therefore, using (2.28) and (2.15) as well, we deduce that

lir% (as(x, Vw,) — a.(x,Vw)) Viw, —w) = 0. (2.29)
fomd Q

Notice that a, satisfies (2.21) for the same a > 0, and for every € > 0. Then (2.29) implies that w, — w
strongly in H'(Q) (and, up to a subsequence, Vw, — Vw almost everywhere in Q). Now, for every

0 € H'(Q), we set
a(x, Vo(x)) = lirrol a.(x, Vo(x)) (2.30)

Mathematics in Engineering Volume 3, Issue 4, 1-20.



14

which exists after (2.24) and belongs to L*(Q) due to (2.22). It is a consequence of (2.29) and a
standard monotonicity argument (sometimes known as Minty’s argument) that a.(x, Vw.(x)) converges
to a(x, Vw(x)) weakly in L?>(Q). Finally, passing to the limit in (2.27), we obtain that w is a weak
solution of

—div(a(x, Vw(x))) + 1 = B(x) in Q,
a(x, Vw(x)) -1 =0 on 0Q2

for some 4 € R and some B(x) € L%(Q) satisfying condition (2.2). Since a(x, p) satisfies (2.7)
(because a(x,0) = 0 and (2.21) holds), we deduce from Lemma 2.1, Remark 2.2, that A = O and that
w is constant (hence w = 0 because it has zero average). We get a contradiction with [[Vwl|;2q) = 1.
This proves that the a priori estimate (2.10) holds true, that is |[Vu®||2q, is uniformly bounded. Then
the compactness of u® in H'(Q) follows in a similar way as before, using (2.21), and we conclude as in
Theorem 1.1 the existence of A € R, u € H'(Q) which solve problem (2.25).

By using (1.6) and (2.21), the uniqueness of A and the uniqueness of u, up to a constant, are proved
exactly as in Theorem 1.1. Even if the problem is nonlinear, and Lemma 2.1 cannot be literally applied,
the arguments are exactly the same as used in Lemma 2.1, now applied to w := u; — uy; the nonlinearity
of the operator is readily handled with assumption (2.21). O

Remark 2.6. Condition (2.24) is assumed here in order that we can follow the same approach used
before in the proof of Theorem 1.1. We believe this condition to be unnecessary for a similar result
to hold for general nonlinear operators, however removing this condition would need a substantial
change in the method of proof (e.g. using symmetrization methods), which is beyond the scope of this
note.

Remark 2.7. The result remains true for the case of dimension N = 1, up to requiring b € L*(Q) and
f € LYQ) in assumptions (1.5) and (1.6).

2.2. Extensions to more singular data

The same approach as before can be used in case of more singular dependence with respect to x.
We have in mind here that the assumption (1.5) is replaced by

\H(x, p)l < b@)lpl + f(x),  for some b(x) € LY(Q), f(x) € L"(Q), 2.31)

for almost every x € Q and for every p € RY, where m > 1, so that data can belong to Lebesgue spaces
of any order.

Of course, if m > 375, assumption (2.31) implies (1.5), so there is nothing new to be proved. By
contrast, if m < %, we cannot expect the solutions to belong to H'(Q) anymore; however it is still
possible to obtain similar results in a setting of generalized solutions. We recall below the notion of
renormalized solutions. The truncation function is denoted, as before, by Ti(s) := max(min(s, k), —k).

In what follows we suppose that N > 1.

2N

Definition 2.8. A function u, belonging to W'4(Q) for every q < <, is a renormalized solution of

N-1’
problem (2.25) if:

(i) Ti(u) € H\(Q) for every k > 0, and H(x, Vu) € L'(Q).
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(ii) For every function h : R — R which is C' with compact support, it holds
fa(x, Vu)V(h(u)p) + 4 f h(u)p = fH(x, Vu)h(u)e Voe H( Q) NLI(Q). (2.32)
Q Q Q

(iii)
1
lim - f Vul> = 0. (2.33)

{n<lul<2n)

We recall that this notion of solution, introduced by P. L. Lions and F. Murat (in a joint paper
unpublished, whose content can be found in [16, 18]) is nowadays currently used as a formulation of
elliptic problems with L'-data, or even Radon measures. For similar problems with first order terms
having linear growth, we refer e.g., to [5].

It is to be noted that, in the renormalized formulation, the truncations of the solution belong to the
energy space H'(Q), so that (2.32) makes sense for any & with compact support. Condition (2.33),
in turn, implies that renormalized solutions are also distributional solutions. To this purpose one can
take h = S (ﬁ) where S (7) is a piecewise linear function, supported in [-2, 2], such that S(¢) = 1 for

te[-1,1];then S (ﬁ) — 1 as n — oo and the distributional formulation (with test functions ¢ € C 1(ﬁ))
is recovered thanks to (2.33).

Up to replacing the (H ! (Q))/ formulation with the renormalized setting, Theorem 2.5 admits a
natural extension which is the following one. We recall (see [7]) that elliptic equations (including
possibly nonlinear divergence form operators with discontinuous coefficients) with source terms in
L"(Q), m < -Z¥ admit solutions which belong to W' (Q), where m* is the Sobolev exponent

N+2°
(Nm)/(N —m).
Theorem 2.9. Let N > 3. Assume that a(x, p) satisfies (2.21)—(2.24) and that H(x, p) satisfies (2.31)
for some 1 < m < % Then there exists a constant A € R and a function u € W' (Q) which is

a renormalized solution of (2.25). In addition, if (1.6) holds true, A is unique and u is unique up to
addition of a constant.

Proof. We only sketch the main steps, and the main differences with the arguments of Theorem 2.5.
We start with the solutions #® of the approximating problem

(2.34)

—div(a(x, Vu?®)) + eu® = H.(x, Vu®) in Q,
a(x,Vu®) -1 =0 on 09,

where H.(x, p) = T1(H(x, p)). Here the truncation of H is only needed if one wants to work, at fixed
&, with the more comfortable setting of finite energy solutions. Then we claim that there exists K > 0
independent of &, such that

IVuf|| e ) < K Ye>0. (2.35)

The proof of (2.35) is done, as before, by contradiction. In this case we build a subsequence, not
relabeled, such that |[Vu®|| (o) — oo and we define

&g _ £
u jgu

W, =
IVue| e )
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which solves
Ho V) & fpt
Vel ) 1QHIVU?|| e )

—div(a(x,Vw,)) + ew, = in Q, (2.36)

where a.(x, p) is defined now as

a(x, ||VM8||Lm*(Q)P)
IVur|| e (o)

a(x,p) =

Compared to Theorem 2.5, we now have that the right-hand side is bounded and equi-integrable in
L™(Q), hence w, satisfies

{wg is bounded in W' (Q), (2.37)

—div(a.(x,Vw,)) + ew, = h,

for some A, which is bounded and equi-integrable in L™(€2). One can prove now that w, is actually
strongly compact in W' (Q). The argument needs a modification of what is done in Lemma 2.3: first
of all, by only using that A, is weakly converging in L'(Q), one can prove (see e.g., [14, 18]) that

lirr(} (a:(x, VTi(we)) — a:(x, VT, (W)) V(T (we) — Te(w)) = 0
eV Ja

which yields, thanks to (2.21),
Ti(wg) = Ti(w) in H(Q), for every k > 0. (2.38)
To estimate Gy (w,) = w, — Tr(w,), we take
[(0 + |Gr(we))” — o7 Isign(w,)

as test function in (2.37), for o,y > 0. We get

4 f a:(x, VW )VGr(we) (0 + 1Ge(w ) ™ < f hel(0 +1Gr(we)D)” — o Isign(w,)
Q Q

which implies, using (2.23) and the definition of 4,

ya f IVG(w:)l* (0 + [Gr(w))' ™ < f hel(o + |G(we)l)? = o7
. - ) (2.39)
—fk(x) (o +|G(wo)) .
Q

+ Vi |l
V61,

We choose y = 51 5o that |w,|” = |w,|" is bounded in L"'(Q) due to the bound of w, in W' (Q)
2N

and Sobolev embedding. Moreover, we have y < 1 since m < . Taking for instance o = 1, the
previous inequality implies

ya f IVGiwa)l? (1 + |G(wp)) ™" < 2 f [el(1 + [we])” + + Kl )
Q {Iwsl>k) IVu ||Lm*(Q)
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1
m C
<C (f |hg|’") +
{Iwel>k) [IVue||

m* Q)

Due to the equi-integrability of 4. in L™(€2) we deduce

f IVGiwe)P (1 +1Gi(we)) ™" < 65 + (2.40)
Q

IVuell?,.

L (Q)

where 0, denotes a quantity which vanishes as k — oo uniformly with respect to €. From Holder
inequality, since m* < 2 we have

1-mt

mew”4£mmmhuwmmw)0hﬂmmmﬂ :

The precise value of y yields d 7)'" = m™, so last term is bounded and from (2.40) we deduce

VG wo)l" < CoF +
f ’ [N
Putting together this information with (2.38), it follows that w, — w strongly in W' (Q). In particular,

up to a subsequence, Vw, — Vw almost everywhere in Q. This implies that vaﬁﬁ Vi) weakly converges
L Q)

to some function B(x) in L™(L), and, because of (2.31) and the a.e. convergence of Vw,, it follows that
B satisfies (2.2). If the vector filed a(x, p) is defined as in (2.30), then by passing to the limit we obtain

a function w such that

we Wh(Q),
—div(a(x,Vw)) + A = B(x) with B(x) € L"(Q) satisfying (2.2).

Now we get a contradiction by showing that w = 0. This needs a slight refinement of the argument of
Lemma 2.1; indeed, w does not belong a priori to H 1(Q). However, from (2.39) one obtains, letting
first ¢ = 0 and then o — 0, the inequality

@ fg IVGyW)P IGr(w)P ™" < fQ [6C0) [Vw] + 1G] . (2.41)

This replaces now the starting inequality (2.3) of Lemma 2.1; using that

15
[saonr ([ maomricon]) ([ o)
> o
ﬂ%ﬁmeMW+mmmW)(£mww;)

and the equalities ym’ = m™ and (12 yiim = m™, one can prove with similar steps as in Lemma 2.1

that w € L*(Q). Once w is proved to be bounded, then it has also finite energy and the conclusion of
Lemma 2.1 applies. This completes the contradiction argument and concludes the proof of the a priori
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estimate (2.35). Once u® is proved to be bounded in W' (Q), we repeat the same argument to deduce
that u® — fdf is relatively compact and converges, up to subsequences, to some u € W' (Q). Due to
(2.31), this implies that H(x, Vu®) — H(x, Vu) in L"™(Q). By well-known results (see e.g., [5, 18]), the
limit function u is a weak and a renormalized solution of the limiting problem (2.25).

Let us now sketch the uniqueness part. Assume that Ay, u; and A,, u, are (renormalized) solutions
of the problem. Then it is possible to prove, using renormalization arguments (e.g., the arguments used
for the obtention of inequality (3.14) in [19, Theorem 3.1]), that u;, u, satisfy

Y f(a(x, Vuy) — a(x, Vua))VGi(uy — u2) (0 + |Gr(w))' ™!
Q

< f |H(x, Vuy) — H(x, Vi)l (0 + [G(W))” — 07| + |41 — A f (o + 1G(W)) = o]
Q Q

where w = u; —up and y = 1\1/\,('11—2_”11) as before. The reader may check that all terms here are well defined

because of the precise value of y and since u;, u, € W' (Q). Using (2.21) and (1.6) it follows that

)’af VG (7 + Gim)y ™" < fb(X) IVwl (o +1Gw)D)” — o]
Q Q

+ |4 = Ao f (o +1GW))” — o]
Q

By letting o — 0 one gets inequality (2.41) with 4 = A; — A,. This inequality allows us to show that
w € L*(Q) as we said before. Now, let us assume for instance that A; > A,; since u; — u, € L*(Q),
then e(u; — uy) < A; — A, for € sufficiently small. Therefore, we get that u;, u, are, respectively, a
renormalized sub and super solution of the same equation

—div(a(x,Vu)) + eu = H(x,Vu) + gu, — A, .

This implies (e.g., as in [19, Theorem 3.1], or in [6]) that u; < u,, which yields a contradiction, because
uy, up are solutions up to addition of any constant. We notice here that, if u is a renormalized solution
of (2.25), then it can be easily proved that u + c is also a renormalized solution, whenever ¢ € R. The
contradiction obtained proves that 4; = A,. Then, we replace u; with u; — med (u; — u,); now again
from inequality (2.41) (obtained before for w = u; — u, — med (u; — u;) and 4 = 4; — 4, = 0) we can
deduce that w = 0, i.e., u; — u, = med (u; — u,). Hence the two solutions differ by a constant. O

Finally, we conclude by observing that a similar result can be proved in the limiting case m = 1, up
to requiring that b(x) € L(Q) for some g > N. More precisely, we have the following result, whose
proof can be done with similar arguments as indicated above.

Theorem 2.10. Let N > 2. Assume that a(x, p) satisfies (2.21)—(2.24) and that H(x, p) satisfies (2.31)
with m = 1 and b(x) € LY(Q) for some q > N. Then there exists a constant 1 € R and a renormalized
solution u of (2.25). In addition, if (1.6) holds true with b(x) € L1(Q) for some q > N, then A is unique
and u is unique up to addition of a constant.
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