We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains.
Citation: Youchan Kim, Seungjin Ryu, Pilsoo Shin. Approximation of elliptic and parabolic equations with Dirichlet boundary conditions[J]. Mathematics in Engineering, 2023, 5(4): 1-43. doi: 10.3934/mine.2023079
[1] | Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang . Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84 |
[2] | Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098 |
[3] | Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024 |
[4] | Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548 |
[5] | Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027 |
[6] | Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030 |
[7] | Lucio Boccardo . A "nonlinear duality" approach to W1,10 solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085 |
[8] | Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021 |
[9] | Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063 |
[10] | Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with p,q−growth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065 |
We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains.
Dedicated to Giuseppe Mingione, on the occasion of his 50th birthday.
For localized problems, many papers showed that the weak solution of elliptic and parabolic equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for instance [1,2,4,28,29,32]. However, as far as we are concerned, it was hard to find a suitable reference for global problems which considered approximations on domains. In this paper, we will show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer to [19,20] which used regularization on the nonlinearities and approximation on the convex domains for a class of nonlinear elliptic systems.
For the interested readers, we briefly explain about the mentioned papers in the previous paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and Fusco [1] obtained local C1,γ for local minimizers of p–energy density, where we refer to [35,52,53] for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained local C1,γ regularity for local minimizers with variable exponents, where we refer to [54] for fundamental paper and [3,8,16] for Calderón-Zygmund type estimates. Esposito, Leonetti and Mingione [32,33] obtained higher integrability results for elliptic equations with p–q growth conditions, where we refer to [10,18,24] for the related results and [46,47] for Lipschitz regularity. Also we refer to [9,21,22,23,25] for double phase problems and [37] for a unified approach of p–q, Orlicz, p(x) and double phase growth conditions. Acerbi and Mingione [4] obtained Calderón-Zygmund type estimate for a class of parabolic systems, and we refer to [11,15,17] for the global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and Maz'ya [19,20] obtained Lipschitz regularity for a class of elliptic systems in convex domains. Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and we refer to [39,40,41,42,43,44,49] for further references and [7] for nonlinear elliptic equations with general growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].
Suppose that a:Rn×Rn+1→Rn satisfies
{a(ξ,x,t) is measurable in (x,t) for every ξ∈Rn,a(ξ,x,t) is C1-regular in ξ for every (x,t)∈Rn+1, | (1.1) |
and the following ellipticity and growth conditions:
{|a(ξ,x,t)|+|Dξa(ξ,x,t)|(|ξ|2+s2)12≤Λ(|ξ|2+s2)p−12,⟨Dξa(ξ,x,t)ζ,ζ⟩≥λ(|ξ|2+s2)p−22|ζ|2, | (1.2) |
for every (x,t)∈Rn+1, for every ξ,ζ∈Rn and for some constants 0<λ≤Λ and s≥0.
To regularize the nonlinearity a, we define ϕ∈C∞c(Rn) as a standard mollifier:
ϕ(x)={c1exp(1|x|2−1)if |x|<1,0if |x|≥1, | (1.3) |
where c1>0 is a constant chosen so that
∫Rnϕ(x)dx=1. | (1.4) |
Under the assumptions (1.1) and (1.2), let aϵ(ξ,x,t) be a regularization of a(ξ,x,t):
aϵ(ξ,x,t)=∫Rn∫Rna(ξ−ϵy,x−ϵz,t)ϕ(y)ϕ(z)dydz(0<ϵ<1). | (1.5) |
Then aϵ(ξ,x,t) satisfies the ellipticity and growth conditions and it is smooth enough, precisely,
{aϵ(ξ,x,t) is C∞-regular in ξ∈Rn for every (x,t)∈Rn+1,aϵ(ξ,x,t) is C∞-regular in x∈Rn for every ξ∈Rn and t∈R, |
and
{|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12≤cΛ(|ξ|2+s2ϵ)p−12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|≤cΛϵ−m(|ξ|2+s2ϵ)p−12,⟨Dξaϵ(ξ,x,t)ζ,ζ⟩≥cλ(|ξ|2+s2ϵ)p−22|ζ|2, |
for sϵ=(s2+ϵ2)12>0. Here, the constants c are depending only on n and p. It will be proved in Lemma 2.13.
As usual, we denote p′ as the Hölder conjugate of p and by p∗ the Sobolev exponent of p. (Note that p∗ can be any real number bigger than 1, provided that p≥n.) We denote dH(X,Y) as the Hausdorff distance between two nonempty sets X and Y, namely,
dH(X,Y)=sup{dist(x,Y):x∈X}+sup{dist(y,X):y∈Y}. |
Remark 1.1. As mentioned before, ak(ξ,x,t) is smooth with respect to ξ and x by Lemma 2.13. For Neumann boundary value problems, we need to consider extensions to compare weak solutions defined on different domains. In this paper, we consider Dirichlet boundary value problem with γ∈W1,p(Ω) to obtain the main theorem without using extensions.
We will only prove the parabolic case, because the elliptic case can be done in a similar way. To consider parabolic equations, we denote Ωτ=Ω×[0,τ] and Rnτ=Rn×[0,τ] for τ∈[0,T], where T>0. We write ⟨⟨⋅,⋅⟩⟩Ω=⟨⟨⋅,⋅⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩ as the pairing between W−1,p′(Ω) and W1,p0(Ω), where W−1,p(Ω) is the dual space of W1,p0(Ω). We carefully note that ⟨⋅,⋅⟩ stands for the inner product in Rn or Rn+1. We also note that for the consistency of the notation, we usually write W1,p0(Rn) instead of W1,p(Rn). Here, we remark that W1,p0(Rn)=W1,p(Rn). For ∂tw, we mean ∂tw∈Lp′(0,T;W−1,p′(Ω)) satisfying
∫T0⟨⟨∂tw,φ⟩⟩Ωdt=−∫ΩTwφtdxdt for any φ∈C∞c(ΩT). |
We consider a sequence of functions {uk}∞k=1 defined on the corresponding sequence of domains {Ωk}∞k=1 in this paper. So to use convergence on {uk}∞k=1, we consider the zero extension as in the following definition. In this paper, '→' means the strong convergence and '⇀' means the weak convergence.
Definition 1.2. For 1<p<∞, we say vk∈Lp′(ΩkT) (k∈N) converges strongly-∗ to v∞∈Lp′(Ω∞T), which is denoted by vk∈Lp′(ΩkT)∗→v∞∈Lp′(Ω∞T), if
∫ΩkTvkηkdxdt→∫Ω∞Tv∞η∞dxdt, |
for any ηk∈Lp(ΩkT) (k∈N∪{∞}) satisfying
ˉηk⇀ˉη∞ in Lp(RnT), |
where ˉηk is the zero extension of ηk from ΩkT to RnT.
Remark 1.3. In Definition 1.2, if Ωk=Ω∞ for any k∈N, then vk→v∞ in Lp′(Ω∞T) is equivalent to strong-∗ convergence, see Lemma 3.1.
We use a similar definition for W−1,p′. We remark that W1,p0(Ω) is reflexive when 1<p<∞.
Definition 1.4. For 1<p<∞, we say that vk∈W−1,p′(Ωk) (k∈N) converges strongly-∗ to v∞∈W−1,p′(Ω∞), which is denoted by vk∈W−1,p′(Ωk)∗→v∞∈W−1,p′(Ω∞), if
⟨⟨vk,ηk⟩⟩Ωk→⟨⟨v∞,η∞⟩⟩Ω∞, |
for any ηk∈W1,p0(Ωk) (k∈N∪{∞}) satisfying
(ˉηk,Dˉηk)⇀(ˉη∞,Dˉη∞)inLp(Rn,Rn+1) |
where ˉηk is the zero extension of ηk from Ωk to Rn.
Definition 1.5. For 1<p<∞, we say that vk∈Lp′(0,T;W−1,p′(Ωk)) (k∈N) converges strongly-∗ to v∞∈Lp′(0,T;W−1,p′(Ω∞)), denoted by vk∈Lp′(0,T;W−1,p′(Ωk))∗→v∞∈Lp′(0,T;W−1,p′(Ω∞)), if
∫T0⟨⟨vk,ηk⟩⟩Ωkdt→∫T0⟨⟨v∞,η∞⟩⟩Ω∞dt, |
for any ηk∈Lp(0,T;W1,p0(Ωk)) (k∈N∪{∞}) satisfying
(ˉηk,Dˉηk)⇀(ˉη∞,Dˉη∞)inLp(RnT,Rn+1) |
where ˉηk∈Lp(0,T;W1,p0(Rn)) is the zero extension of ηk.
For p>2nn+2 and an open bounded domain Ω⊂Rn (n≥2), assume that
F∈Lp(ΩT,Rn),f∈Lp′(0,T;W−1,p′(Ω)) |
and
γ∈C([0,T];L2(Ω))∩Lp(0,T;W1,p(Ω)) with ∂tγ∈Lp′(0,T;W−1,p′(Ω)). |
Let u∈C([0,T];L2(Ω))∩Lp(0,T;W1,p(Ω)) be the weak solution of
{∂tu−div a(Du,x,t)=f−div (|F|p−2F) in ΩT,u=γ on ∂PΩT. | (1.6) |
Here, we say that u∈γ+Lp(0,T;W1,p0(Ω))∩C0([0,T];L2(Ω)) is the weak solution of (1.6), if
∫T0⟨⟨∂tu,φ⟩⟩Ωdt+∫ΩT⟨a(Du,x,t),Dφ⟩dxdt=∫ΩT[⟨|F|p−2F,Dφ⟩+fφ]dxdt |
holds for any φ∈C∞0(ΩT). Also for the initial condition, it means that
limh↘01h∫h0∫Ω|u(x,t)−γ(x,0)|2dxdt=0, |
which is equivalent to u(x,0)=γ(x,0) when u∈C([0,T];L2(Ω)).
Now, we introduce the main result in this paper.
Theorem 1.6. Let Ωk⊂Rn (k∈N) be a sequence of open bounded domains with
limk→∞dH(∂Ωk,∂Ω)=0. | (1.7) |
For k∈N, assume that ϵk>0, Fk∈Lp(ΩkT,Rn), fk∈Lp′(0,T;W−1,p′(Ωk)) and
γk∈C([0,T];L2(Ωk))∩Lp′(0,T;W1,p0(Ωk))with∂tγk∈Lp′(0,T;W−1,p′(Ωk)) |
satisfy that limk→∞ϵk=0,
{fk∈Lp′(0,T;W−1,p′(Ωk))∗→f∈Lp′(0,T;W−1,p′(Ω)),∂tγk∈Lp′(0,T;W−1,p′(Ωk))∗→∂tγ∈Lp′(0,T;W−1,p′(Ω)), | (1.8) |
and
{|Fk|p−2Fk∈Lp′(ΩkT,Rn)∗→|F|p−2F∈Lp′(ΩT,Rn),γk∈Lp(ΩkT)∗→γ∈Lp(ΩT),Dγk∈Lp(ΩkT,Rn)∗→Dγ∈Lp(ΩT,Rn). | (1.9) |
Then for the weak solution uk∈C([0,T];L2(Ωk))∩Lp(0,T;W1,p(Ωk)) of
{∂tuk−divak(Duk,x,t)=fk−div(|Fk|p−2Fk)inΩkT,uk=γkon∂PΩkT. | (1.10) |
where ak(ξ,x,t)=aϵk(ξ,x,t), we have that
limk→∞[‖Duk−Du‖Lp(ΩkT∩ΩT)+‖Duk‖Lp(ΩkT∖ΩT)+‖Du‖Lp(ΩT∖ΩkT)]=0, | (1.11) |
where u is the weak solution of (1.6).
We refer to [13] for Calderón-Zygmund type estimates for a class of elliptic and parabolic systems with nonzero boundary data in rough domains such as Reifenberg flat domains.
Remark 1.7. For the sake of convenience and simplicity, we employ the letters c>0 throughout this paper to denote any constants which can be explicitly computed in terms of known quantities such as n,p,λ,Λ and the diameter of the domains. Thus the exact value denoted by c may change from line to line in a given computation.
Remark 1.8. We usually denote ˉg as the natural zero extension of g for such space as Lp(ΩT) and Lp′(0,T;W−1,p′(Ω)) which depends on the situations.
We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar to that of Theorem 1.6, and we will only state the result.
Suppose that a:Rn×Rn→Rn satisfies
{a(ξ,x) is measurable in x for every ξ∈Rn,a(ξ,x) is C1-regular in ξ for every x∈Rn, | (1.12) |
and the following ellipticity and growth conditions:
{|a(ξ,x)|+|Dξa(ξ,x)|(|ξ|2+s2)12≤Λ(|ξ|2+s2)p−12,⟨Dξa(ξ,x)ζ,ζ⟩≥λ(|ξ|2+s2)p−22|ζ|2, | (1.13) |
for every x,ξ,ζ∈Rn and for some constants 0<λ≤Λ and s≥0.
Under the assumptions (1.12) and (1.13), let aϵ(ξ,x) be a regularization of a(ξ,x):
aϵ(ξ,x)=∫Rn∫Rna(ξ−ϵy,x−ϵz)ϕ(y)ϕ(z)dydz(0<ϵ<1). | (1.14) |
Then aϵ(ξ,x) satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough, precisely,
{aϵ(ξ,x) is C∞-regular in ξ∈Rn for every x∈Rn,aϵ(ξ,x) is C∞-regular in x∈Rn for every ξ∈Rn. |
We have the following approximation results for elliptic problems.
Theorem 1.9. For 1<p<∞ and an open bounded domain Ω⊂Rn (n≥2), assume that F∈Lp(Ω,Rn), f∈L(p∗)′(Ω) and γ∈W1,p(Ω). Let u∈γ+W1,p0(Ω) be the weak solution of
{−diva(Du,x)=f−div(|F|p−2F)inΩ,u=γon∂Ω. |
Let Ωk⊂Rn (k∈N) be a sequence of open bounded domains with
limk→∞dH(∂Ωk,∂Ω)=0. |
For k∈N, assume that ϵk>0, Fk∈Lp(Ωk,Rn), fk∈L(p∗)′(Ωk) and γ∈W1,p(Ωk) satisfy that
limk→∞[‖Fk−F‖Lp(Ωk∩Ω)+‖fk−f‖L(p∗)′(Ωk∩Ω)+‖γk−γ‖W1,p(Ωk∩Ω)]=0, |
and
limk→∞[ϵk+‖Fk‖Lp(Ωk∖Ω)+‖fk‖L(p∗)′(Ωk∖Ω)+‖γk‖W1,p(Ωk∖Ω)]=0. |
Then for the weak solution uk∈γk+W1,p0(Ωk) of
{divak(Duk,x)=−div(|Fk|p−2Fk)+fkinΩk,uk=γkon∂Ωk. |
where ak(ξ,x)=aϵk(ξ,x), we have that
limk→∞[‖Duk−Du‖Lp(Ωk∩Ω)+‖Duk‖Lp(Ωk∖Ω)+‖Du‖Lp(Ω∖Ωk)]=0. |
We use the following results related to weak convergence and weak* convergence.
Proposition 2.1. [12, Proposition 3.13 (iii)] Let {fi} be a sequence in E∗. If fi∗⇀f in σ(E∗,E) then {‖fi‖} is bounded and ‖f‖≤lim inf‖fi‖.
Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball BE∗={f∈E∗:‖f‖≤1} is compact in the weak-∗ topology σ(E∗,E).
One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric spaces.
Proposition 2.3. If E∗ is a metric space then any bounded sequence {fi} in E∗ has a weakly-∗ convergent subsequence.
To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.
Proposition 2.4. [12, Proposition 8.1] W1,p is a Banach space for 1≤p≤∞. W1,p is reflexive for 1<p<∞ and separable for 1≤p<∞.
To handle the dual space of W1,p0(Ω), we use [45, Corollary 10.49].
Proposition 2.5. [45, Corollary 10.49] Let Ω⊂Rn be an open set and 1≤p<∞. Then h∈W−1,p′(Ω) can be identified as
⟨h,φ⟩Ω=∫Ω⟨H,(φ,Dφ)⟩dx, |
with
‖h‖W−1,p′(Ω)=(∫Ωn∑i=0|Hi|p′dx)1p′, |
for some H=(H0,H1,⋯,Hn)∈Lp′(Ω,Rn+1).
We have the following result from [51, Proposition Ⅲ.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].
Proposition 2.6. [51, Proposition III.1.2] Let Ω⊂Rn be a bounded domain, t1<t2 and p>2nn+2. Assume that v∈Lp(t1,t2;W1,p0(Ω)) has a distributional derivative ∂tv∈Lp′(t1,t2;W−1,p′(Ω)). Then there holds v∈C([t1,t2];L2(Ω)) and moreover, the mapping t↦‖v(⋅,t)‖2L2(Ω) is absolutely continuous on [t1,t2] with
ddt‖v(⋅,t)‖2L2(Ω)=2⟨⟨∂tv,v⟩⟩Ω a.e.on[t1,t2], |
where ⟨⟨⋅,⋅⟩⟩Ω denotes the dual pairing between W−1,p′(Ω) and W1,p0(Ω).
We use the following basic inequality in this paper.
Lemma 2.7. [38, Lemma 3.2] For any q>1 and s≥0, there exists κ1=κ1(n,q)∈(0,1] such that
|ξ−ζ|q≤cκq(|ξ|2+s2)q2+cκq−2(|ξ|2+|ζ|2+s2)q−22|ξ−ζ|2, |
for any κ∈(0,κ1].
We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for s≥0 even when 1<q<2. We remark that a different proof for 1<q<2 was shown in [1, Lemma 2.1].
Lemma 2.8. For any q>1 and s≥0, we have that
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ≤c(|ξ|2+|ζ|2+s2)q−22, |
for any ξ,ζ∈Rn∖{0}, where c depends only on q.
Proof. By changing variable, one can easily check that
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ, |
and without loss of generality, we may assume |ξ|≥|ζ|.
If q≥2, then the lemma follows from the fact that
|ξ+τ(ζ−ξ)|2≤8(|ξ|2+|ζ|2)(τ∈[0,1]). |
So it only remains to prove the lemma when 1<q<2.
Next, suppose that 1<q<2. We show the lemma by considering three cases:
(1).2|ζ−ξ|≤|ξ|,(2).|ξ|≤2|ζ−ξ|≤2s,(3).|ξ|≤2|ζ−ξ| and s<|ζ−ξ|. |
(1). If 2|ζ−ξ|≤|ξ|, then for any τ∈[0,1] we have
|ξ+τ(ζ−ξ)|≥|ξ|−|τ(ζ−ξ)|≥|ξ|2≥|ξ|+|ζ|4≥(|ξ|2+|ζ|2)124, |
because we assumed that |ξ|≥|ζ|, which implies
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≤c(q)(|ξ|2+|ζ|2+s2)q−22, |
and the lemma is proved for the first case.
(2). If |ξ|≤2|ζ−ξ|≤2s, then we obtain
|ξ|2+|ζ|2+s2≤|ξ|2+2(|ξ|2+|ζ−ξ|2)+s2≤3(|ξ|2+|ζ−ξ|2+s2)≤18s2, |
which implies
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≤sq−2≤c(q)(|ξ|2+|ζ|2+s2)q−22, |
and the lemma is proved for the second case.
(3). Suppose that |ξ|≤2|ζ−ξ| and s<|ζ−ξ|. One can easily check that
⟨ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2,ξ+τ(ζ−ξ)−(ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2)⟩=0, |
which implies
|ξ+τ(ζ−ξ)|2=|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+(τ+⟨ζ−ξ,ξ⟩|ζ−ξ|2)2|ζ−ξ|2. |
Then by changing variables, we obtain
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+(τ+⟨ζ−ξ,ξ⟩|ζ−ξ|2)2|ζ−ξ|2+s2)q−22dτ=∫1+⟨ζ−ξ,ξ⟩|ζ−ξ|2⟨ζ−ξ,ξ⟩|ζ−ξ|2(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|2+θ2|ζ−ξ|2+s2)q−22dθ≤c(q)∫1+⟨ζ−ξ,ξ⟩|ζ−ξ|2⟨ζ−ξ,ξ⟩|ζ−ξ|2(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+|θ||ζ−ξ|+s)q−2dθ≤c(q)(I+II), | (2.1) |
where
I=∫|1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|0(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+θ|ζ−ξ|+s)q−2dθ,II=∫|⟨ζ−ξ,ξ⟩|ζ−ξ|2|0(|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+θ|ζ−ξ|+s)q−2dθ. |
By changing variables, we discover that
I=1|ζ−ξ|∫|ζ−ξ||1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+sκq−2dκ,=[|ζ−ξ||1+⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1−[|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1(q−1)|ζ−ξ|≤c(q)(|ζ−ξ|+|ξ|+s)q−1(q−1)|ζ−ξ|. |
Similarly, we have
II=1|ζ−ξ|∫|ζ−ξ||⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+sκq−2dκ,=[|ζ−ξ||⟨ζ−ξ,ξ⟩|ζ−ξ|2|+|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1−[|ξ−⟨ζ−ξ,ξ⟩(ζ−ξ)|ζ−ξ|2|+s]q−1(q−1)|ζ−ξ|≤c(q)(|ζ−ξ|+|ξ|+s)q−1(q−1)|ζ−ξ|. |
Since |ζ|≤|ξ|≤2|ζ−ξ| and s<|ζ−ξ|, we have |ξ|2+|ζ|2+s2≤9|ζ−ξ|2, and
(|ζ−ξ|+|ξ|+s)q−1|ζ−ξ|≤c(q)|ζ−ξ|q−1|ζ−ξ|=c(q)|ζ−ξ|q−2≤c(q)(|ξ|2+|ζ|2+s2)q−22. |
By the above three inequalities and (2.1), we find that the lemma holds when |ξ|≤2|ζ−ξ| and s<|ζ−ξ|. This completes the proof.
Lemma 2.9. For any q>1 and s≥0, we have that
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ=∫10(|ζ+τ(ξ−ζ)|2+s2)q−22dτ≥c(|ξ|2+|ζ|2+s2)q−22, |
for any ξ,ζ∈Rn∖{0}, where c depends only on q.
Proof. One can easily check that
|ξ+t(ζ−ξ)|2+s2≤c(q)(|ξ|2+|ζ|2+s2)(τ∈[0,1]). |
If 1<q<2, then
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≥c(q)∫10(|ξ|2+|ζ|2+s2)q−22dτ≥c(q)(|ξ|2+|ζ|2+s2)q−22, |
which prove the lemma for 1<q<2.
To prove the lemma for the case q≥2, we assume that |ξ|≥|ζ| without loss of generality. Then for τ∈[0,1/4], we have
|ξ+τ(ζ−ξ)|≥|ξ|−τ|ζ−ξ|≥|ξ|−|ζ−ξ|/4≥|ξ|/2≥c(q)(|ξ|2+|ζ|2)12. |
So we obtain
∫10(|ξ+τ(ζ−ξ)|2+s2)q−22dτ≥c(q)∫140(|ξ|2+|ζ|2+s2)q−22dτ≥c(q)(|ξ|2+|ζ|2+s2)q−22, |
which prove the lemma for q≥2. This completes the proof.
To compare a(ξ,x,t) and a(ζ,x,t), we use the following lemma.
Lemma 2.10. Under the assumptions (1.1) and (1.2), we have
|a(ξ,x,t)−a(ζ,x,t)|pp−1≤c|ξ−ζ|(|ξ|2+|ζ|2+s2)p−12, |
for any ξ,ζ∈Rn.
Proof. We fix any ξ,ζ∈Rn. If |ξ|=0 or |ζ|=0 then the lemma holds trivially from (1.1) and (1.2). So we assume that ξ,ζ∈Rn∖{0}. Since |ξ−ζ|1p−1≤c(|ξ|2+|ζ|2+s2)12(p−1), we have from (1.2) and Lemma 2.8 that
|a(ξ,x,t)−a(ζ,x,t)|pp−1=|∫10ddτ[a(τξ+(1−τ)ζ,x,t)]dτ|pp−1=|∫10Dξa(τξ+(1−τ)ζ,x,t)(ξ−ζ)dτ|pp−1≤c|ξ−ζ|pp−1(∫10(|τξ+(1−τ)ζ|2+s2)p−22dτ)pp−1≤c|ξ−ζ|pp−1(|ξ|2+|ζ|2+s2)p(p−2)2(p−1)≤c|ξ−ζ|(|ξ|2+|ζ|2+s2)p−12. |
Since ξ,ζ∈Rn were arbitrary chosen, the lemma follows.
We show the following well-known inequality. We remark that a different proof for 0<q<2 was shown in [1, Lemma 2.1] and [36, Lemma 2.1].
Lemma 2.11. For any q>0 and s≥0, we have that
|(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ|2≤c(|ξ|2+|ζ|2+s2)q−22|ξ−ζ|2, |
and
⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥c(|ξ|2+|ζ|2+s2)q−24|ξ−ζ|2, |
for any ξ,ζ∈Rn, where c depends only on q.
Proof. We fix any ξ,ζ∈Rn. If |ξ|=0 or |ζ|=0 then the lemma holds trivially. So we assume that ξ,ζ∈Rn∖{0}. Then
(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ=∫10ddτ[(|τξ+(1−τ)ζ|2+s2)q−24(τξ+(1−τ)ζ)]dτ=∫10q−22⋅(|τξ+(1−τ)ζ|2+s2)q−64⟨τξ+(1−τ)ζ,ξ−ζ⟩(τξ+(1−τ)ζ)dτ+∫10(|τξ+(1−τ)ζ|2+s2)q−24(ξ−ζ)dτ. |
By taking q2+1∈(1,∞) instead for q∈(1,∞) in Lemma 2.8,
|(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ|≤c(q)|ξ−ζ|∫10(|τξ+(1−τ)ζ|2+s2)q−24dτ≤c(q)|ξ−ζ|(|ξ|2+|ζ|2+s2)q−24. |
Also we get
⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩=∫10q−22⋅(|τξ+(1−τ)ζ|2+s2)q−64|⟨τξ+(1−τ)ζ,ξ−ζ⟩|2dτ+∫10(|τξ+(1−τ)ζ|2+s2)q−24|ξ−ζ|2dτ. |
If 0<q≤2 then 1=2−q2+q2 and 2−q2≥0. Also if q>2 then q−22≥0. Thus
⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥min{q2,1}∫10(|τξ+(1−τ)ζ|2+s2)q−24|ξ−ζ|2dτ. |
By taking q2+1∈(1,∞) instead for q∈(1,∞) in Lemma 2.9,
⟨(|ξ|2+s2)q−24ξ−(|ζ|2+s2)q−24ζ,ξ−ζ⟩≥c(|ξ|2+|ζ|2+s2)q−24|ξ−ζ|2. |
Since ξ,ζ∈Rn were arbitrary chosen, the lemma follows.
We will use the following lemma.
Lemma 2.12. For any q>1 and s≥0, we have that
|(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(|ξ|2+|ζ|2+s2)q−12|ξ−ζ|, |
for any ξ,ζ∈Rn, where c only depends on q.
Proof. Fix any ξ,ζ∈Rn. By taking 2q−2>0 instead of q(>0) in Lemma 2.11,
|(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(q)(|ξ|2+|ζ|2+s2)q(q−2)2(q−1)|ξ−ζ|qq−1. |
By that |ξ−ζ|1q−1≤c(|ξ|2+|ζ|2+s2)12(q−1),
|(|ξ|2+s2)q−22ξ−(|ζ|2+s2)q−22ζ|qq−1≤c(q)(|ξ|2+|ζ|2+s2)q−12|ξ−ζ|. |
Since ξ,ζ∈Rn were arbitrary chosen, the lemma follows.
To find the ellipticity and growth conditions of aϵ(ξ,x,t) in (1.5), we follow the approach in the proof of [31, Lemma 2] and [32, Lemma 3.1].
Lemma 2.13. For (1.5), we have
{aϵ(ξ,x,t)isC∞−regularinξ∈Rnforevery(x,t)∈Rn+1,aϵ(ξ,x,t)isC∞−regularinx∈Rnforeveryξ∈Rnandt∈R, | (2.2) |
and
{|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12≤cΛ(|ξ|2+s2ϵ)p−12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|≤cΛϵ−m(|ξ|2+s2ϵ)p−12,⟨Dξaϵ(ξ,x,t)ζ,ζ⟩≥cλ(|ξ|2+s2ϵ)p−22|ζ|2, | (2.3) |
for sϵ=(s2+ϵ2)12. Here, the constants c are depending only on n and p.
Proof. Fix a vector ξ∈Rn. Since a(ξ,x,t) is C1-regular in ξ∈Rn for every x∈Rn, we find that aϵ(ξ,x,t) is C1-regular in ξ∈Rn for every x∈Rn. Also by changing variable, we have from (1.5) that
aϵ(ξ,x,t)=1ϵn∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)ϕ(x−zϵ)dydz, |
which implies
Dxaϵ(ξ,x,t)=1ϵn+1∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)Dϕ(x−zϵ)dydz. |
Moreover, from (1.2), the fact that suppϕ⊂¯B1 and
Dmxaϵ(ξ,x,t)=1ϵn+m∫Rn∫Rna(ξ−ϵy,z,t)ϕ(y)Dmϕ(x−zϵ)dydz=1ϵm∫Rn∫Rna(ξ−ϵy,x−ϵz,t)ϕ(y)Dmϕ(z)dydz, |
for any m≥0, which implies that
|Dmxaϵ(ξ,x,t)|≤Λϵ−m∫Rn∫Rn(|ξ−ϵy|2+s2)p−12ϕ(y)|Dmϕ(z)|dydz≤2p−12Λϵ−m∫Rn∫Rn(|ξ|2+ϵ2+s2)p−12ϕ(y)|Dmϕ(z)|dydz≤2p−12Λϵ−m(|ξ|2+ϵ2+s2)p−12∫Rn|Dmϕ(z)|dz, |
for any m≥0. Similarly, by changing variable, we have from (1.5) that
aϵ(ξ,x,t)=1ϵn∫Rn∫Rna(y,x−ϵz,t)ϕ(ξ−yϵ)ϕ(z)dydz, |
and one can obtain that
|Dmξaϵ(ξ,x,t)|≤2p−12Λϵ−m(|ξ|2+ϵ2+s2)p−12∫Rn|Dmϕ(y)|dz. |
So aϵ(ξ,x,t) is C∞-regular in ξ∈Rn for every (x,t)∈Rn and aϵ(ξ,x,t) is C∞-regular in x∈Rn for every ξ∈Rn and t∈R. Also the second inequality in (2.3) follows.
From (1.2), (1.5) and the fact that suppϕ⊂¯B1, we have
⟨Dξaϵ(ξ,x,t)ζ,ζ⟩=∫Rn∫Rn⟨Dξa(ξ−ϵy,x−ϵz,t)ζ,ζ⟩ϕ(y)ϕ(z)dydz≥λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−22|ζ|2ϕ(y)ϕ(z)dydz≥λ∫(B1∖B12)∩⟨ξ,y⟩≥0(|ξ|2+|ϵy|2+2⟨ξ,ϵy⟩+s2)p−22|ζ|2ϕ(y)dy≥c(n,p)λ(|ξ|2+ϵ24+s2)p−22|ζ|2∫(B1∖B12)∩⟨ξ,y⟩≥0ϕ(y)dy≥c(n,p)λ(|ξ|2+s2+ϵ2)p−22|ζ|2, |
and the third inequality in (2.3) holds.
It only remains to prove the first inequality in (2.3). In view of (1.5), we have
|aϵ(ξ,x,t)|≤Λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−12ϕ(y)ϕ(z)dydz≤2p−12Λ∫Rn∫Rn(|ξ|2+ϵ2+s2)p−12ϕ(y)ϕ(z)dydz=2p−12Λ(|ξ|2+ϵ2+s2)p−12. | (2.4) |
If 16ϵ2≥|ξ|2+s2, then by changing variables and (1.5), we obtain
|Dξaϵ(ξ,x,t)|=|Dξ(1ϵn∫Rn∫Rna(y,x−ϵz,t)ϕ(ξ−yϵ)ϕ(z)dydz)|≤Λϵn+1∫Rn∫Rn(|y|2+s2)p−12|Dϕ(ξ−yϵ)|ϕ(z)dydz=Λϵ−1∫Rn∫Rn(|ξ−ϵy|2+s2)p−12|Dϕ(y)|ϕ(z)dydz≤2p−12Λϵ−1(|ξ|2+ϵ2+s2)p−12∫Rn|Dϕ(y)|dy. |
and from the fact that 16ϵ2≥|ξ|2+s2, we have 17ϵ2≥|ξ|2+ϵ2+s2 and
|Dξaϵ(ξ,x,t)|≤5⋅2p−12Λ(|ξ|2+ϵ2+s2)p−22∫Rn|Dϕ(y)|dy. | (2.5) |
So we discover that the first inequality in (2.3) holds for the case 16ϵ2≥|ξ|2+s2.
On the other-hand, if 16ϵ2≤|ξ|2+s2, then we have
|ξ−ϵy|2+s2=|ξ|2−2ϵ⟨ξ,y⟩+ϵ2|y|2+s2≥|ξ|2+s2+ϵ2|y|22(y∈¯B1), |
and suppϕ⊂¯B1 implies
|Dξaϵ(ξ,x,t)|≤|∫Rn∫RnDξa(ξ−ϵy,x−ϵz,t)ϕ(y)ϕ(z)dydz|≤Λ∫Rn∫Rn(|ξ−ϵy|2+s2)p−22ϕ(y)ϕ(z)dydz≤2Λ∫Rn(|ξ−ϵy|2+s2)p2(|ξ|2+s2+ϵ2|y|2)−1ϕ(y)dy, |
which implies that
|Dξaϵ(ξ,x,t)|≤c∫Rn(|ξ|2+s2+ϵ2|y|2)p−22ϕ(y)dy. | (2.6) |
We claim that if 16ϵ2≤|ξ|2+s2 and |y|≤1 then
(|ξ|2+s2+ϵ2|y|2)p−22≤2(|ξ|2+s2+ϵ2)p−22. | (2.7) |
If p≥2, then the claim (2.7) holds trivially. If 1<p<2, then 16ϵ2≤|ξ|2+s2 implies
(|ξ|2+s2+ϵ2|y|2)p−22≤(|ξ|2+s2)p−22≤(|ξ|2+s2+ϵ22)p−22≤2(|ξ|2+s2+ϵ2)p−22, |
and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we have that if 16ϵ2≤|ξ|2+s2 then
|Dξaϵ(ξ,x,t)|≤c(|ξ|2+s2+ϵ2)p−22. | (2.8) |
Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof.
Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero extension from ΩT to RnT.
Lemma 2.14. For any H∈Lp(ΩT,Rn), we have that
limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT)=0. |
Proof. Fix δ>0. From (1.5), we have
a(H(x,t),x,t)−aϵ(H(x,t),x,t)=∫Rn∫Rn[a(H(x,t),x,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz. |
Let ˜Ωϵ={x∈Ω:dist(x,∂Ω)>ϵ} and ˜Ωϵ,T=˜Ωϵ×[0,T]. Since H∈Lp(ΩT,Rn), there exists ϵδ>0 such that if ϵ∈(0,ϵδ] then
∫ΩT∖˜Ωϵ,T|H|pdx<δ, |
which implies that
‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(ΩT∖˜Ωϵ,T)≤c‖(|H(⋅)|2+s2+ϵ2)p−12‖Lpp−1(ΩT∖˜Ωϵ,T)≤c[δ+|ΩT∖˜Ωϵ,T|(sp+ϵp)]p−1p, |
for any ϵ∈(0,ϵδ]. Thus
lim supϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)<cδp−1p. |
Since δ>0 was arbitrary chosen, we get
limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(ΩT∖˜Ωϵ,T)=0. | (2.9) |
We now estimate a(H,⋅)−aϵ(H,⋅) on ˜Ωϵ,T. By the triangle inequality,
‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(˜Ωϵ,T)=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T)≤I+II+III | (2.10) |
where
I=‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅−(ϵz,0)),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T),II=‖∫Rn∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T),III=‖∫Rn∫Rn[a(H(⋅),⋅−(ϵz,0))−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T). |
We want to prove that the left-hand side of (2.10) goes to the zero as ϵ↘0.
To handle I, we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6], to find that
limϵ↘0‖∫Rn∫Rn[a(H(⋅),⋅)−a(H(⋅−(ϵz,0)),⋅−(ϵz,0))]ϕ(y)ϕ(z)dydz‖Lpp−1(˜Ωϵ,T)=0, |
where we used that a(H,⋅)∈Lpp−1(ΩT) and ∫Rnϕ(y)dy=1, which implies that
limϵ↘0I=0. | (2.11) |
To handle II, we apply Hölder's inequality and Lemma 2.10 to find that
|∫Rn[a(H(x−ϵz,t),x−ϵz,t)−a(H(x,t),x−ϵz,t)]ϕ(z)dz|≤|∫Rn|a(H(x−ϵz,t),x−ϵz,t)−a(H(x,t),x−ϵz,t)|pp−1ϕ(z)dz|p−1p|∫Rnϕ(z)dz|1p≤c|∫Rn|H(x−ϵz,t)−H(x,t)|(|H(x−ϵz,t)|2+|H(x,t)|2+s2)p−12ϕ(z)dz|p−1p. |
We apply Hölder's inequality to find that
‖∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(z)dz‖Lpp−1(˜Ωϵ,T)≤‖∫Rn|H(⋅−(ϵz,0))−H(⋅)|pϕ(z)dz‖p−1p2L1(˜Ωϵ,T)‖∫Rn(|H(⋅−(ϵz,0))|2+|H(⋅)|2+s2)p2ϕ(z)dz‖(p−1p)2L1(˜Ωϵ,T), |
and by using that H∈Lp(ΩT,Rn), we obtain that
limϵ↘0‖∫Rn[a(H(⋅−(ϵz,0)),⋅−(ϵz,0))−a(H(⋅),⋅−(ϵz,0))]ϕ(z)dz‖Lpp−1(˜Ωϵ,T)=0, |
which implies that
limϵ↘0II=0. | (2.12) |
Last, to handle III, we find from Lemma 2.10 that
∫Rn∫Rn[a(H(x,t),x−ϵz,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz≤c∫Rn∫Rn|ϵy|(|H(x,t)|2+|H(x,t)−ϵy|2+s2)p−12ϕ(y)ϕ(z)dydz≤cϵ∫Rn(|H(x,t)|2+s2+ϵ2)p−12ϕ(y)dy, |
where we used that suppϕ⊂¯B1 from (1.3). So by that ∫Rnϕ(y)dy=1,
∫Rn∫Rn[a(H(x,t),x−ϵz,t)−a(H(x,t)−ϵy,x−ϵz,t)]ϕ(y)ϕ(z)dydz≤cϵ(|H(x,t)|2+s2+ϵ2)p−12. |
So we again use Hölder's inequality to find that
‖∫Rn∫Rn[a(H(⋅),⋅−(ϵz,0))−a(H(⋅)−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dz‖Lpp−1(˜Ωϵ,T)≤cϵ‖(|H|2+s2+ϵ2)p−12‖Lpp−1(˜Ωϵ,T). |
By using H∈Lp(ΩT,Rn), we obtain that
limϵ↘0‖∫Rn∫Rn[a(H,⋅−(ϵz,0))−a(H−ϵy,⋅−(ϵz,0))]ϕ(y)ϕ(z)dz‖Lpp−1(˜Ωϵ,T)=0, |
which implies that
limϵ↘0III=0. | (2.13) |
By combining (2.10), (2.11), (2.12) and (2.13), we find from that
limϵ↘0‖a(H,⋅)−aϵ(H,⋅)‖Lpp−1(˜Ωϵ,T)=0, |
and the lemma holds from (2.9).
This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main tools for convergence lemmas for the zero extensions, Lemmas 3.1–3.7. Then we apply these tools to obtain the convergence lemmas, Lemmas 3.8–3.10. To conclude our main result, we apply an indirect method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and Lemma 3.10.
Let ˉuk∈Lp(0,T;W1,p0(Rn))∩L∞(0,T;L2(Rn)) be the zero extension of uk−γk∈Lp(0,T;W1,p0(Ωk))∩L∞(0,T;L2(Ωk)) in Theorem 1.6. Also we define ˉu∈Lp(0,T;W1,p0(Rn))∩L∞(0,T;L2(Rn)) as the zero extension of u−γ∈Lp(0,T;W1,p0(Ω))∩L∞(0,T;L2(Ω)) in (1.6). To prove Theorem 1.6, we will assume that the conclusion of Theorem 1.6 does not hold. Then there exist δ0>0 and a subsequence, which will be still denoted as uk (k∈N), such that
[‖Duk−Du‖Lp(ΩkT∩ΩT)+‖Duk‖Lp(ΩkT∖ΩT)+‖Du‖Lp(ΩT∖ΩkT)]>δ0. |
So by (1.7) and (1.9), it follows that
∫RnT|Dˉuk−Dˉu|pdxdt>cδ0. | (3.1) |
Later, we will show that a contradiction occurs due to (3.1).
To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems in (1.10). We test (1.10) by uk−γk∈Lp(0,T;W1,p0(Ωk))∩C([0,T];L2(Ωk)) to find that
∫τ0⟨⟨∂tuk,uk−γk⟩⟩Ωkdt+∫Ωkτ⟨ak(Duk,x,t),Duk−Dγk⟩dxdt=∫Ωkτ⟨|Fk|p−2Fk,Duk−Dγk⟩+fk(uk−γk)dxdt, |
for any τ∈[0,T], which implies that
∫τ0⟨⟨∂t(uk−γk),uk−γk⟩⟩Ωkdt+∫Ωkτ⟨ak(Duk,x,t)−ak(Dγk,x,t),Duk−Dγk⟩dxdt=∫Ωkτ⟨|Fk|p−2Fk,Duk−Dγk⟩+fk(uk−γk)dxdt−∫Ωkτ⟨ak(Dγk,x,t),Duk−Dγk⟩dxdt−∫τ0⟨⟨∂tγk,uk−γk⟩⟩Ωkdt, |
for any τ∈[0,T]. So by Poincaré's inequality and Lemma 2.7,
sup0≤τ≤T∫Ωk|(uk−γk)(⋅,τ)|2dx+∫ΩkT|Duk−Dγk|pdxdt≤c[‖Fk‖Lp(ΩkT)+‖fk‖Lp′(0,T;W−1,p′(Ωk))+‖Dγk‖Lp(ΩkT)+‖∂tγk‖Lp′(0,T;W−1,p′(Ωk))]. |
Here, the constant c>0 for Poincaré's inequality only depends on the size of the domain and 1<p<∞, see [5, Theorem 6.30]. By taking ˉuk=uk−γk∈Lp(0,T;W1,p0(Ωk))∩L∞(0,T;L2(Ωk)),
sup0≤τ≤T∫Ωk|ˉuk(⋅,τ)|2dx+∫ΩkT|Dˉuk|pdxdt≤c[‖|Fk|p−2Fk‖Lp′(ΩkT)+‖fk‖Lp′(0,T;W−1,p′(Ωk))+‖Dγk‖Lp(ΩkT)+‖∂tγk‖Lp′(0,T;W−1,p′(Ωk))]. | (3.2) |
The domain Ωk depends on the function ˉuk (k∈N). To deal with the convergence of the functions, we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2–1.5.
To use the compactness method, we need to show that the right-hand side of (3.2) is bounded uniformly. To do it, we use the zero extensions to RnT, which makes the domain of the functions independent of k∈N.
Let ˉvk∈Lp(0,T;W1,p0(Rn)) (k∈N∪{∞}) be the zero extensions of vk∈Lp(0,T;W1,p0(Ωk)) from ΩkT to RnT. Also for hk∈W−1,p′(Ωk) (k∈N∪{∞}), we define ˉhk∈W−1,p′(Rn) which corresponds to the zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.
(1) [Lemma 3.1] If vk∈Lq(ΩkT) ∗→ v∞∈Lq(Ω∞T) (1<q<∞) then
ˉvk → ˉv∞ in Lq(RnT). |
(2) [Lemma 3.4] If hk∈W−1,p′(Ωk) ∗→ h∞∈W−1,p′(Ω∞) then
ˉhk ∗→ ˉh∞ in W−1,p′(Rn). |
(3) [Lemma 3.5] If hk∈Lp′(0,T;W−1,p′(Ωk)) ∗→ h∞∈Lp′(0,T;W−1,p′(Ω∞)) then
ˉhk ∗→ ˉh∞ in Lp′(0,T;W−1,p′(Rn)). |
(4) [Lemma 3.6] If the sequence ‖vk‖Lp′(0,T;W−1,p′(Ωk)) (k∈N) is bounded then there exists v∞∈Lp′(0,T;W−1,p′(Ω∞)) with
ˉvk ∗⇀ ˉv∞ in Lp′(0,T;W−1,p′(Rn)). |
(5) [Lemma 3.7] If the sequence ‖vk‖L∞(0,T;L2(Ωk)) (k∈N) is bounded then there exists v∞∈L∞(0,T;L2(Ω∞)) with
ˉvk ∗⇀ ˉv∞ in L∞(0,T;L2(Rn)). |
We apply Lemmas 3.1–3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero extensions of |Fk|p−2Fk, γk and Dγk converge strongly-∗. By using Lemma 3.5, we will show that the zero extensions of fk and ∂tγk converge strongly-∗. With Lemma 3.6, the existence of weakly-∗ converging subsequence of ∂tˉuk in Lp′(0,T;W−1,p′(Rn)) will be obtained. Also with Lemma 3.7, the existence of weakly-∗ converging subsequence of ˉuk in L∞(0,T;L2(Rn)) will be obtained.
We prove our main tools for convergence lemmas. From now on, we denote 1E as the indicator function on the set E.
Lemma 3.1. With the assumption (1.7), suppose that 1<q<∞ and N≥1. If
Vk∈Lq′(ΩkT,RN) ∗→ V∞∈Lq′(Ω∞T,RN), |
then
ˉVk → ˉV∞ in Lq′(RnT,RN), |
where ˉVk∈Lq′(RnT,RN) is the zero extension of Vk∈Lq′(ΩkT,RN).
Proof. Suppose that Vk∈Lq′(ΩkT,RN) ∗→ V∞∈Lq′(Ω∞T,RN). By (1.7),
ˉη1ΩkT → ˉη1Ω∞T in Lq(RnT,RN), |
for any ˉη∈Lq(RnT,RN). So by Definition 1.2, we have that
∫RnT⟨ˉVk,ˉη⟩dxdt=∫ΩkT⟨Vk,ˉη1ΩkT⟩dxdt→∫Ω∞T⟨V∞,ˉη1Ω∞T⟩dxdt=∫RnT⟨ˉV∞,ˉη⟩dxdt, |
which implies that
ˉVk⇀ˉV∞ in Lq′(RnT,RN). | (3.3) |
Suppose the lemma does not hold. Then there exist δ>0 and a subsequence (which will be still denoted as {ˉVk}∞k=1) such that
∫RnT|ˉVk−ˉV∞|q′dxdt>δ(k∈N). | (3.4) |
Choose ˉηk=|ˉVk−ˉV∞|q′−2(ˉVk−ˉV∞) then
‖ˉηk‖Lq(RnT,RN)=‖ˉVk−ˉV∞‖1q−1Lq′(RnT,RN).(k∈N). |
Since (ˉVk−ˉV∞)⇀0 in Lq′(RnT,RN) and any weakly convergent sequence is bounded, we see that {ˉηk}∞k=1 is bounded in Lq(RnT,RN). So there exists a subsequence (which will be still denoted as {ˉηk}∞k=1) such that
ˉηk ⇀ ˉη∞ in Lq(RnT,RN), |
for some ˉη∞∈Lq(RnT,RN). By (1.7) and that (ˉVk−ˉV∞)⇀0 in Lq′(RnT,RN),
ˉη∞=0 in RnT∖Ω∞T. |
Also we have that
ˉηk⋅1ΩkT⇀ˉη∞⋅1Ω∞T in Lp(RnT,RN), | (3.5) |
because for any ˜V∈Lq′(RnT,RN),
∫RnT⟨˜V,ˉηk1ΩkT⟩dxdt=∫RnT⟨˜V⋅1Ω∞T,ˉηk⟩dxdt+∫RnT⟨˜V(1ΩkT−1Ω∞T),ˉηk⟩dxdt→∫RnT⟨˜V,ˉη∞1Ω∞T⟩dxdt, |
which holds from |Ωk∖Ω|→0 and |Ω∖Ωk|→0 by (1.7). From (3.5) and that Vk∈Lq′(ΩkT,RN) ∗→ V∞∈Lq′(Ω∞T,RN), we use Definition 1.2 to find that
∫RnT⟨ˉVk,ˉηk⟩dxdt=∫ΩkT⟨Vk,ˉηk⋅1ΩkT⟩dxdt→∫Ω∞T⟨V∞,ˉη∞⋅1Ω∞T⟩dxdt=∫RnT⟨ˉV∞,ˉη∞⟩dxdt, |
which implies that
∫RnT⟨ˉVk−ˉV∞,ˉηk⟩dxdt=∫RnT⟨ˉVk,ˉηk⟩dxdt−∫RnT⟨ˉV∞,ˉηk⟩dxdt→0. | (3.6) |
On the other-hand, by (3.4), we find that
∫RnT⟨ˉVk−ˉV∞,ˉηk⟩dxdt=∫RnT|ˉVk−ˉV∞|q′dxdt>δ>0(k∈N), |
which contradicts (3.6). So the lemma follows.
We have the following characterization for h∈W−1,p′(Ω).
Lemma 3.2. With the assumption (1.7), suppose that h∈W−1,p′(Ω) (1<p<∞). Then there exists v∈W1,p0(Ω) such that
∫Ω⟨(|v|p−2v,|Dv|p−2Dv),(φ,Dφ)⟩dx=⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩, |
for any φ∈W1,p0(Ω). In addition, we have that ‖h‖W−1,p′(Ω)=‖v‖p−1W1,p0(Ω).
Proof. Since h∈W−1,p′(Ω), there exists H=(H0,H1,⋯,Hn)∈Lp′(Ω,Rn+1) satisfying
⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩=∫Ω⟨H,(φ,Dφ)⟩dx for any φ∈W1,p0(Ω), |
by Proposition 2.5. Let v∈W1,p0(Ω) be the weak solution of
{|v|p−2v−div|Dv|p−2Dv=H0−div[(H1,⋯,Hn)] in Ω,v=0 on ∂Ω. |
Then for any φ∈W1,p(Ω), we get
∫Ω⟨(|v|p−2v,|Dv|p−2Dv),(φ,Dφ)⟩dx=∫Ω⟨H,(φ,Dφ)⟩dx=⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩. |
So by the definition of ‖⋅‖W−1,p′(Ω),
‖h‖W−1,p′(Ω)=sup‖φ‖W1,p0(Ω)=1⟨⟨h,φ⟩⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩≤‖v‖p−1W1,p0(Ω). |
By taking φ=v‖v‖W1,p0(Ω)∈W1,p0(Ω), we get
‖v‖p−1W1,p0(Ω)≤‖h‖W−1,p′(Ω). |
By combining the above two estimates, we get ‖h‖W−1,p′(Ω)=‖v‖p−1W1,p0(Ω).
We extend h∈Lp′(0,T;W−1,p′(Ω)) to ˉh∈Lp′(0,T;W−1,p′(Rn)) in Corollary 3.3, which can be viewed as a natural zero extension because of (3.7).
Corollary 3.3. With the assumption (1.7), suppose that h∈W−1,p′(Ω) (1<p<∞). Then for v∈W1,p0(Ω) in Lemma 3.2, one can define ˉh∈W−1,p′(Rn) as
⟨⟨ˉh,ˉφ⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=∫Rn⟨(|ˉv|p−2ˉv,|Dˉv|p−2Dˉv),(ˉφ,Dˉφ)⟩dx, | (3.7) |
for any ˉφ∈W1,p0(Rn), where ˉv∈W1,p0(Rn) is the zero extension of v∈W1,p0(Ω). Moreover, we have that
⟨⟨ˉh,ˉφ⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=⟨h,φ⟩⟨W−1,p′(Ω),W1,p0(Ω)⟩ | (3.8) |
for any φ∈W1,p0(Ω) and the zero extension ˉφ∈W1,p0(Rn) of φ∈W1,p0(Ω). In addition,
‖ˉh‖W−1,p′(Rn)=‖ˉv‖p−1W1,p0(Rn)=‖v‖p−1W1,p0(Ω)=‖h‖W−1,p′(Ω). |
In Definition 1.4, we defined a convergence for a sequence of the domains, say hk∈W−1,p′(Ωk)∗→h∞∈W−1,p′(Ω∞). But this convergence implies strong convergence by considering the zero extension in Corollary 3.3 as in the next lemmas.
Lemma 3.4. Under the assumption (1.7) and 1<p<∞, if hk∈W−1,p′(Ωk)∗→h∞∈W−1,p′(Ω∞) then
ˉhk ∗→ ˉh∞ in W−1,p′(Rn), |
and
{∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx→0,∫Rn(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx→0, | (3.9) |
for ˉvk∈W1,p0(Rn) and ˉhk∈W−1,p′(Rn) (k∈N∪{∞}) in Corollary 3.3.
Proof. By using Corollary 3.3, define ˉhk∈W−1,p′(Rn) (k∈N∪{∞}) as
⟨⟨ˉhk,ˉφ⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=∫Rn⟨(|ˉvk|p−2ˉvk,|Dˉvk|p−2Dˉvk),(ˉφ,Dˉφ)⟩dx, | (3.10) |
for any ˉφ∈W1,p0(Rn). Here, vk∈W1,p0(Ωk) (k∈N∪{∞}) is defined in Lemma 3.2 and ˉvk∈W1,p0(Rn) the zero extension of vk∈W1,p0(Ωk). Moreover,
‖ˉhk‖W−1,p′(Rn)=‖ˉvk‖p−1W1,p0(Rn)=‖vk‖p−1W1,p0(Ω)=‖hk‖W−1,p′(Ω)(k∈N∪{∞}). |
For k∈N∪{∞}, let Vk=(|vk|p−2vk,|Dvk|p−2Dvk)∈Lp′(Ωk,Rn+1) and ˉVk∈Lp′(Rn,Rn+1) be the zero extension of Vk.
Suppose that (3.9) does not hold. Then there exist δ>0 and a subsequence, which will be still denoted as {ˉvk}∞k=1, such that
∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx+∫Rn(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx>δ(k∈N). | (3.11) |
Since ˉvk‖ˉvk‖−1W1,p0(Rn) is bounded in W1,p0(Rn), there exists a subsequence, which will be still denoted as ˉvk‖ˉvk‖−1W1,p0(Rn) (k∈N), such that
ˉvk‖ˉvk‖−1W1,p0(Rn) ⇀ ˜v0 in W1,p0(Rn), |
for some v0∈W1,p0(Ω∞) and the zero extension ˉv0∈W1,p0(Rn) of v0∈W1,p0(Ω∞). By taking ˉφ=ˉvk‖ˉvk‖−1W1,p0(Rn) in (3.10), we find from Definition 1.4 that
‖ˉvk‖p−1W1,p0(Rn)=1‖ˉvk‖W1,p0(Rn)∫Rn⟨(|ˉvk|p−2ˉvk,|Dˉvk|p−2Dˉvk),(ˉvk,Dˉvk)⟩dx=⟨⟨ˉhk,ˉvk‖ˉvk‖−1W1,p0(Rn)⟩⟩⟨W−1,p′(Rn),W1,p0(Rn)⟩=⟨⟨hk,vk‖ˉvk‖−1W1,p0(Rn)⟩⟩⟨W−1,p′(Ωk),W1,p0(Ωk)⟩k→∞⟶⟨h∞,v0⟩⟨W−1,p′(Ω∞),W1,p0(Ω∞)⟩. |
So ˉvk is bounded in W1,p0(Rn), and there exist ˉv0∈W1,p0(Rn), ˉV0∈Lp′(Rn,Rn+1) and a subsequence, which will be still denoted as {ˉvk}∞k=1, such that
{Dˉvk ⇀ Dˉv0 in Lp(Rn,Rn),ˉvk ⇀ ˉv0 in Lp(Rn),ˉVk ⇀ ˉV0 in Lp′(Rn,Rn+1). | (3.12) |
Recall that ˉVk=(|ˉvk|p−2ˉvk,|Dˉvk|p−2Dˉvk)∈Lp′(Rn,Rn+1) is the zero extension of Vk=(|vk|p−2vk,|Dvk|p−2Dvk)∈Lp′(Ωk,Rn+1). Because of the assumption (1.7), one can also show that
ˉv0=0 a.e. in Rn∖Ω∞andˉV0=0 a.e. in Rn∖Ω∞. | (3.13) |
Also by (1.7),
there exists K∈N such that suppφ⊂⊂Ωk(k≥K) for any φ∈C∞c(Ω∞). | (3.14) |
From (3.13), (3.14) and Definition 1.4, we obtain that
∫Rn⟨ˉVk,(ˉφ,Dˉφ)⟩dx=∫Ωk⟨Vk,(φ,Dφ)⟩dx→∫Ω∞⟨V∞,(φ,Dφ)⟩dx, |
for any φ∈C∞c(Ω∞) and the zero extension ˉφ∈C∞c(Rn) of φ∈C∞c(Ω∞). Also from (3.12), (3.13) and (3.14), we obtain that
∫Rn⟨ˉVk,(ˉφ,Dˉφ)⟩dx→∫Rn⟨ˉV0,(ˉφ,Dˉφ)⟩dx=∫Ω∞⟨V0,(φ,Dφ)⟩dx, |
for any φ∈C∞c(Ω∞) and the zero extension ˉφ∈C∞c(Rn) of φ∈C∞c(Ω∞). Thus
∫Rn⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx=0 |
for any φ∈C∞c(Ω∞). For any φ∈W1,p0(Ω∞), there exists φϵ∈C∞c(Ω∞) with ‖φ−φϵ‖W1,p0(Ω∞)<ϵ, which implies that
|∫Ω∞⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx|≤ϵ(‖ˉV0‖Lp′(Ω∞)+‖ˉV∞‖Lp′(Ω∞)). |
Since ϵ>0 was arbitrary chosen, we find that
∫Rn⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx=∫Ω∞⟨ˉV∞−ˉV0,(φ,Dφ)⟩dx=0 | (3.15) |
for any φ∈W1,p0(Ω∞).
Fix φ∈C∞c(Ω∞). By (3.14), there exists K∈N with
ˉvk−ˉv∞φ∈W1,p0(Ωk)∩W1,p0(Rn)(k≥K). |
By a direct calculation, it follows that
∫Rn⟨ˉVk−ˉV∞,(ˉvk−ˉv∞,D[ˉvk−ˉv∞])⟩dx=∫Rn⟨ˉVk−ˉV∞,((ˉvk−ˉv∞φ),D[(ˉvk−ˉv∞φ)])⟩dx−∫Rn⟨ˉVk−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx. | (3.16) |
for any k≥K. By (3.12) and (3.14), (ˉvk−ˉv∞φ)⇀(ˉv0−ˉv∞φ) in W1,p0(Rn). So by Definition 1.4,
∫Rn⟨ˉVk,((ˉvk−ˉv∞φ),D(ˉvk−ˉv∞φ))⟩dx→∫Rn⟨ˉV∞,((ˉv0−ˉv∞φ),D(ˉv0−ˉv∞φ))⟩dx, |
and
∫Rn⟨ˉV∞,((ˉvk−ˉv∞φ),D(ˉvk−ˉv∞φ))⟩dx→∫Rn⟨ˉV∞,((ˉv0−ˉv∞)φ,D(ˉv0−ˉv∞φ))⟩dx, |
which implies that
∫Rn⟨ˉVk−ˉV∞,((ˉvk−ˉv∞φ),D(ˉvk−ˉv∞φ))⟩dx→0. | (3.17) |
By (3.12),
∫Rn⟨ˉVk−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx→∫Rn⟨ˉV0−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx. | (3.18) |
By combining (3.17) and (3.18), we use (3.15) to find that
∫Rn⟨ˉVk−ˉV∞,(ˉvk−ˉv∞,D[ˉvk−ˉv∞])⟩dx→∫Rn⟨ˉV0−ˉV∞,(ˉv∞(1−φ),D[ˉv∞(1−φ)])⟩dx=0, | (3.19) |
because of that ˉv∞(1−φ)∈W1,p0(Ω∞). Then by Lemma 2.11,
∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2+(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx→0, |
but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,
∫Rn|ˉVk−ˉV∞|p′dx≤c[∫Rn(|Dˉvk|2+|Dˉv∞|2)p−22|Dˉvk−Dˉv∞|2dx]12[∫Rn|Dˉvk|p+|Dˉv∞|pdx]12+c[∫Rn(|ˉvk|2+|ˉv∞|2)p−22|ˉvk−ˉv∞|2dx]12[∫Rn|ˉvk|p+|ˉv∞|pdx]12→0. |
This implies that
‖ˉhk−ˉh∞‖W−1,p′(Rn)=sup‖ˉφ‖W1,p0(Rn)=1⟨⟨ˉhk−ˉh∞,ˉφ⟩⟩W−1,p′(Rn),W1,p0(Rn)=sup‖ˉφ‖W1,p0(Rn)=1∫Rn⟨ˉVk−ˉV∞,(ˉφ,Dˉφ)⟩dx→0, |
and the lemma follows.
Lemma 3.5. Under the assumption (1.7) and 1 < p < \infty , suppose that h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) . Then
\begin{equation*} \label{} \bar{h}_{k} \ \to \ \bar{h}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*} |
and
\begin{equation} \left\{\begin{aligned} & \int_{\mathbb{R}^{n}_{T}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \to 0, \\ & \int_{\mathbb{R}^{n}_{T}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned}\right. \end{equation} | (3.20) |
for \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) and \bar{h}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) (k \in \mathbb{N} \cup \{ \infty \}) in Corollary 3.3.
Proof. For any t \in [0, T] , by using Corollary 3.3, define \bar{h}_{k}(\cdot, t) \in W^{-1, p'}(\mathbb{R}^{n}) (k \in \mathbb{N} \cup \{ \infty \}) as
\begin{equation} \begin{aligned} & \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t) , \bar{\varphi}(\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \\ & \quad = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}(\cdot, t)|^{p-2}\bar{v}_{k}(\cdot, t) , |D\bar{v}_{k}(\cdot, t)|^{p-2} D\bar{v}_{k}(\cdot, t) \right) , ( \bar{\varphi}(\cdot, t), D\bar{\varphi}(\cdot, t) ) \right \rangle \, dx, \end{aligned} \end{equation} | (3.21) |
for any \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) . Here, v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N} \cup \{ \infty \}) is defined in Lemma 3.2 and \bar{v}_{k} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) is the zero extension of v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) .
For any t \in [0, T] , let \bar{V}_{k}(\cdot, t) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) (k \in \mathbb{N} \cup \{ \infty \}) be the zero extension of
\begin{equation} V_{k} (\cdot, t) : = \left( |v_{k}(\cdot, t)|^{p-2} v_{k}(\cdot, t) , |Dv_{k}(\cdot, t)|^{p-2} Dv_{k}(\cdot, t) \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}). \end{equation} | (3.22) |
Suppose that (3.20) does not hold. Then there exist \delta > 0 and a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that
\begin{equation} \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt > \delta \quad (k \in \mathbb{N}). \end{equation} | (3.23) |
Since \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} (k \in \mathbb{N}) is bounded in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) , there exist v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) and a subsequence, which will be still denoted as \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} (k \in \mathbb{N}) , such that
\begin{equation*} \label{} (\bar{v}_{k}, D\bar{v}_{k}) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \rightharpoonup (\tilde{v}_{0}, D\tilde{v}_{0}) \ \text{in }\ L^{p} (\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*} |
where \tilde{v}_{0} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) is the zero extension of v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) . By a direct calculation and Corollary 3.3,
\begin{equation*} \begin{aligned} \label{} \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} & = \frac{1}{\left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}_{T}) \big)} } \int_{\mathbb{R}^{n}_{T}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{v}_{k} , D\bar{v}_{k} ) \right \rangle \, dx dt \\ & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt. \end{aligned} \end{equation*} |
Since v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big)} ^{-1} \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N}) , we find from (3.8) in Corollary 3.3 and Definition 1.5 that
\begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & \quad = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{k} (\cdot, t), v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{k}) , W^{1, p}_{0}(\Omega^{k}) \rangle } \, dt \\ & \quad \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*} |
By taking \varphi = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} in (3.21), we combine the above equality and limit to find that
\begin{equation*} \begin{aligned} \label{} & \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*} |
So \bar{v}_{k} is bounded in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) , and there exists a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that
\begin{equation} \left\{ \begin{array}{ccccl} D\bar{v}_{k} \ \rightharpoonup \ D\bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{v}_{k} \ \rightharpoonup \ \bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}), \\ \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{0} & \text{ in } & L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{array}\right. \end{equation} | (3.24) |
where \bar{v}_{0} \in L^{p}(\mathbb{R}^{n}_{T}) is weakly differentiable in \mathbb{R}^{n}_{T} with respect to x -variable. Because of the assumption (1.7), one can also show that
\begin{equation} \bar{v}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} \quad \text{and} \quad \bar{V}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty}. \end{equation} | (3.25) |
Let [w]_{h}(\cdot, t) = \frac{1}{h} \int_{0}^{h} w(\cdot, t + \tau) \, d\tau be Steklov average of w . In view of (1.7),
\begin{equation} \text{there exists } K \in \mathbb{N} {\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . \end{equation} | (3.26) |
By (3.21) and Definition 1.5, it follows that
\begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t), ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{k} } \left \langle V_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{\infty} } \left \langle V_{\infty}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*} |
for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.24) and (3.26),
\begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{0}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*} |
for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . Thus
\begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = 0 \end{aligned} \end{equation*} |
for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . For any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) , there exists \varphi_{\epsilon} (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) with \| \varphi (\cdot, t) - \varphi_{\epsilon} (\cdot, t) \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon . So we find that
\begin{equation*} \begin{aligned} \label{} & \left| \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h} (x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx \right| \leq \epsilon \left[ \| [\bar{V}_{\infty}]_{h}(\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} + \| [\bar{V}_{0}]_{h} (\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} \right], \end{aligned} \end{equation*} |
for any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) and the zero extension \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) of \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) . Since \epsilon > 0 was arbitrary chosen, we find from (3.25) that
\begin{equation*} \begin{aligned} \label{} 0 & = \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx \end{aligned} \end{equation*} |
for any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) . We now integrate it with respect to time variable t to find that
\begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt \end{aligned} \end{equation*} |
for any 0 < h < \epsilon < T and \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) . Since V_{\infty} - V_{0} \in L^{p'}(\Omega_{T}^{\infty}) , we use [26, Lemma 3.2] to find that
\begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation*} |
for any 0 < \epsilon < T and \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . Thus
\begin{equation} \begin{aligned} 0 & = \int_{0}^{T} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation} | (3.27) |
for any \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) .
Fix \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.26), there exists K \in \mathbb{N} with
\begin{equation*} \label{} (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\Omega^{\infty}) \qquad ( k \geq K). \end{equation*} |
By a direct calculation,
\begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad = \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ), D [\bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \\ & \qquad - \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt . \end{aligned} \end{equation} | (3.28) |
Also by (3.24), (\bar{v}_{k} - \bar{v}_{\infty} \varphi, D [\bar{v}_{k} - \bar{v}_{\infty} \varphi]) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi, D[\bar{v}_{0} -\bar{v}_{\infty} \varphi]) in L^{p}(\mathbb{R}^{n}_{T}) . So by Definition 1.5,
\begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*} |
which implies that
\begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to 0. \end{aligned} \end{equation} | (3.29) |
By (3.24),
\begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty}, \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt. \end{aligned} \end{equation} | (3.30) |
By combining (3.28), (3.29) and (3.30), we use (3.27) to find that
\begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt = 0, \end{aligned} \end{equation} | (3.31) |
because of that \bar{v}_{\infty} (1-\varphi) \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . So by Lemma 2.11 and (3.22),
\begin{equation*} \begin{aligned} \label{} & \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt \to 0, \end{aligned} \end{equation*} |
but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12
\begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx dt \to 0, \end{aligned} \end{equation*} |
which implies that
\begin{equation*} \begin{aligned} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big)} & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \int_{\mathbb{R}^{n}} \left\langle {\left\langle {} \right.} \right. [\bar{V}_{k} - \bar{V}_{\infty}] , (\bar{\varphi}, D\bar{\varphi}) \left. {\left. {} \right\rangle } \right\rangle \, dx dt \\ & \to 0, \end{aligned} \end{equation*} |
and the lemma follows.
To obtain a weak convergence for \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) (k \in \mathbb{N}) , we consider the zero extension in Corollary 3.3. We remark that
\begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h, \eta \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\eta} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt, \end{equation*} |
for any \eta \in W^{1, p}_{0}(\Omega) and the zero extension \bar{\eta} \in W^{1, p}_{0}(\mathbb{R}^{n}) of \eta \in W^{1, p}_{0}(\Omega) , where \bar{h} is defined in Corollary 3.3.
Lemma 3.6. Under the assumption (1.7) and 1 < p < \infty , let \Omega^{k} \subset \mathbb{R}^{n} (k \in \mathbb{N}) be a sequence of open bounded domains. If v_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) (k \in \mathbb{N}) satisfy
\begin{equation*} \label{} \| v_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} |
for some M > 0 , then there exists v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) such that
\begin{equation*} \label{} \bar{v}_{k} \ \overset{*}{\rightharpoonup} \ \bar{v}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*} |
where \bar{v}_{k} (k \in \mathbb{N} \cup \{ \infty \}) is defined in Corollary 3.3, which implies that
\begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{k} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \end{aligned} \end{equation*} |
for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) .
Proof. Since v_{k} \in L^{p'} \big(0, T; W^{-1, p'}_{0}(\Omega^{k}) \big) (k \in \mathbb{N}) , for each t \in [0, T] , there exists V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) such that
\begin{equation} \left\langle {\left\langle {} \right.} \right. v_{k}(\cdot, t) , \varphi(\cdot) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} = \int_{\Omega^{k}} \langle V_{k} (\cdot, t), (\varphi, D\varphi) (\cdot) \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega^{k}), \end{equation} | (3.32) |
by Proposition 3.2. Moreover,
\begin{equation*} \label{} \| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } = \inf \left \{ \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} : V_{k} (\cdot, t) \text{ satisfies } (3.32) \right\}, \end{equation*} |
for any t \in [0, T] . So for t \in [0, T] , choose V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) (k \in \mathbb{N}) so that
\begin{equation*} \label{} \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} \leq 2\| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } \qquad (k \in \mathbb{N}), \end{equation*} |
which implies that
\begin{equation*} \| V_{k} \|_{L^{p'}(\Omega_{T}^{k} , \mathbb{R}^{n+1})} = \| V_{k} \|_{L^{p'} \big( 0, T ; L^{p'}(\Omega^{k} , \mathbb{R}^{n+1}) \big)} \leq 2\| v_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq 2M. \end{equation*} |
for any k \in \mathbb{N} .
Let \bar{V}_{k} be the zero extension of V_{k} from \Omega_{T}^{k} to \mathbb{R}^{n}_{T} . Since \| \bar{V}_{k} \|_{ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) } \leq 2M (k \in \mathbb{N}) , by Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by \{ \bar{V}_{k} \}_{k = 1}^{\infty} , which converges to \bar{V}_{\infty} \in L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) , say
\begin{equation*} \label{} \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{\infty} \ \text{in }\ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*} |
which implies that
\begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta}, D\bar{\eta}) \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta} ) \rangle \, dx dt, \end{equation} | (3.33) |
for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) . Then one can check from (1.7) that \bar{V}_{\infty} = 0 a.e. in \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} . So define v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) as
\begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle v_{\infty} (\cdot, t) , \eta (\cdot, t) \rangle _{\Omega^{\infty}} \, dt & = \int_{\Omega_{T}^{\infty}} \langle \bar{V}_{\infty}, (\eta , D\eta ) \rangle\, dx dt, \end{aligned} \end{equation*} |
for any \eta \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . Then by Corollary 3.3,
\begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \rangle_{\mathbb{R}^{n}} \, dt & = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta}) \rangle\, dx dt, \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{k}(\cdot, t), \bar{\eta} (\cdot, t) \rangle_{\Omega^{k}} \, dt & = \int_{ \mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta} , D\bar{\eta} ) \rangle \, dx dt, \end{aligned} \end{equation*} |
for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) . So the lemma follows from (3.33).
Lemma 3.7. Under the assumption (1.7) and 1 < p < \infty , let \Omega^{k} \subset \mathbb{R}^{n} (k \in \mathbb{N}) be a sequence of open bounded domains. If v_{k} \in L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) (k \in \mathbb{N}) satisfy
\begin{equation*} \label{} \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} |
for some M > 0 , then there exists v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) such that
\begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty}\; \mathit{\text{in}}\; L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big) \end{equation*} |
where \bar{v}_{k} is the zero extension of v_{k} to L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) for k \in \mathbb{N} \cup \{ \infty \} .
Proof. L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) is dual of L^{1} \big(0, T; L^{2}(\Omega^{k}) \big) for k \in \mathbb{N} \cup \{ \infty \} . We denote \bar{v}_{k} as the zero extensions of v_{k} to L^{\infty} \big(0, T; L^{2} (\mathbb{R}^{n}) \big) for k \in \mathbb{N} \cup \{ \infty \} . Since
\begin{equation*} \label{} \| \bar{v}_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big) } = \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*} |
by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , which converges as
\begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{equation*} |
We remark that weak- \ast convergence was used instead of weak convergence, because (L^{\infty})^{\ast} \not = L^{1} . One can easily check from (1.7) that \bar{v}_{\infty} = 0 a.e. in \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} . So the lemma follows by taking v_{\infty} = \bar{v}_{\infty} \cdot1_{\Omega_{T}^{\infty} } .
Now recall the energy estimate (3.2).
\begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} | (3.34) |
Let \bar{F}_{k}, \bar{\gamma}_{k}, D\bar{\gamma}_{k} \in L^{p}(\mathbb{R}^{n}_{T}) be the zero extension of F_{k}, \gamma_{k}, D\gamma_{k} \in L^{p}(\Omega_{T}^{k}) , respectively. (We remark that \bar{\gamma}_{k} might not be weakly differentiable in \mathbb{R}^{n}_{T} , but we abuse the notation for the simplicity of the computation.) We apply Lemma 3.1 to (1.9). Then
\begin{equation} \left\{\begin{array}{rcll} |\bar{F}_{k}|^{p-2}\bar{F}_{k} & \to & |\bar{F}|^{p-2}\bar{F} & \text{in } L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{\gamma}_{k} & \to & \bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}), \\ D\bar{\gamma}_{k} & \to & D\bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \end{array}\right. \end{equation} | (3.35) |
which implies that
\begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| |\bar{F}_{k}|^{p-2}\bar{F}_{k} \|_{L^{p'}(\mathbb{R}^{n}_{T})} = \| |\bar{F}|^{p-2}\bar{F} \|_{L^{p'}(\mathbb{R}^{n}_{T})}, \end{aligned} \end{equation*} |
and
\begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| D\bar{\gamma}_{k} \|_{L^{p}(\mathbb{R}^{n}_{T})} = \| D\bar{\gamma} \|_{L^{p}(\mathbb{R}^{n}_{T})}. \end{aligned} \end{equation*} |
Let \bar{f}_{k} , \partial_{t} \bar{\gamma}_{k} , \bar{f} and \partial_{t} \bar{\gamma} be the zero extension of f_{k}, \partial_{t} \gamma_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) and f, \partial_{t} \gamma \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find from (1.8) that
\begin{equation} \left\{\begin{array}{rcll} \bar{f}_{k} & \overset{\ast}{\to} & \bar{f} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \\ \partial_{t}\bar{\gamma}_{k} & \overset{\ast}{\to} & \partial_{t} \bar{\gamma} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{array}\right. \end{equation} | (3.36) |
which implies that
\begin{equation*} \label{} \lim\limits_{k \to \infty} \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } = \lim\limits_{k \to \infty} \| \bar{f}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big) } = \| \bar{f} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) }, \end{equation*} |
and
\begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \lim\limits_{k \to \infty} \| \partial_{t} \bar{\gamma}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \| \partial_{t} \bar{\gamma} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big)}. \end{aligned} \end{equation*} |
So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and the zero extension to find that there exists a subsequence of \{ \bar{u}_{k} \}_{k = 1}^{\infty} , which will be still denote by \{ \bar{u}_{k} \}_{k = 1}^{\infty} , and \bar{u}_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(0, T; L^{2}(\mathbb{R}^{n}) \big) such that
\begin{equation} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u}_{0} & \text{in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} | (3.37) |
Here, the compactness method is applied to some ball satisfying B \supset \Omega^{k} (k \in \mathbb{N}) and B \supset \Omega by using the zero extensions.
By (1.10),
\begin{equation*} \begin{aligned} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt = \int_{\Omega^{k}_{T} } \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi - \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle\; dx dt, \end{aligned} \end{equation*} |
for any \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) . Then we see that \| \partial_{t} u_{k} \|_{L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big)} is bounded. We denote the zero extension of \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) in Corollary 3.3 as \partial_{t} \bar{u}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) . Then we find from Corollary 3.3 that
\begin{equation} \| \partial_{t} \bar{u}_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\mathbb{R}^{n}) \big)} = \| \partial_{t} u_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\Omega^{k}) \big)} \ (k \in \mathbb{N}) \text{ is bounded.} \end{equation} | (3.38) |
So by Lemma 3.6, there exist \partial_{t} u_{0} \text{ in } L^{p'} \big(0, T; W^{-1, p'} (\Omega) \big) and a subsequence of \{ \bar{u}_{k} \}_{k = 1}^{\infty} , which will be still denoted by \{ \bar{u}_{k} \}_{k = 1}^{\infty} such that
\begin{equation} \partial_{t} \bar{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \bar{u}_{0} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big). \end{equation} | (3.39) |
Here, we denoted the zero extension of \partial_{t} u_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) in Corollary 3.3 as \partial_{t} \bar{u}_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) . Define u_{0} = \bar{u}_{0} + \gamma in \Omega_{T} . Then we have that following lemma. We remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].
Lemma 3.8. For u_{0} = \bar{u}_{0} + \gamma in \Omega_{T} , we have that
\begin{equation*} \label{} \lim\limits_{h \searrow 0} \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0. \end{equation*} |
Proof. Let \hat{u}_{k} be the zero extension of \bar{u}_{k} from \mathbb{R}^{n} \times [0, T] to \mathbb{R}^{n} \times [-T, T] , which means that \hat{u}_{k} = 0 in (\mathbb{R}^{n} \times [-T, T]) \setminus (\mathbb{R}^{n} \times [0, T]) . Also define \partial_{t} \hat{u}_{k} as
\begin{equation*} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} = \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k}, \varphi \, \chi_{\Omega_{T}} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \text{ for any } \varphi \in L^{p} \big( -T, T ; W^{1, p} (\mathbb{R}^{n}) \big). \end{equation*} |
Then we see that \partial_{t} \hat{u}_{k} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) , because
\begin{equation*} \begin{aligned} \int_{-T}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = - \int_{0}^{T} \int_{ \mathbb{R}^{n} }\bar{u}_{k} \, \varphi_{t} \, dx dt = - \int_{-T}^{T} \int_{ \mathbb{R}^{n} } \hat{u}_{k} \, \varphi_{t} \, dx dt \end{aligned} \end{equation*} |
for any \varphi \in C_{c}^{\infty}(\mathbb{R}^{n} \times [-T, T]) . Here, we used that \bar{u}_{k} = 0 on \mathbb{R}^{n} \times \{ 0 \} .
By (3.37) and (3.39), there exists a subsequence, which will be still denoted as \hat{u}_{k} and \partial_{t} \hat{u}_{k} (k \in \mathbb{N}) , such that
\begin{equation} \left\{\begin{array}{rcll} D\hat{u}_{k} & \rightharpoonup & D\hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T), \mathbb{R}^{n}), \\ \hat{u}_{k} & \to & \hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T)) , \\ \hat{u}_{k} & \overset{\ast}{\rightharpoonup} & \hat{u}_{0} & \text{in } L^{\infty} \big( -T, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} | (3.40) |
and
\begin{equation*} \label{} \partial_{t} \hat{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \hat{u}_{0} \ \text{in }\ L^{p'} \big( -T, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big), \end{equation*} |
for some \hat{u}_{0} \in L^{p} \big(-T, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(-T, T; L^{2}(\mathbb{R}^{n}) \big) and \partial_{t} \hat{u}_{0} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) . Then by Proposition 2.6, we have that \hat{u}_{0} \in C \big([-T, T]; L^{2}(\mathbb{R}^{n}) \big) , which implies that
\begin{equation*} 0 = \lim\limits_{h \nearrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\bar{u}_{0}|^{2} \, dx dt , \end{equation*} |
where we used that \hat{u}_{0} = \bar{u}_{0} in \mathbb{R}^{n}_{T} , which holds from (3.37), (3.40) and that \hat{u}_{k} is the zero extension of \bar{u}_{k} from \mathbb{R}^{n}_{T} to \mathbb{R}^{n} \times [-T, T] . Since \bar{u}_{0} = u_{0} - \gamma in \Omega , we get
\begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, t)|^{2} \, dx dt = 0. \end{equation*} |
Since \gamma \in C\big([0, T]; L^{2}(\Omega) \big) , we find that
\begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |\gamma(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0, \end{equation*} |
and the lemma follows.
Lemma 3.9. For the weak solutions u \in \gamma + L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap C \big([0, T]; L^{2}(\Omega) \big) of (1.6) and u_{k} \in \gamma_{k} + L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2}(\Omega^{k}) \big) in (1.10), we have that
\begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \; dx dt = 0 {{\; for\; any \; }} \varphi \in C_{c}^{\infty}(\Omega)\; \mathit{\text{with}} \;0 \leq \varphi \leq 1, \end{equation*} |
and
\begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \; dx dt = 0 \quad {{for \;any}} \;\quad U \subset \subset \Omega. \end{equation} | (3.41) |
Moreover, we have that
\begin{equation*} \label{} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u} & \mathit{\text{in}} \; L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u} & \mathit{\text{in}} \;L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u} & \mathit{\text{in}}\; L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation*} |
Proof. Recall from (1.7) that
\begin{equation} \lim\limits_{k \to \infty} d_{H} \left( \partial \Omega^{k}, \partial \Omega \right) = 0, \end{equation} | (3.42) |
which implies that
\begin{equation} \text{there exists } K \in \mathbb{N}{\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} | (3.43) |
Fix \varphi(x) \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 , which is independent of t -variable. Choose K \in \mathbb{N} in (3.43). Test (1.10) by \left(\bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} to find that
\begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{ \Omega_{T}^{k} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{u}_{k} - D\bar{u}_{0})\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle \; dx dt\\ & \quad = \int_{ \Omega_{T}^{k} } \left \langle |F_{k}|^{p-2}F_{k}, (D\bar{u}_{k} - D\bar{u}_{0} )\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle + f_{k} (\bar{u}_{k} - \bar{u}_{0}) \varphi^{p} \, dx dt, \end{aligned} \end{equation*} |
for any k \geq K . Recall that \bar{u}_{k} = u_{k} - \gamma_{k} , \bar{u}_{0} = u_{0} - \gamma and \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) for any k \geq K . For (\mathop{supp } \varphi)_{T} = \mathop{supp } \varphi \times [0, T] , we discover that
\begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0}\right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \\ & \quad = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation*} |
where
\begin{equation*} \begin{aligned} I_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{\gamma}_{k} - D\bar{\gamma}) \varphi^{p} - p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle \; dx dt, \\ II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2}\bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt, \\ III_{k} & = - \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \langle a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0}) \varphi^p \rangle \; dx dt, \\ IV_{k} & = - \int_{0}^{T} \left \langle \partial_{t} \bar{\gamma}_{k} + \partial_{t} \bar{u}_{0} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \right \rangle_{\mathbb{R}^{n}} \, dt, \end{aligned} \end{equation*} |
for k \geq K . One can easily check from (3.35) and (3.37) that
\begin{equation} \lim\limits_{k \rightarrow \infty} I_{k} = 0. \end{equation} | (3.44) |
By a direct calculation, we have
\begin{equation*} \begin{aligned} II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}|^{p-2} \bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k} - |\bar{F}|^{p-2}\bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt. \end{aligned} \end{equation*} |
By (3.35)–(3.37),
\begin{equation} \limsup\limits_{k \rightarrow \infty} II_{k} = 0. \end{equation} | (3.45) |
We handle III_{k} . By Lemma 2.14,
\begin{equation*} \begin{aligned} \label{} & \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'} \big( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} \big)} \leq \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'}(\Omega_{T})} = 0. \end{aligned} \end{equation*} |
So by (3.37),
\begin{equation} \limsup\limits_{k \rightarrow \infty} III_{k} = 0. \end{equation} | (3.46) |
By (3.36) and (3.37),
\begin{equation} \limsup\limits_{k \rightarrow \infty} IV_{k} = 0. \end{equation} | (3.47) |
Since \varphi = \varphi(x) and 0 \leq \varphi \leq 1 , one can easily show that
\begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0} \right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{\mathbb{R}^{n}} \frac{ \left| \left[ \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{\frac{p}{2}} \right] \left( x, T \right) \right|^{2} }{2} \, dx \geq 0. \end{equation*} |
because \bar{u}_{k} = 0 = \bar{u}_{0} on \mathbb{R}^{n} \times \{ 0 \} , which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),
\begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \to 0, \end{aligned} \end{equation*} |
because \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t), (Du_{k} - Du_{0})\varphi^{p} \right \rangle \geq 0 in \mathbb{R}^{n}_{T} \cap (\mathop{supp } \varphi)_{T} , which implies that
\begin{equation*} \label{} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt \to 0. \end{equation*} |
For any \kappa \in (0, \kappa_{1}] , we have from Lemma 2.7 that
\begin{equation*} \begin{aligned} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt & \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \, dx dt\\ &\quad + c \kappa^{p-2} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt. \end{aligned} \end{equation*} |
So we find that
\begin{equation*} \begin{aligned} \label{} 0 & \leq \limsup\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \; dx dt. \end{aligned} \end{equation*} |
Since \kappa \in (0, \kappa_{1}] and \varphi \in C_{c}^{\infty}(\Omega) were arbitrary chosen, we discover that
\begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation*} |
So by (3.35),
\begin{equation} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation} | (3.48) |
For any U \subset \subset \Omega , there exists a cut-off function \eta \in C_{c}^{\infty} (\Omega) such that 0 \leq \eta \leq 1 in \Omega and \eta = 1 on U . Moreover, by (3.42), there exists K \in \mathbb{N} such that
\begin{equation} U \subset \subset \Omega^{k} \qquad (k \geq K). \end{equation} | (3.49) |
So by (3.48),
\begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \; dx dt = 0 \quad \text{ for any } \quad U \subset \subset \Omega. \end{equation} | (3.50) |
By Corollary 3.3 and (3.39),
\begin{equation} \begin{aligned} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \, \overset{\ast}{\to} \, \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt, \end{aligned} \end{equation} | (3.51) |
for any \varphi \in C_{0 }^{\infty} (\Omega_{T}) .
Now, we show that u_{0} is the weak solution of (1.6), which implies that u = u_{0} by the uniqueness. Fix \varphi \in C_{0 }^{\infty} (\Omega_{T}) and choose U \subset \subset \Omega with \text{supp } \varphi \subset \overline{U_{T}} . By (3.42), there exists K \in \mathbb{N} such that U \subset \subset \Omega^{k} (k \geq K) . We have from (1.10) that
\begin{equation*} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle \; dx dt = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi \; dx dt, \end{equation*} |
for any k \geq K . So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),
\begin{equation*} \begin{aligned} &\int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \Omega } + \int_{ \Omega_{T} } \langle a(Du_{0}, x, t) , D\varphi \rangle \, dx dt = \int_{ \Omega_{T} } \langle |F|^{p-2}F, D\varphi \rangle + f \varphi \, dx dt. \end{aligned} \end{equation*} |
We find from Lemma 3.8 that u_{0} \in L^{\infty} \big(0, T; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}_{0} (\Omega) \big) is also the weak solution of (1.6). By uniqueness of the weak solution, we find that u_{0} = u , and the lemma follows from (3.37), (3.48) and (3.50).
We next estimate the concentration of D\bar{u}_{k} near the boundary \partial \Omega \times [0, T] .
Lemma 3.10. For any \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 , we have that
\begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega} \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right]. \end{aligned} \end{equation*} |
Proof. Fix \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 . We have from (1.7) that
\begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} | (3.52) |
We next take \kappa = \kappa_{1}(n, p, \lambda, \Lambda) in Lemma 2.7 to find that
\begin{equation} \begin{aligned} \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt & \leq c \int_{\Omega_{T}^{k}} (|D\gamma_{k}|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad + c \int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt, \end{aligned} \end{equation} | (3.53) |
for any k \geq K . In view of (1.2), we discover that
\begin{equation} \begin{aligned} &\int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad \leq c \int_{\Omega_{T}^{k}} \langle a(Du_{k}, x, t) - a(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \rangle \left( 1- \varphi^{p} \right) \; dx dt, \end{aligned} \end{equation} | (3.54) |
for any k \geq K .
We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by (u_{k}- \gamma_{k}) \left(1-\varphi^{p} \right) to find that
\begin{equation} \begin{aligned} & \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation} | (3.55) |
where
\begin{equation*} \begin{aligned} \label{} & I_{k} = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , \left( u_{k} - \gamma_{k} \right) p\varphi^{p-1} D\varphi \rangle \; dx dt , \\ & II_{k} = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \; dx dt , \\ & III_{k} = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt , \\ & IV_{k} = - \int_{0}^{T} \langle \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*} |
for any k \geq K .
We estimate the limit of the right-hand side as k \to \infty . Without loss of generality, assume that k \geq K . Then we have from (3.52) that
\begin{equation*} \label{} \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}). \end{equation*} |
We first compute the limit of I_{k} . By the triangle inequality,
\begin{equation*} \begin{aligned} & \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})} \\ & \ \leq \left\| \left| a_{k}(Du_{k}, x, t) - a_{k}(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} + \left\| \left| a_{k}(Du, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}} (\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})}. \end{aligned} \end{equation*} |
Since \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) , we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that
\begin{equation} \lim\limits_{k \to \infty} \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} = 0. \end{equation} | (3.56) |
By Lemma 3.9, we have that \bar{u}_{k} \to \bar{u} in L^{p}(\mathbb{R}^{n}_{T}) . Since u_{k} - \gamma_{k} = \bar{u}_{k} in \Omega_{T}^{k} and u - \gamma = \bar{u} in \Omega_{T} , we find from (3.50) that
\begin{equation} \begin{aligned} I_{k} & = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , ( u_{k} - \gamma_{k}) p\varphi^{p-1} D\varphi \rangle \, dx dt \to \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle \, dx dt. \end{aligned} \end{equation} | (3.57) |
Similarly, by the triangle inequality,
\begin{equation*} \begin{aligned} & \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } \\ & \quad \leq \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )} + \left\| a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )}. \end{aligned} \end{equation*} |
So we get from (3.35), Lemma 2.10 and Lemma 2.14 that
\begin{equation*} \lim\limits_{k \to \infty} \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } = 0, \end{equation*} |
and it follows from Lemma 3.9 that
\begin{equation} \begin{aligned} II_{k} & = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & = - \int_{\mathbb{R}^{n}_{T} } \langle a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} , D\bar{u}_{k} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \to - \int_{ \mathbb{R}^{n}_{T} } \langle a(D\gamma, x, t) \cdot 1_{\Omega_{T}}, D\bar{u} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & = - \int_{\Omega_{T}} \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \, dx dt. \end{aligned} \end{equation} | (3.58) |
Recall that
\begin{equation*} \begin{aligned} \label{} III_{k} & = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation*} |
Then one can easily check from (3.35), (3.36) and Lemma 3.9 that
\begin{equation} \begin{aligned} III_{k} \to \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation} | (3.59) |
Now, we estimate IV_{k} .
\begin{equation*} \begin{aligned} \label{} IV_{k} & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \\ & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega_{T}^{k} } - \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt. \end{aligned} \end{equation*} |
Since \varphi = \varphi(x) , 0 \leq \varphi \leq 1 and u_{k} - \gamma_{k} = 0 on \Omega^{k} \times \{ 0 \} , we find that
\begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } dt = \int_{\Omega^{k}} \frac{ | [(u_{k}-\gamma_{k}) (1-\varphi^{p})^{\frac{1}{2}}] ( x , T ) |^{2} }{2} \, dx \geq 0. \end{equation*} |
Since u_{k} - \gamma_{k} = \bar{u}_{k} in \Omega_{T}^{k} and u - \gamma = \bar{u} in \Omega_{T} , we find from (3.36) and Lemma 3.9 that
\begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{equation*} |
Thus
\begin{equation} \begin{aligned} & \limsup\limits_{k \to \infty} IV_{k} \leq - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation} | (3.60) |
In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that
\begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \qquad + \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt \\ & \qquad - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} |
By taking (u-\gamma) \left(1 - \varphi^{p} \right) in (1.6), we get that
\begin{equation*} \begin{aligned} \label{} &\int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p \varphi^{p-1} D\gamma \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt\\ &\quad + \int_{\Omega_{T}} \langle |F|^{p-2}F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + g(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt\\ &\qquad = \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*} |
Thus
\begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u - \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt . \end{aligned} \end{equation*} |
Since \bar{u} = u-\gamma , we find that
\begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}} ] ( x , T) |^{2} }{2} \, dx. \end{aligned} \end{equation*} |
Since \bar{u}_{k} = u_{k} - \gamma_{k} , by (3.35), (3.53) and (3.54),
\begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} |
and the lemma follows.
We are ready to prove Theorem 1.6.
Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,
\begin{equation*} \begin{aligned} & \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \\ & \quad = \limsup\limits_{ k \to \infty}\left[ \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} (1-\varphi^{p}) \, dx dt \right] \\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*} |
for any \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 . Since \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 can be arbitrary chosen in the above estimates, one can choose a sequence of monotone increasing functions in C_{c}^{\infty}(\Omega) which converges to 1 a.e. in \Omega . Then by Lebesgue's dominated convergence theorem, we get
\begin{equation*} \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \leq 0. \end{equation*} |
This contradicts (3.1). So we find that (1.11) holds.
Y. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1A01013363). S. Ryu was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01014310). P. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01066850). The authors would like to thank the referee for the careful reading of this manuscript and for offering valuable comments.
The authors declare no conflict of interest.
[1] |
E. Acerbi, N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2, J. Math. Anal. Appl., 140 (1989), 115–135. https://doi.org/10.1016/0022-247X(89)90098-X doi: 10.1016/0022-247X(89)90098-X
![]() |
[2] |
E. Acerbi, G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Rational Mech. Anal., 156 (2001), 121–140. https://doi.org/10.1007/s002050100117 doi: 10.1007/s002050100117
![]() |
[3] |
E. Acerbi, G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 584 (2005), 117–148. https://doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117
![]() |
[4] |
E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. https://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
![]() |
[5] | R. A. Adams, J. J. F. Fournier, Sobolev spaces, Amsterdam: Elsevier/Academic Press, 2003. |
[6] |
P. Baroni, Lorentz estimates for degenerate and singular evolutionary systems, J. Differ. Equations, 255 (2013), 2927–2951. https://doi.org/10.1016/j.jde.2013.07.024 doi: 10.1016/j.jde.2013.07.024
![]() |
[7] |
P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var., 53 (2015), 803–846. https://doi.org/10.1007/s00526-014-0768-z doi: 10.1007/s00526-014-0768-z
![]() |
[8] |
P. Baroni, V. Bögelein, Calderón-Zygmund estimates for parabolic p(x, t)-Laplacian systems, Rev. Mat. Iberoam., 30 (2014), 1355–1386. https://doi.org/10.4171/RMI/817 doi: 10.4171/RMI/817
![]() |
[9] |
P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
![]() |
[10] |
L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880
![]() |
[11] |
V. Bögelein, Global Calderón-Zygmund theory for nonlinear parabolic systems, Calc. Var., 51 (2014), 555–596. https://doi.org/10.1007/s00526-013-0687-4 doi: 10.1007/s00526-013-0687-4
![]() |
[12] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7 |
[13] |
M. Bulíček, S.-S. Byun, P. Kaplický, J. Oh, S. Schwarzacher, On global L^{q}-estimates for systems with p-growth in rough domains, Calc. Var., 58 (2019), 185. https://doi.org/10.1007/s00526-019-1621-1 doi: 10.1007/s00526-019-1621-1
![]() |
[14] |
S.-S. Byun, Y. Kim, Elliptic equations with measurable nonlinearities in nonsmooth domains, Adv. Math., 288 (2016), 152–200. https://doi.org/10.1016/j.aim.2015.10.015 doi: 10.1016/j.aim.2015.10.015
![]() |
[15] |
S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differ. Equations, 254 (2013), 4290–4326. https://doi.org/10.1016/j.jde.2013.03.004 doi: 10.1016/j.jde.2013.03.004
![]() |
[16] |
S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 715 (2016), 1–38. https://doi.org/10.1515/crelle-2014-0004 doi: 10.1515/crelle-2014-0004
![]() |
[17] |
S.-S. Byun, L. Wang, Parabolic equations in time dependent Reifenberg domains, Adv. Math., 212 (2007), 797–818. https://doi.org/10.1016/j.aim.2006.12.002 doi: 10.1016/j.aim.2006.12.002
![]() |
[18] |
I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Anal., 175 (2018), 1–27. https://doi.org/10.1016/j.na.2018.05.003 doi: 10.1016/j.na.2018.05.003
![]() |
[19] |
A. Cianchi, V. G. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Commun. Part. Diff. Eq., 36 (2011), 100–133. https://doi.org/10.1080/03605301003657843 doi: 10.1080/03605301003657843
![]() |
[20] |
A. Cianchi, V. G. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Rational Mech. Anal., 212 (2014), 129–177. https://doi.org/10.1007/s00205-013-0705-x doi: 10.1007/s00205-013-0705-x
![]() |
[21] |
M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
![]() |
[22] |
M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
![]() |
[23] |
M. Colombo, G. Mingione, Calderón–Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022
![]() |
[24] |
C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. https://doi.org/10.1007/s12220-019-00225-z doi: 10.1007/s12220-019-00225-z
![]() |
[25] |
C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equations, 267 (2019), 547–586. https://doi.org/10.1016/j.jde.2019.01.017 doi: 10.1016/j.jde.2019.01.017
![]() |
[26] | E. DiBenedetto, Degenerate parabolic equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-0895-2 |
[27] |
L. Diening, B. Stroffolini, A. Verde, Everywhere regularity of functionals with \varphi-growth, Manuscripta Math., 129 (2009), 449–481. https://doi.org/10.1007/s00229-009-0277-0 doi: 10.1007/s00229-009-0277-0
![]() |
[28] |
F. Duzaar, G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 27 (2010), 1361–1396. https://doi.org/10.1016/J.ANIHPC.2010.07.002 doi: 10.1016/J.ANIHPC.2010.07.002
![]() |
[29] |
F. Duzaar, G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093–1149. https://doi.org/10.1353/ajm.2011.0023 doi: 10.1353/ajm.2011.0023
![]() |
[30] |
A. H. Erhardt, Existence of solutions to parabolic problems with nonstandard growth and irregular obstacles, Adv. Differential Equations, 21 (2016), 463–504. https://doi.org/10.57262/ade/1457536498 doi: 10.57262/ade/1457536498
![]() |
[31] |
L. Esposito, G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complut., 11 (1998), 203–219. https://doi.org/10.5209/rev_REMA.1998.v11.n1.17325 doi: 10.5209/rev_REMA.1998.v11.n1.17325
![]() |
[32] |
L. Esposito, F. Leonetti, G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth, Forum Math., 14 (2002), 245–272. https://doi.org/10.1515/form.2002.011 doi: 10.1515/form.2002.011
![]() |
[33] |
L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p, q) growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007
![]() |
[34] | L. Evans, Partial differential equations, 2 Eds., Providence, RI: American Mathematical Society, 2010. |
[35] |
M. Giaquinta, G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55–99. https://doi.org/10.1007/BF01172492 doi: 10.1007/BF01172492
![]() |
[36] |
C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431 (1992), 7–64. https://doi.org/10.1515/crll.1992.431.7 doi: 10.1515/crll.1992.431.7
![]() |
[37] |
P. Hästö, J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc., 24 (2022), 1285–1334. https://doi.org/10.4171/JEMS/1118 doi: 10.4171/JEMS/1118
![]() |
[38] |
Y. Kim, Gradient estimates for elliptic equations with measurable nonlinearities, J. Math. Pure. Appl. (9), 114 (2018), 118–145. https://doi.org/10.1016/j.matpur.2017.11.003 doi: 10.1016/j.matpur.2017.11.003
![]() |
[39] |
T. Kuusi, G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205–4269. https://doi.org/10.1016/j.jfa.2012.02.018 doi: 10.1016/j.jfa.2012.02.018
![]() |
[40] |
T. Kuusi, G. Mingione, New perturbation methods for nonlinear parabolic problems, J. Math. Pure Appl. (9), 98 (2012), 390–427. https://doi.org/10.1016/j.matpur.2012.02.004 doi: 10.1016/j.matpur.2012.02.004
![]() |
[41] |
T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, Arch. Rational Mech. Anal., 207 (2013), 215–246. https://doi.org/10.1007/s00205-012-0562-z doi: 10.1007/s00205-012-0562-z
![]() |
[42] |
T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Rational Mech. Anal., 212 (2014), 727–780. https://doi.org/10.1007/s00205-013-0695-8 doi: 10.1007/s00205-013-0695-8
![]() |
[43] |
T. Kuusi, G. Mingione, Guide to nonlinear potential estimates, Bull. Math. Sci., 4 (2014), 1–82. https://doi.org/10.1007/s13373-013-0048-9 doi: 10.1007/s13373-013-0048-9
![]() |
[44] |
T. Kuusi, G. Mingione, Vectorial nonlinear potential theory, J. Eur. Math. Soc., 20 (2018), 929–1004. https://doi.org/10.4171/JEMS/780 doi: 10.4171/JEMS/780
![]() |
[45] | G. Leoni, A first course in Sobolev spaces, Providence, RI: American Mathematical Society, 2009. |
[46] |
P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
![]() |
[47] |
P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
![]() |
[48] | G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 195–261. |
[49] |
G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459–486. https://doi.org/10.4171/JEMS/258 doi: 10.4171/JEMS/258
![]() |
[50] |
C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., 146 (2015), 7–63. https://doi.org/10.1007/s00229-014-0684-8 doi: 10.1007/s00229-014-0684-8
![]() |
[51] | R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997. |
[52] |
P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. https://doi.org/10.1016/0022-0396(84)90105-0 doi: 10.1016/0022-0396(84)90105-0
![]() |
[53] |
K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219–240. https://doi.org/10.1007/BF02392316 doi: 10.1007/BF02392316
![]() |
[54] | V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105–116. |