Processing math: 62%
Research article Special Issues

Approximation of elliptic and parabolic equations with Dirichlet boundary conditions

  • We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains.

    Citation: Youchan Kim, Seungjin Ryu, Pilsoo Shin. Approximation of elliptic and parabolic equations with Dirichlet boundary conditions[J]. Mathematics in Engineering, 2023, 5(4): 1-43. doi: 10.3934/mine.2023079

    Related Papers:

    [1] Mouhamed Moustapha Fall, Veronica Felli, Alberto Ferrero, Alassane Niang . Asymptotic expansions and unique continuation at Dirichlet-Neumann boundary junctions for planar elliptic equations. Mathematics in Engineering, 2019, 1(1): 84-117. doi: 10.3934/Mine.2018.1.84
    [2] Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098
    [3] Yves Achdou, Ziad Kobeissi . Mean field games of controls: Finite difference approximations. Mathematics in Engineering, 2021, 3(3): 1-35. doi: 10.3934/mine.2021024
    [4] Arthur. J. Vromans, Fons van de Ven, Adrian Muntean . Homogenization of a pseudo-parabolic system via a spatial-temporal decoupling: Upscaling and corrector estimates for perforated domains. Mathematics in Engineering, 2019, 1(3): 548-582. doi: 10.3934/mine.2019.3.548
    [5] Antonio Vitolo . Singular elliptic equations with directional diffusion. Mathematics in Engineering, 2021, 3(3): 1-16. doi: 10.3934/mine.2021027
    [6] Marco Cirant, Kevin R. Payne . Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient. Mathematics in Engineering, 2021, 3(4): 1-45. doi: 10.3934/mine.2021030
    [7] Lucio Boccardo . A "nonlinear duality" approach to W1,10 solutions in elliptic systems related to the Keller-Segel model. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085
    [8] Isabeau Birindelli, Kevin R. Payne . Principal eigenvalues for k-Hessian operators by maximum principle methods. Mathematics in Engineering, 2021, 3(3): 1-37. doi: 10.3934/mine.2021021
    [9] Edgard A. Pimentel, Miguel Walker . Potential estimates for fully nonlinear elliptic equations with bounded ingredients. Mathematics in Engineering, 2023, 5(3): 1-16. doi: 10.3934/mine.2023063
    [10] Giovanni Cupini, Paolo Marcellini, Elvira Mascolo . Local boundedness of weak solutions to elliptic equations with p,qgrowth. Mathematics in Engineering, 2023, 5(3): 1-28. doi: 10.3934/mine.2023065
  • We obtain an approximation result of the weak solutions to elliptic and parabolic equations with Dirichlet boundary conditions. We show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains.



    Dedicated to Giuseppe Mingione, on the occasion of his 50th birthday.

    For localized problems, many papers showed that the weak solution of elliptic and parabolic equations can be obtained with a limit of approximations by regularizing the nonlinearities, see for instance [1,2,4,28,29,32]. However, as far as we are concerned, it was hard to find a suitable reference for global problems which considered approximations on domains. In this paper, we will show that the weak solution can be obtained with a limit of approximations by regularizing the nonlinearities and approximating the domains for Dirichlet boundary value problems. Also we refer to [19,20] which used regularization on the nonlinearities and approximation on the convex domains for a class of nonlinear elliptic systems.

    For the interested readers, we briefly explain about the mentioned papers in the previous paragraph, which are mainly related to the regularity of elliptic and parabolic problems. Acerbi and Fusco [1] obtained local C1,γ for local minimizers of p–energy density, where we refer to [35,52,53] for fundamental papers and [27] for generalized elliptic systems. Acerbi and Mingione [2] obtained local C1,γ regularity for local minimizers with variable exponents, where we refer to [54] for fundamental paper and [3,8,16] for Calderón-Zygmund type estimates. Esposito, Leonetti and Mingione [32,33] obtained higher integrability results for elliptic equations with pq growth conditions, where we refer to [10,18,24] for the related results and [46,47] for Lipschitz regularity. Also we refer to [9,21,22,23,25] for double phase problems and [37] for a unified approach of pq, Orlicz, p(x) and double phase growth conditions. Acerbi and Mingione [4] obtained Calderón-Zygmund type estimate for a class of parabolic systems, and we refer to [11,15,17] for the global results and [6] for Lorentz space type estimate. Duzaar and Mingione [28] obtained local Lipschitz regularity for nonlinear elliptic equations and a class of elliptic systems. Also Cianchi and Maz'ya [19,20] obtained Lipschitz regularity for a class of elliptic systems in convex domains. Duzaar and Mingione [29] obtained Wolff potential type estimate for nonlinear elliptic equations, and we refer to [39,40,41,42,43,44,49] for further references and [7] for nonlinear elliptic equations with general growth. We remark that one of the authors obtained [14] based on the techniques of [29,48].

    Suppose that a:Rn×Rn+1Rn satisfies

    {a(ξ,x,t) is measurable in (x,t) for every ξRn,a(ξ,x,t) is C1-regular in ξ for every (x,t)Rn+1, (1.1)

    and the following ellipticity and growth conditions:

    {|a(ξ,x,t)|+|Dξa(ξ,x,t)|(|ξ|2+s2)12Λ(|ξ|2+s2)p12,Dξa(ξ,x,t)ζ,ζλ(|ξ|2+s2)p22|ζ|2, (1.2)

    for every (x,t)Rn+1, for every ξ,ζRn and for some constants 0<λΛ and s0.

    To regularize the nonlinearity a, we define ϕCc(Rn) as a standard mollifier:

    ϕ(x)={c1exp(1|x|21)if |x|<1,0if |x|1, (1.3)

    where c1>0 is a constant chosen so that

    Rnϕ(x)dx=1. (1.4)

    Under the assumptions (1.1) and (1.2), let aϵ(ξ,x,t) be a regularization of a(ξ,x,t):

    aϵ(ξ,x,t)=RnRna(ξϵy,xϵz,t)ϕ(y)ϕ(z)dydz(0<ϵ<1). (1.5)

    Then aϵ(ξ,x,t) satisfies the ellipticity and growth conditions and it is smooth enough, precisely,

    {aϵ(ξ,x,t) is C-regular in ξRn for every (x,t)Rn+1,aϵ(ξ,x,t) is C-regular in xRn for every ξRn and tR,

    and

    {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12cΛ(|ξ|2+s2ϵ)p12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|cΛϵm(|ξ|2+s2ϵ)p12,Dξaϵ(ξ,x,t)ζ,ζcλ(|ξ|2+s2ϵ)p22|ζ|2,

    for sϵ=(s2+ϵ2)12>0. Here, the constants c are depending only on n and p. It will be proved in Lemma 2.13.

    As usual, we denote p as the Hölder conjugate of p and by p the Sobolev exponent of p. (Note that p can be any real number bigger than 1, provided that pn.) We denote dH(X,Y) as the Hausdorff distance between two nonempty sets X and Y, namely,

    dH(X,Y)=sup{dist(x,Y):xX}+sup{dist(y,X):yY}.

    Remark 1.1. As mentioned before, ak(ξ,x,t) is smooth with respect to ξ and x by Lemma 2.13. For Neumann boundary value problems, we need to consider extensions to compare weak solutions defined on different domains. In this paper, we consider Dirichlet boundary value problem with γW1,p(Ω) to obtain the main theorem without using extensions.

    We will only prove the parabolic case, because the elliptic case can be done in a similar way. To consider parabolic equations, we denote Ωτ=Ω×[0,τ] and Rnτ=Rn×[0,τ] for τ[0,T], where T>0. We write ,Ω=,W1,p(Ω),W1,p0(Ω) as the pairing between W1,p(Ω) and W1,p0(Ω), where W1,p(Ω) is the dual space of W1,p0(Ω). We carefully note that , stands for the inner product in Rn or Rn+1. We also note that for the consistency of the notation, we usually write W1,p0(Rn) instead of W1,p(Rn). Here, we remark that W1,p0(Rn)=W1,p(Rn). For tw, we mean twLp(0,T;W1,p(Ω)) satisfying

    T0tw,φΩdt=ΩTwφtdxdt for any φCc(ΩT).

    We consider a sequence of functions {uk}k=1 defined on the corresponding sequence of domains {Ωk}k=1 in this paper. So to use convergence on {uk}k=1, we consider the zero extension as in the following definition. In this paper, '' means the strong convergence and '' means the weak convergence.

    Definition 1.2. For 1<p<, we say vkLp(ΩkT) (kN) converges strongly- to vLp(ΩT), which is denoted by vkLp(ΩkT)vLp(ΩT), if

    ΩkTvkηkdxdtΩTvηdxdt,

    for any ηkLp(ΩkT) (kN{}) satisfying

    ˉηkˉη in Lp(RnT),

    where ˉηk is the zero extension of ηk from ΩkT to RnT.

    Remark 1.3. In Definition 1.2, if Ωk=Ω for any kN, then vkv in Lp(ΩT) is equivalent to strong- convergence, see Lemma 3.1.

    We use a similar definition for W1,p. We remark that W1,p0(Ω) is reflexive when 1<p<.

    Definition 1.4. For 1<p<, we say that vkW1,p(Ωk) (kN) converges strongly- to vW1,p(Ω), which is denoted by vkW1,p(Ωk)vW1,p(Ω), if

    vk,ηkΩkv,ηΩ,

    for any ηkW1,p0(Ωk) (kN{}) satisfying

    (ˉηk,Dˉηk)(ˉη,Dˉη)inLp(Rn,Rn+1)

    where ˉηk is the zero extension of ηk from Ωk to Rn.

    Definition 1.5. For 1<p<, we say that vkLp(0,T;W1,p(Ωk)) (kN) converges strongly- to vLp(0,T;W1,p(Ω)), denoted by vkLp(0,T;W1,p(Ωk))vLp(0,T;W1,p(Ω)), if

    T0vk,ηkΩkdtT0v,ηΩdt,

    for any ηkLp(0,T;W1,p0(Ωk)) (kN{}) satisfying

    (ˉηk,Dˉηk)(ˉη,Dˉη)inLp(RnT,Rn+1)

    where ˉηkLp(0,T;W1,p0(Rn)) is the zero extension of ηk.

    For p>2nn+2 and an open bounded domain ΩRn (n2), assume that

    FLp(ΩT,Rn),fLp(0,T;W1,p(Ω))

    and

    γC([0,T];L2(Ω))Lp(0,T;W1,p(Ω)) with tγLp(0,T;W1,p(Ω)).

    Let uC([0,T];L2(Ω))Lp(0,T;W1,p(Ω)) be the weak solution of

    {tudiv a(Du,x,t)=fdiv (|F|p2F) in ΩT,u=γ on PΩT. (1.6)

    Here, we say that uγ+Lp(0,T;W1,p0(Ω))C0([0,T];L2(Ω)) is the weak solution of (1.6), if

    T0tu,φΩdt+ΩTa(Du,x,t),Dφdxdt=ΩT[|F|p2F,Dφ+fφ]dxdt

    holds for any φC0(ΩT). Also for the initial condition, it means that

    limh01hh0Ω|u(x,t)γ(x,0)|2dxdt=0,

    which is equivalent to u(x,0)=γ(x,0) when uC([0,T];L2(Ω)).

    Now, we introduce the main result in this paper.

    Theorem 1.6. Let ΩkRn (kN) be a sequence of open bounded domains with

    limkdH(Ωk,Ω)=0. (1.7)

    For kN, assume that ϵk>0, FkLp(ΩkT,Rn), fkLp(0,T;W1,p(Ωk)) and

    γkC([0,T];L2(Ωk))Lp(0,T;W1,p0(Ωk))withtγkLp(0,T;W1,p(Ωk))

    satisfy that limkϵk=0,

    {fkLp(0,T;W1,p(Ωk))fLp(0,T;W1,p(Ω)),tγkLp(0,T;W1,p(Ωk))tγLp(0,T;W1,p(Ω)), (1.8)

    and

    {|Fk|p2FkLp(ΩkT,Rn)|F|p2FLp(ΩT,Rn),γkLp(ΩkT)γLp(ΩT),DγkLp(ΩkT,Rn)DγLp(ΩT,Rn). (1.9)

    Then for the weak solution ukC([0,T];L2(Ωk))Lp(0,T;W1,p(Ωk)) of

    {tukdivak(Duk,x,t)=fkdiv(|Fk|p2Fk)inΩkT,uk=γkonPΩkT. (1.10)

    where ak(ξ,x,t)=aϵk(ξ,x,t), we have that

    limk[DukDuLp(ΩkTΩT)+DukLp(ΩkTΩT)+DuLp(ΩTΩkT)]=0, (1.11)

    where u is the weak solution of (1.6).

    We refer to [13] for Calderón-Zygmund type estimates for a class of elliptic and parabolic systems with nonzero boundary data in rough domains such as Reifenberg flat domains.

    Remark 1.7. For the sake of convenience and simplicity, we employ the letters c>0 throughout this paper to denote any constants which can be explicitly computed in terms of known quantities such as n,p,λ,Λ and the diameter of the domains. Thus the exact value denoted by c may change from line to line in a given computation.

    Remark 1.8. We usually denote ˉg as the natural zero extension of g for such space as Lp(ΩT) and Lp(0,T;W1,p(Ω)) which depends on the situations.

    We also have a result for elliptic equations which corresponds to Theorem 1.6. The proof is similar to that of Theorem 1.6, and we will only state the result.

    Suppose that a:Rn×RnRn satisfies

    {a(ξ,x) is measurable in x for every ξRn,a(ξ,x) is C1-regular in ξ for every xRn, (1.12)

    and the following ellipticity and growth conditions:

    {|a(ξ,x)|+|Dξa(ξ,x)|(|ξ|2+s2)12Λ(|ξ|2+s2)p12,Dξa(ξ,x)ζ,ζλ(|ξ|2+s2)p22|ζ|2, (1.13)

    for every x,ξ,ζRn and for some constants 0<λΛ and s0.

    Under the assumptions (1.12) and (1.13), let aϵ(ξ,x) be a regularization of a(ξ,x):

    aϵ(ξ,x)=RnRna(ξϵy,xϵz)ϕ(y)ϕ(z)dydz(0<ϵ<1). (1.14)

    Then aϵ(ξ,x) satisfies the ellipticity and growth conditions, such as (1.2), and it is smooth enough, precisely,

    {aϵ(ξ,x) is C-regular in ξRn for every xRn,aϵ(ξ,x) is C-regular in xRn for every ξRn.

    We have the following approximation results for elliptic problems.

    Theorem 1.9. For 1<p< and an open bounded domain ΩRn (n2), assume that FLp(Ω,Rn), fL(p)(Ω) and γW1,p(Ω). Let uγ+W1,p0(Ω) be the weak solution of

    {diva(Du,x)=fdiv(|F|p2F)inΩ,u=γonΩ.

    Let ΩkRn (kN) be a sequence of open bounded domains with

    limkdH(Ωk,Ω)=0.

    For kN, assume that ϵk>0, FkLp(Ωk,Rn), fkL(p)(Ωk) and γW1,p(Ωk) satisfy that

    limk[FkFLp(ΩkΩ)+fkfL(p)(ΩkΩ)+γkγW1,p(ΩkΩ)]=0,

    and

    limk[ϵk+FkLp(ΩkΩ)+fkL(p)(ΩkΩ)+γkW1,p(ΩkΩ)]=0.

    Then for the weak solution ukγk+W1,p0(Ωk) of

    {divak(Duk,x)=div(|Fk|p2Fk)+fkinΩk,uk=γkonΩk.

    where ak(ξ,x)=aϵk(ξ,x), we have that

    limk[DukDuLp(ΩkΩ)+DukLp(ΩkΩ)+DuLp(ΩΩk)]=0.

    We use the following results related to weak convergence and weak* convergence.

    Proposition 2.1. [12, Proposition 3.13 (iii)] Let {fi} be a sequence in E. If fif in σ(E,E) then {fi} is bounded and flim inffi.

    Proposition 2.2. [12, Theorem 3.16 (Banach-Alaoglu-Bourbaki)] The closed unit ball BE={fE:f1} is compact in the weak- topology σ(E,E).

    One can easily check that compactness in Proposition 2.2 implies sequential compactness for metric spaces.

    Proposition 2.3. If E is a metric space then any bounded sequence {fi} in E has a weakly- convergent subsequence.

    To apply Proposition 2.1 and Proposition 2.3 to Sobolev space, we use Proposition 2.4.

    Proposition 2.4. [12, Proposition 8.1] W1,p is a Banach space for 1p. W1,p is reflexive for 1<p< and separable for 1p<.

    To handle the dual space of W1,p0(Ω), we use [45, Corollary 10.49].

    Proposition 2.5. [45, Corollary 10.49] Let ΩRn be an open set and 1p<. Then hW1,p(Ω) can be identified as

    h,φΩ=ΩH,(φ,Dφ)dx,

    with

    hW1,p(Ω)=(Ωni=0|Hi|pdx)1p,

    for some H=(H0,H1,,Hn)Lp(Ω,Rn+1).

    We have the following result from [51, Proposition Ⅲ.1.2], [30, Lemma 2.1] and [50, Lemma 3.1].

    Proposition 2.6. [51, Proposition III.1.2] Let ΩRn be a bounded domain, t1<t2 and p>2nn+2. Assume that vLp(t1,t2;W1,p0(Ω)) has a distributional derivative tvLp(t1,t2;W1,p(Ω)). Then there holds vC([t1,t2];L2(Ω)) and moreover, the mapping tv(,t)2L2(Ω) is absolutely continuous on [t1,t2] with

    ddtv(,t)2L2(Ω)=2tv,vΩ a.e.on[t1,t2],

    where ,Ω denotes the dual pairing between W1,p(Ω) and W1,p0(Ω).

    We use the following basic inequality in this paper.

    Lemma 2.7. [38, Lemma 3.2] For any q>1 and s0, there exists κ1=κ1(n,q)(0,1] such that

    |ξζ|qcκq(|ξ|2+s2)q2+cκq2(|ξ|2+|ζ|2+s2)q22|ξζ|2,

    for any κ(0,κ1].

    We would like to emphasis that the inequalities in Lemmas 2.8 and 2.9 are obtained for s0 even when 1<q<2. We remark that a different proof for 1<q<2 was shown in [1, Lemma 2.1].

    Lemma 2.8. For any q>1 and s0, we have that

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτc(|ξ|2+|ζ|2+s2)q22,

    for any ξ,ζRn{0}, where c depends only on q.

    Proof. By changing variable, one can easily check that

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτ,

    and without loss of generality, we may assume |ξ||ζ|.

    If q2, then the lemma follows from the fact that

    |ξ+τ(ζξ)|28(|ξ|2+|ζ|2)(τ[0,1]).

    So it only remains to prove the lemma when 1<q<2.

    Next, suppose that 1<q<2. We show the lemma by considering three cases:

    (1).2|ζξ||ξ|,(2).|ξ|2|ζξ|2s,(3).|ξ|2|ζξ| and s<|ζξ|.

    (1). If 2|ζξ||ξ|, then for any τ[0,1] we have

    |ξ+τ(ζξ)||ξ||τ(ζξ)||ξ|2|ξ|+|ζ|4(|ξ|2+|ζ|2)124,

    because we assumed that |ξ||ζ|, which implies

    10(|ξ+τ(ζξ)|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22,

    and the lemma is proved for the first case.

    (2). If |ξ|2|ζξ|2s, then we obtain

    |ξ|2+|ζ|2+s2|ξ|2+2(|ξ|2+|ζξ|2)+s23(|ξ|2+|ζξ|2+s2)18s2,

    which implies

    10(|ξ+τ(ζξ)|2+s2)q22dτsq2c(q)(|ξ|2+|ζ|2+s2)q22,

    and the lemma is proved for the second case.

    (3). Suppose that |ξ|2|ζξ| and s<|ζξ|. One can easily check that

    ξζξ,ξ(ζξ)|ζξ|2,ξ+τ(ζξ)(ξζξ,ξ(ζξ)|ζξ|2)=0,

    which implies

    |ξ+τ(ζξ)|2=|ξζξ,ξ(ζξ)|ζξ|2|2+(τ+ζξ,ξ|ζξ|2)2|ζξ|2.

    Then by changing variables, we obtain

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ξζξ,ξ(ζξ)|ζξ|2|2+(τ+ζξ,ξ|ζξ|2)2|ζξ|2+s2)q22dτ=1+ζξ,ξ|ζξ|2ζξ,ξ|ζξ|2(|ξζξ,ξ(ζξ)|ζξ|2|2+θ2|ζξ|2+s2)q22dθc(q)1+ζξ,ξ|ζξ|2ζξ,ξ|ζξ|2(|ξζξ,ξ(ζξ)|ζξ|2|+|θ||ζξ|+s)q2dθc(q)(I+II), (2.1)

    where

    I=|1+ζξ,ξ|ζξ|2|0(|ξζξ,ξ(ζξ)|ζξ|2|+θ|ζξ|+s)q2dθ,II=|ζξ,ξ|ζξ|2|0(|ξζξ,ξ(ζξ)|ζξ|2|+θ|ζξ|+s)q2dθ.

    By changing variables, we discover that

    I=1|ζξ||ζξ||1+ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s|ξζξ,ξ(ζξ)|ζξ|2|+sκq2dκ,=[|ζξ||1+ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s]q1[|ξζξ,ξ(ζξ)|ζξ|2|+s]q1(q1)|ζξ|c(q)(|ζξ|+|ξ|+s)q1(q1)|ζξ|.

    Similarly, we have

    II=1|ζξ||ζξ||ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s|ξζξ,ξ(ζξ)|ζξ|2|+sκq2dκ,=[|ζξ||ζξ,ξ|ζξ|2|+|ξζξ,ξ(ζξ)|ζξ|2|+s]q1[|ξζξ,ξ(ζξ)|ζξ|2|+s]q1(q1)|ζξ|c(q)(|ζξ|+|ξ|+s)q1(q1)|ζξ|.

    Since |ζ||ξ|2|ζξ| and s<|ζξ|, we have |ξ|2+|ζ|2+s29|ζξ|2, and

    (|ζξ|+|ξ|+s)q1|ζξ|c(q)|ζξ|q1|ζξ|=c(q)|ζξ|q2c(q)(|ξ|2+|ζ|2+s2)q22.

    By the above three inequalities and (2.1), we find that the lemma holds when |ξ|2|ζξ| and s<|ζξ|. This completes the proof.

    Lemma 2.9. For any q>1 and s0, we have that

    10(|ξ+τ(ζξ)|2+s2)q22dτ=10(|ζ+τ(ξζ)|2+s2)q22dτc(|ξ|2+|ζ|2+s2)q22,

    for any ξ,ζRn{0}, where c depends only on q.

    Proof. One can easily check that

    |ξ+t(ζξ)|2+s2c(q)(|ξ|2+|ζ|2+s2)(τ[0,1]).

    If 1<q<2, then

    10(|ξ+τ(ζξ)|2+s2)q22dτc(q)10(|ξ|2+|ζ|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22,

    which prove the lemma for 1<q<2.

    To prove the lemma for the case q2, we assume that |ξ||ζ| without loss of generality. Then for τ[0,1/4], we have

    |ξ+τ(ζξ)||ξ|τ|ζξ||ξ||ζξ|/4|ξ|/2c(q)(|ξ|2+|ζ|2)12.

    So we obtain

    10(|ξ+τ(ζξ)|2+s2)q22dτc(q)140(|ξ|2+|ζ|2+s2)q22dτc(q)(|ξ|2+|ζ|2+s2)q22,

    which prove the lemma for q2. This completes the proof.

    To compare a(ξ,x,t) and a(ζ,x,t), we use the following lemma.

    Lemma 2.10. Under the assumptions (1.1) and (1.2), we have

    |a(ξ,x,t)a(ζ,x,t)|pp1c|ξζ|(|ξ|2+|ζ|2+s2)p12,

    for any ξ,ζRn.

    Proof. We fix any ξ,ζRn. If |ξ|=0 or |ζ|=0 then the lemma holds trivially from (1.1) and (1.2). So we assume that ξ,ζRn{0}. Since |ξζ|1p1c(|ξ|2+|ζ|2+s2)12(p1), we have from (1.2) and Lemma 2.8 that

    |a(ξ,x,t)a(ζ,x,t)|pp1=|10ddτ[a(τξ+(1τ)ζ,x,t)]dτ|pp1=|10Dξa(τξ+(1τ)ζ,x,t)(ξζ)dτ|pp1c|ξζ|pp1(10(|τξ+(1τ)ζ|2+s2)p22dτ)pp1c|ξζ|pp1(|ξ|2+|ζ|2+s2)p(p2)2(p1)c|ξζ|(|ξ|2+|ζ|2+s2)p12.

    Since ξ,ζRn were arbitrary chosen, the lemma follows.

    We show the following well-known inequality. We remark that a different proof for 0<q<2 was shown in [1, Lemma 2.1] and [36, Lemma 2.1].

    Lemma 2.11. For any q>0 and s0, we have that

    |(|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ|2c(|ξ|2+|ζ|2+s2)q22|ξζ|2,

    and

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζc(|ξ|2+|ζ|2+s2)q24|ξζ|2,

    for any ξ,ζRn, where c depends only on q.

    Proof. We fix any ξ,ζRn. If |ξ|=0 or |ζ|=0 then the lemma holds trivially. So we assume that ξ,ζRn{0}. Then

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ=10ddτ[(|τξ+(1τ)ζ|2+s2)q24(τξ+(1τ)ζ)]dτ=10q22(|τξ+(1τ)ζ|2+s2)q64τξ+(1τ)ζ,ξζ(τξ+(1τ)ζ)dτ+10(|τξ+(1τ)ζ|2+s2)q24(ξζ)dτ.

    By taking q2+1(1,) instead for q(1,) in Lemma 2.8,

    |(|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ|c(q)|ξζ|10(|τξ+(1τ)ζ|2+s2)q24dτc(q)|ξζ|(|ξ|2+|ζ|2+s2)q24.

    Also we get

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζ=10q22(|τξ+(1τ)ζ|2+s2)q64|τξ+(1τ)ζ,ξζ|2dτ+10(|τξ+(1τ)ζ|2+s2)q24|ξζ|2dτ.

    If 0<q2 then 1=2q2+q2 and 2q20. Also if q>2 then q220. Thus

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζmin{q2,1}10(|τξ+(1τ)ζ|2+s2)q24|ξζ|2dτ.

    By taking q2+1(1,) instead for q(1,) in Lemma 2.9,

    (|ξ|2+s2)q24ξ(|ζ|2+s2)q24ζ,ξζc(|ξ|2+|ζ|2+s2)q24|ξζ|2.

    Since ξ,ζRn were arbitrary chosen, the lemma follows.

    We will use the following lemma.

    Lemma 2.12. For any q>1 and s0, we have that

    |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(|ξ|2+|ζ|2+s2)q12|ξζ|,

    for any ξ,ζRn, where c only depends on q.

    Proof. Fix any ξ,ζRn. By taking 2q2>0 instead of q(>0) in Lemma 2.11,

    |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(q)(|ξ|2+|ζ|2+s2)q(q2)2(q1)|ξζ|qq1.

    By that |ξζ|1q1c(|ξ|2+|ζ|2+s2)12(q1),

    |(|ξ|2+s2)q22ξ(|ζ|2+s2)q22ζ|qq1c(q)(|ξ|2+|ζ|2+s2)q12|ξζ|.

    Since ξ,ζRn were arbitrary chosen, the lemma follows.

    To find the ellipticity and growth conditions of aϵ(ξ,x,t) in (1.5), we follow the approach in the proof of [31, Lemma 2] and [32, Lemma 3.1].

    Lemma 2.13. For (1.5), we have

    {aϵ(ξ,x,t)isCregularinξRnforevery(x,t)Rn+1,aϵ(ξ,x,t)isCregularinxRnforeveryξRnandtR, (2.2)

    and

    {|aϵ(ξ,x,t)|+|Dξaϵ(ξ,x,t)|(|ξ|2+s2ϵ)12cΛ(|ξ|2+s2ϵ)p12,|Dmxaϵ(ξ,x,t)|+|Dmξaϵ(ξ,x,t)|cΛϵm(|ξ|2+s2ϵ)p12,Dξaϵ(ξ,x,t)ζ,ζcλ(|ξ|2+s2ϵ)p22|ζ|2, (2.3)

    for sϵ=(s2+ϵ2)12. Here, the constants c are depending only on n and p.

    Proof. Fix a vector ξRn. Since a(ξ,x,t) is C1-regular in ξRn for every xRn, we find that aϵ(ξ,x,t) is C1-regular in ξRn for every xRn. Also by changing variable, we have from (1.5) that

    aϵ(ξ,x,t)=1ϵnRnRna(ξϵy,z,t)ϕ(y)ϕ(xzϵ)dydz,

    which implies

    Dxaϵ(ξ,x,t)=1ϵn+1RnRna(ξϵy,z,t)ϕ(y)Dϕ(xzϵ)dydz.

    Moreover, from (1.2), the fact that suppϕ¯B1 and

    Dmxaϵ(ξ,x,t)=1ϵn+mRnRna(ξϵy,z,t)ϕ(y)Dmϕ(xzϵ)dydz=1ϵmRnRna(ξϵy,xϵz,t)ϕ(y)Dmϕ(z)dydz,

    for any m0, which implies that

    |Dmxaϵ(ξ,x,t)|ΛϵmRnRn(|ξϵy|2+s2)p12ϕ(y)|Dmϕ(z)|dydz2p12ΛϵmRnRn(|ξ|2+ϵ2+s2)p12ϕ(y)|Dmϕ(z)|dydz2p12Λϵm(|ξ|2+ϵ2+s2)p12Rn|Dmϕ(z)|dz,

    for any m0. Similarly, by changing variable, we have from (1.5) that

    aϵ(ξ,x,t)=1ϵnRnRna(y,xϵz,t)ϕ(ξyϵ)ϕ(z)dydz,

    and one can obtain that

    |Dmξaϵ(ξ,x,t)|2p12Λϵm(|ξ|2+ϵ2+s2)p12Rn|Dmϕ(y)|dz.

    So aϵ(ξ,x,t) is C-regular in ξRn for every (x,t)Rn and aϵ(ξ,x,t) is C-regular in xRn for every ξRn and tR. Also the second inequality in (2.3) follows.

    From (1.2), (1.5) and the fact that suppϕ¯B1, we have

    Dξaϵ(ξ,x,t)ζ,ζ=RnRnDξa(ξϵy,xϵz,t)ζ,ζϕ(y)ϕ(z)dydzλRnRn(|ξϵy|2+s2)p22|ζ|2ϕ(y)ϕ(z)dydzλ(B1B12)ξ,y0(|ξ|2+|ϵy|2+2ξ,ϵy+s2)p22|ζ|2ϕ(y)dyc(n,p)λ(|ξ|2+ϵ24+s2)p22|ζ|2(B1B12)ξ,y0ϕ(y)dyc(n,p)λ(|ξ|2+s2+ϵ2)p22|ζ|2,

    and the third inequality in (2.3) holds.

    It only remains to prove the first inequality in (2.3). In view of (1.5), we have

    |aϵ(ξ,x,t)|ΛRnRn(|ξϵy|2+s2)p12ϕ(y)ϕ(z)dydz2p12ΛRnRn(|ξ|2+ϵ2+s2)p12ϕ(y)ϕ(z)dydz=2p12Λ(|ξ|2+ϵ2+s2)p12. (2.4)

    If 16ϵ2|ξ|2+s2, then by changing variables and (1.5), we obtain

    |Dξaϵ(ξ,x,t)|=|Dξ(1ϵnRnRna(y,xϵz,t)ϕ(ξyϵ)ϕ(z)dydz)|Λϵn+1RnRn(|y|2+s2)p12|Dϕ(ξyϵ)|ϕ(z)dydz=Λϵ1RnRn(|ξϵy|2+s2)p12|Dϕ(y)|ϕ(z)dydz2p12Λϵ1(|ξ|2+ϵ2+s2)p12Rn|Dϕ(y)|dy.

    and from the fact that 16ϵ2|ξ|2+s2, we have 17ϵ2|ξ|2+ϵ2+s2 and

    |Dξaϵ(ξ,x,t)|52p12Λ(|ξ|2+ϵ2+s2)p22Rn|Dϕ(y)|dy. (2.5)

    So we discover that the first inequality in (2.3) holds for the case 16ϵ2|ξ|2+s2.

    On the other-hand, if 16ϵ2|ξ|2+s2, then we have

    |ξϵy|2+s2=|ξ|22ϵξ,y+ϵ2|y|2+s2|ξ|2+s2+ϵ2|y|22(y¯B1),

    and suppϕ¯B1 implies

    |Dξaϵ(ξ,x,t)||RnRnDξa(ξϵy,xϵz,t)ϕ(y)ϕ(z)dydz|ΛRnRn(|ξϵy|2+s2)p22ϕ(y)ϕ(z)dydz2ΛRn(|ξϵy|2+s2)p2(|ξ|2+s2+ϵ2|y|2)1ϕ(y)dy,

    which implies that

    |Dξaϵ(ξ,x,t)|cRn(|ξ|2+s2+ϵ2|y|2)p22ϕ(y)dy. (2.6)

    We claim that if 16ϵ2|ξ|2+s2 and |y|1 then

    (|ξ|2+s2+ϵ2|y|2)p222(|ξ|2+s2+ϵ2)p22. (2.7)

    If p2, then the claim (2.7) holds trivially. If 1<p<2, then 16ϵ2|ξ|2+s2 implies

    (|ξ|2+s2+ϵ2|y|2)p22(|ξ|2+s2)p22(|ξ|2+s2+ϵ22)p222(|ξ|2+s2+ϵ2)p22,

    and we find that the claim (2.7) holds. Thus the claim (2.7) is proved. In light of (2.6) and (2.7), we have that if 16ϵ2|ξ|2+s2 then

    |Dξaϵ(ξ,x,t)|c(|ξ|2+s2+ϵ2)p22. (2.8)

    Thus the first inequality in (2.3) follows from (2.4), (2.5) and (2.8). This completes the proof.

    Later, we will apply the gradient of the weak solution in Lemma 2.14 by considering a zero extension from ΩT to RnT.

    Lemma 2.14. For any HLp(ΩT,Rn), we have that

    limϵ0a(H,)aϵ(H,)Lpp1(ΩT)=0.

    Proof. Fix δ>0. From (1.5), we have

    a(H(x,t),x,t)aϵ(H(x,t),x,t)=RnRn[a(H(x,t),x,t)a(H(x,t)ϵy,xϵz,t)]ϕ(y)ϕ(z)dydz.

    Let ˜Ωϵ={xΩ:dist(x,Ω)>ϵ} and ˜Ωϵ,T=˜Ωϵ×[0,T]. Since HLp(ΩT,Rn), there exists ϵδ>0 such that if ϵ(0,ϵδ] then

    ΩT˜Ωϵ,T|H|pdx<δ,

    which implies that

    a(H,)aϵ(H,)Lpp1(ΩT˜Ωϵ,T)=RnRn[a(H(),)a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(ΩT˜Ωϵ,T)c(|H()|2+s2+ϵ2)p12Lpp1(ΩT˜Ωϵ,T)c[δ+|ΩT˜Ωϵ,T|(sp+ϵp)]p1p,

    for any ϵ(0,ϵδ]. Thus

    lim supϵ0a(H,)aϵ(H,)Lpp1(ΩT˜Ωϵ,T)<cδp1p.

    Since δ>0 was arbitrary chosen, we get

    limϵ0a(H,)aϵ(H,)Lpp1(ΩT˜Ωϵ,T)=0. (2.9)

    We now estimate a(H,)aϵ(H,) on ˜Ωϵ,T. By the triangle inequality,

    a(H,)aϵ(H,)Lpp1(˜Ωϵ,T)=RnRn[a(H(),)a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T)I+II+III (2.10)

    where

    I=RnRn[a(H(),)a(H((ϵz,0)),(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T),II=RnRn[a(H((ϵz,0)),(ϵz,0))a(H(),(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T),III=RnRn[a(H(),(ϵz,0))a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T).

    We want to prove that the left-hand side of (2.10) goes to the zero as ϵ0.

    To handle I, we use the standard approximation by mollifiers, see for instance [34, C. Theorem 6], to find that

    limϵ0RnRn[a(H(),)a(H((ϵz,0)),(ϵz,0))]ϕ(y)ϕ(z)dydzLpp1(˜Ωϵ,T)=0,

    where we used that a(H,)Lpp1(ΩT) and Rnϕ(y)dy=1, which implies that

    limϵ0I=0. (2.11)

    To handle II, we apply Hölder's inequality and Lemma 2.10 to find that

    |Rn[a(H(xϵz,t),xϵz,t)a(H(x,t),xϵz,t)]ϕ(z)dz||Rn|a(H(xϵz,t),xϵz,t)a(H(x,t),xϵz,t)|pp1ϕ(z)dz|p1p|Rnϕ(z)dz|1pc|Rn|H(xϵz,t)H(x,t)|(|H(xϵz,t)|2+|H(x,t)|2+s2)p12ϕ(z)dz|p1p.

    We apply Hölder's inequality to find that

    Rn[a(H((ϵz,0)),(ϵz,0))a(H(),(ϵz,0))]ϕ(z)dzLpp1(˜Ωϵ,T)Rn|H((ϵz,0))H()|pϕ(z)dzp1p2L1(˜Ωϵ,T)Rn(|H((ϵz,0))|2+|H()|2+s2)p2ϕ(z)dz(p1p)2L1(˜Ωϵ,T),

    and by using that HLp(ΩT,Rn), we obtain that

    limϵ0Rn[a(H((ϵz,0)),(ϵz,0))a(H(),(ϵz,0))]ϕ(z)dzLpp1(˜Ωϵ,T)=0,

    which implies that

    limϵ0II=0. (2.12)

    Last, to handle III, we find from Lemma 2.10 that

    RnRn[a(H(x,t),xϵz,t)a(H(x,t)ϵy,xϵz,t)]ϕ(y)ϕ(z)dydzcRnRn|ϵy|(|H(x,t)|2+|H(x,t)ϵy|2+s2)p12ϕ(y)ϕ(z)dydzcϵRn(|H(x,t)|2+s2+ϵ2)p12ϕ(y)dy,

    where we used that suppϕ¯B1 from (1.3). So by that Rnϕ(y)dy=1,

    RnRn[a(H(x,t),xϵz,t)a(H(x,t)ϵy,xϵz,t)]ϕ(y)ϕ(z)dydzcϵ(|H(x,t)|2+s2+ϵ2)p12.

    So we again use Hölder's inequality to find that

    RnRn[a(H(),(ϵz,0))a(H()ϵy,(ϵz,0))]ϕ(y)ϕ(z)dzLpp1(˜Ωϵ,T)cϵ(|H|2+s2+ϵ2)p12Lpp1(˜Ωϵ,T).

    By using HLp(ΩT,Rn), we obtain that

    limϵ0RnRn[a(H,(ϵz,0))a(Hϵy,(ϵz,0))]ϕ(y)ϕ(z)dzLpp1(˜Ωϵ,T)=0,

    which implies that

    limϵ0III=0. (2.13)

    By combining (2.10), (2.11), (2.12) and (2.13), we find from that

    limϵ0a(H,)aϵ(H,)Lpp1(˜Ωϵ,T)=0,

    and the lemma holds from (2.9).

    This section is devoted to the proof of our main result, Theorem 1.6. We start with proving our main tools for convergence lemmas for the zero extensions, Lemmas 3.1–3.7. Then we apply these tools to obtain the convergence lemmas, Lemmas 3.8–3.10. To conclude our main result, we apply an indirect method. By negating the conclusion of Theorem 1.6, we show that (3.1) contradicts Lemma 3.9 and Lemma 3.10.

    Let ˉukLp(0,T;W1,p0(Rn))L(0,T;L2(Rn)) be the zero extension of ukγkLp(0,T;W1,p0(Ωk))L(0,T;L2(Ωk)) in Theorem 1.6. Also we define ˉuLp(0,T;W1,p0(Rn))L(0,T;L2(Rn)) as the zero extension of uγLp(0,T;W1,p0(Ω))L(0,T;L2(Ω)) in (1.6). To prove Theorem 1.6, we will assume that the conclusion of Theorem 1.6 does not hold. Then there exist δ0>0 and a subsequence, which will be still denoted as uk (kN), such that

    [DukDuLp(ΩkTΩT)+DukLp(ΩkTΩT)+DuLp(ΩTΩkT)]>δ0.

    So by (1.7) and (1.9), it follows that

    RnT|DˉukDˉu|pdxdt>cδ0. (3.1)

    Later, we will show that a contradiction occurs due to (3.1).

    To prove Theorem 1.6, we first derive the energy estimates for regularized parabolic problems in (1.10). We test (1.10) by ukγkLp(0,T;W1,p0(Ωk))C([0,T];L2(Ωk)) to find that

    τ0tuk,ukγkΩkdt+Ωkτak(Duk,x,t),DukDγkdxdt=Ωkτ|Fk|p2Fk,DukDγk+fk(ukγk)dxdt,

    for any τ[0,T], which implies that

    τ0t(ukγk),ukγkΩkdt+Ωkτak(Duk,x,t)ak(Dγk,x,t),DukDγkdxdt=Ωkτ|Fk|p2Fk,DukDγk+fk(ukγk)dxdtΩkτak(Dγk,x,t),DukDγkdxdtτ0tγk,ukγkΩkdt,

    for any τ[0,T]. So by Poincaré's inequality and Lemma 2.7,

    sup0τTΩk|(ukγk)(,τ)|2dx+ΩkT|DukDγk|pdxdtc[FkLp(ΩkT)+fkLp(0,T;W1,p(Ωk))+DγkLp(ΩkT)+tγkLp(0,T;W1,p(Ωk))].

    Here, the constant c>0 for Poincaré's inequality only depends on the size of the domain and 1<p<, see [5, Theorem 6.30]. By taking ˉuk=ukγkLp(0,T;W1,p0(Ωk))L(0,T;L2(Ωk)),

    sup0τTΩk|ˉuk(,τ)|2dx+ΩkT|Dˉuk|pdxdtc[|Fk|p2FkLp(ΩkT)+fkLp(0,T;W1,p(Ωk))+DγkLp(ΩkT)+tγkLp(0,T;W1,p(Ωk))]. (3.2)

    The domain Ωk depends on the function ˉuk (kN). To deal with the convergence of the functions, we need to consider the domain of the functions. It is the main reason why we adapted Definitions 1.2–1.5.

    To use the compactness method, we need to show that the right-hand side of (3.2) is bounded uniformly. To do it, we use the zero extensions to RnT, which makes the domain of the functions independent of kN.

    Let ˉvkLp(0,T;W1,p0(Rn)) (kN{}) be the zero extensions of vkLp(0,T;W1,p0(Ωk)) from ΩkT to RnT. Also for hkW1,p(Ωk) (kN{}), we define ˉhkW1,p(Rn) which corresponds to the zero extension in Corollary 3.3. Under the assumption (1.7), we obtain the following results.

    (1) [Lemma 3.1] If vkLq(ΩkT)  vLq(ΩT) (1<q<) then

    ˉvk  ˉv in  Lq(RnT).

    (2) [Lemma 3.4] If hkW1,p(Ωk)  hW1,p(Ω) then

    ˉhk  ˉh in  W1,p(Rn).

    (3) [Lemma 3.5] If hkLp(0,T;W1,p(Ωk))  hLp(0,T;W1,p(Ω)) then

    ˉhk  ˉh in  Lp(0,T;W1,p(Rn)).

    (4) [Lemma 3.6] If the sequence vkLp(0,T;W1,p(Ωk)) (kN) is bounded then there exists vLp(0,T;W1,p(Ω)) with

    ˉvk  ˉv in  Lp(0,T;W1,p(Rn)).

    (5) [Lemma 3.7] If the sequence vkL(0,T;L2(Ωk)) (kN) is bounded then there exists vL(0,T;L2(Ω)) with

    ˉvk  ˉv in L(0,T;L2(Rn)).

    We apply Lemmas 3.1–3.7 to (3.2) as follows. By using Lemma 3.1, we will show that the zero extensions of |Fk|p2Fk, γk and Dγk converge strongly-. By using Lemma 3.5, we will show that the zero extensions of fk and tγk converge strongly-. With Lemma 3.6, the existence of weakly- converging subsequence of tˉuk in Lp(0,T;W1,p(Rn)) will be obtained. Also with Lemma 3.7, the existence of weakly- converging subsequence of ˉuk in L(0,T;L2(Rn)) will be obtained.

    We prove our main tools for convergence lemmas. From now on, we denote 1E as the indicator function on the set E.

    Lemma 3.1. With the assumption (1.7), suppose that 1<q< and N1. If

    VkLq(ΩkT,RN)  VLq(ΩT,RN),

    then

    ˉVk  ˉV in Lq(RnT,RN),

    where ˉVkLq(RnT,RN) is the zero extension of VkLq(ΩkT,RN).

    Proof. Suppose that VkLq(ΩkT,RN)  VLq(ΩT,RN). By (1.7),

    ˉη1ΩkT  ˉη1ΩT in  Lq(RnT,RN),

    for any ˉηLq(RnT,RN). So by Definition 1.2, we have that

    RnTˉVk,ˉηdxdt=ΩkTVk,ˉη1ΩkTdxdtΩTV,ˉη1ΩTdxdt=RnTˉV,ˉηdxdt,

    which implies that

    ˉVkˉV in  Lq(RnT,RN). (3.3)

    Suppose the lemma does not hold. Then there exist δ>0 and a subsequence (which will be still denoted as {ˉVk}k=1) such that

    RnT|ˉVkˉV|qdxdt>δ(kN). (3.4)

    Choose ˉηk=|ˉVkˉV|q2(ˉVkˉV) then

    ˉηkLq(RnT,RN)=ˉVkˉV1q1Lq(RnT,RN).(kN).

    Since (ˉVkˉV)0 in Lq(RnT,RN) and any weakly convergent sequence is bounded, we see that {ˉηk}k=1 is bounded in Lq(RnT,RN). So there exists a subsequence (which will be still denoted as {ˉηk}k=1) such that

    ˉηk  ˉη in  Lq(RnT,RN),

    for some ˉηLq(RnT,RN). By (1.7) and that (ˉVkˉV)0 in Lq(RnT,RN),

    ˉη=0 in RnTΩT.

    Also we have that

    ˉηk1ΩkTˉη1ΩT in Lp(RnT,RN), (3.5)

    because for any ˜VLq(RnT,RN),

    RnT˜V,ˉηk1ΩkTdxdt=RnT˜V1ΩT,ˉηkdxdt+RnT˜V(1ΩkT1ΩT),ˉηkdxdtRnT˜V,ˉη1ΩTdxdt,

    which holds from |ΩkΩ|0 and |ΩΩk|0 by (1.7). From (3.5) and that VkLq(ΩkT,RN)  VLq(ΩT,RN), we use Definition 1.2 to find that

    RnTˉVk,ˉηkdxdt=ΩkTVk,ˉηk1ΩkTdxdtΩTV,ˉη1ΩTdxdt=RnTˉV,ˉηdxdt,

    which implies that

    RnTˉVkˉV,ˉηkdxdt=RnTˉVk,ˉηkdxdtRnTˉV,ˉηkdxdt0. (3.6)

    On the other-hand, by (3.4), we find that

    RnTˉVkˉV,ˉηkdxdt=RnT|ˉVkˉV|qdxdt>δ>0(kN),

    which contradicts (3.6). So the lemma follows.

    We have the following characterization for hW1,p(Ω).

    Lemma 3.2. With the assumption (1.7), suppose that hW1,p(Ω) (1<p<). Then there exists vW1,p0(Ω) such that

    Ω(|v|p2v,|Dv|p2Dv),(φ,Dφ)dx=h,φW1,p(Ω),W1,p0(Ω),

    for any φW1,p0(Ω). In addition, we have that hW1,p(Ω)=vp1W1,p0(Ω).

    Proof. Since hW1,p(Ω), there exists H=(H0,H1,,Hn)Lp(Ω,Rn+1) satisfying

    h,φW1,p(Ω),W1,p0(Ω)=ΩH,(φ,Dφ)dx for any φW1,p0(Ω),

    by Proposition 2.5. Let vW1,p0(Ω) be the weak solution of

    {|v|p2vdiv|Dv|p2Dv=H0div[(H1,,Hn)] in  Ω,v=0 on Ω.

    Then for any φW1,p(Ω), we get

    Ω(|v|p2v,|Dv|p2Dv),(φ,Dφ)dx=ΩH,(φ,Dφ)dx=h,φW1,p(Ω),W1,p0(Ω).

    So by the definition of W1,p(Ω),

    hW1,p(Ω)=supφW1,p0(Ω)=1h,φW1,p(Ω),W1,p0(Ω)vp1W1,p0(Ω).

    By taking φ=vvW1,p0(Ω)W1,p0(Ω), we get

    vp1W1,p0(Ω)hW1,p(Ω).

    By combining the above two estimates, we get hW1,p(Ω)=vp1W1,p0(Ω).

    We extend hLp(0,T;W1,p(Ω)) to ˉhLp(0,T;W1,p(Rn)) in Corollary 3.3, which can be viewed as a natural zero extension because of (3.7).

    Corollary 3.3. With the assumption (1.7), suppose that hW1,p(Ω) (1<p<). Then for vW1,p0(Ω) in Lemma 3.2, one can define ˉhW1,p(Rn) as

    ˉh,ˉφW1,p(Rn),W1,p0(Rn)=Rn(|ˉv|p2ˉv,|Dˉv|p2Dˉv),(ˉφ,Dˉφ)dx, (3.7)

    for any ˉφW1,p0(Rn), where ˉvW1,p0(Rn) is the zero extension of vW1,p0(Ω). Moreover, we have that

    ˉh,ˉφW1,p(Rn),W1,p0(Rn)=h,φW1,p(Ω),W1,p0(Ω) (3.8)

    for any φW1,p0(Ω) and the zero extension ˉφW1,p0(Rn) of φW1,p0(Ω). In addition,

    ˉhW1,p(Rn)=ˉvp1W1,p0(Rn)=vp1W1,p0(Ω)=hW1,p(Ω).

    In Definition 1.4, we defined a convergence for a sequence of the domains, say hkW1,p(Ωk)hW1,p(Ω). But this convergence implies strong convergence by considering the zero extension in Corollary 3.3 as in the next lemmas.

    Lemma 3.4. Under the assumption (1.7) and 1<p<, if hkW1,p(Ωk)hW1,p(Ω) then

    ˉhk  ˉh in W1,p(Rn),

    and

    {Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx0,Rn(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx0, (3.9)

    for ˉvkW1,p0(Rn) and ˉhkW1,p(Rn) (kN{}) in Corollary 3.3.

    Proof. By using Corollary 3.3, define ˉhkW1,p(Rn) (kN{}) as

    ˉhk,ˉφW1,p(Rn),W1,p0(Rn)=Rn(|ˉvk|p2ˉvk,|Dˉvk|p2Dˉvk),(ˉφ,Dˉφ)dx, (3.10)

    for any ˉφW1,p0(Rn). Here, vkW1,p0(Ωk) (kN{}) is defined in Lemma 3.2 and ˉvkW1,p0(Rn) the zero extension of vkW1,p0(Ωk). Moreover,

    ˉhkW1,p(Rn)=ˉvkp1W1,p0(Rn)=vkp1W1,p0(Ω)=hkW1,p(Ω)(kN{}).

    For kN{}, let Vk=(|vk|p2vk,|Dvk|p2Dvk)Lp(Ωk,Rn+1) and ˉVkLp(Rn,Rn+1) be the zero extension of Vk.

    Suppose that (3.9) does not hold. Then there exist δ>0 and a subsequence, which will be still denoted as {ˉvk}k=1, such that

    Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx+Rn(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx>δ(kN). (3.11)

    Since ˉvkˉvk1W1,p0(Rn) is bounded in W1,p0(Rn), there exists a subsequence, which will be still denoted as ˉvkˉvk1W1,p0(Rn) (kN), such that

    ˉvkˉvk1W1,p0(Rn)  ˜v0 in  W1,p0(Rn),

    for some v0W1,p0(Ω) and the zero extension ˉv0W1,p0(Rn) of v0W1,p0(Ω). By taking ˉφ=ˉvkˉvk1W1,p0(Rn) in (3.10), we find from Definition 1.4 that

    ˉvkp1W1,p0(Rn)=1ˉvkW1,p0(Rn)Rn(|ˉvk|p2ˉvk,|Dˉvk|p2Dˉvk),(ˉvk,Dˉvk)dx=ˉhk,ˉvkˉvk1W1,p0(Rn)W1,p(Rn),W1,p0(Rn)=hk,vkˉvk1W1,p0(Rn)W1,p(Ωk),W1,p0(Ωk)kh,v0W1,p(Ω),W1,p0(Ω).

    So ˉvk is bounded in W1,p0(Rn), and there exist ˉv0W1,p0(Rn), ˉV0Lp(Rn,Rn+1) and a subsequence, which will be still denoted as {ˉvk}k=1, such that

    {Dˉvk  Dˉv0 in Lp(Rn,Rn),ˉvk  ˉv0 in Lp(Rn),ˉVk  ˉV0 in Lp(Rn,Rn+1). (3.12)

    Recall that ˉVk=(|ˉvk|p2ˉvk,|Dˉvk|p2Dˉvk)Lp(Rn,Rn+1) is the zero extension of Vk=(|vk|p2vk,|Dvk|p2Dvk)Lp(Ωk,Rn+1). Because of the assumption (1.7), one can also show that

    ˉv0=0 a.e. in RnΩandˉV0=0 a.e. in RnΩ. (3.13)

    Also by (1.7),

    there exists KN such that suppφ⊂⊂Ωk(kK) for any φCc(Ω). (3.14)

    From (3.13), (3.14) and Definition 1.4, we obtain that

    RnˉVk,(ˉφ,Dˉφ)dx=ΩkVk,(φ,Dφ)dxΩV,(φ,Dφ)dx,

    for any φCc(Ω) and the zero extension ˉφCc(Rn) of φCc(Ω). Also from (3.12), (3.13) and (3.14), we obtain that

    RnˉVk,(ˉφ,Dˉφ)dxRnˉV0,(ˉφ,Dˉφ)dx=ΩV0,(φ,Dφ)dx,

    for any φCc(Ω) and the zero extension ˉφCc(Rn) of φCc(Ω). Thus

    RnˉVˉV0,(φ,Dφ)dx=0

    for any φCc(Ω). For any φW1,p0(Ω), there exists φϵCc(Ω) with φφϵW1,p0(Ω)<ϵ, which implies that

    |ΩˉVˉV0,(φ,Dφ)dx|ϵ(ˉV0Lp(Ω)+ˉVLp(Ω)).

    Since ϵ>0 was arbitrary chosen, we find that

    RnˉVˉV0,(φ,Dφ)dx=ΩˉVˉV0,(φ,Dφ)dx=0 (3.15)

    for any φW1,p0(Ω).

    Fix φCc(Ω). By (3.14), there exists KN with

    ˉvkˉvφW1,p0(Ωk)W1,p0(Rn)(kK).

    By a direct calculation, it follows that

    RnˉVkˉV,(ˉvkˉv,D[ˉvkˉv])dx=RnˉVkˉV,((ˉvkˉvφ),D[(ˉvkˉvφ)])dxRnˉVkˉV,(ˉv(1φ),D[ˉv(1φ)])dx. (3.16)

    for any kK. By (3.12) and (3.14), (ˉvkˉvφ)(ˉv0ˉvφ) in W1,p0(Rn). So by Definition 1.4,

    RnˉVk,((ˉvkˉvφ),D(ˉvkˉvφ))dxRnˉV,((ˉv0ˉvφ),D(ˉv0ˉvφ))dx,

    and

    RnˉV,((ˉvkˉvφ),D(ˉvkˉvφ))dxRnˉV,((ˉv0ˉv)φ,D(ˉv0ˉvφ))dx,

    which implies that

    RnˉVkˉV,((ˉvkˉvφ),D(ˉvkˉvφ))dx0. (3.17)

    By (3.12),

    RnˉVkˉV,(ˉv(1φ),D[ˉv(1φ)])dxRnˉV0ˉV,(ˉv(1φ),D[ˉv(1φ)])dx. (3.18)

    By combining (3.17) and (3.18), we use (3.15) to find that

    RnˉVkˉV,(ˉvkˉv,D[ˉvkˉv])dxRnˉV0ˉV,(ˉv(1φ),D[ˉv(1φ)])dx=0, (3.19)

    because of that ˉv(1φ)W1,p0(Ω). Then by Lemma 2.11,

    Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2+(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx0,

    but this contradicts (3.11) and we find that (3.9) holds. So by Lemma 2.12,

    Rn|ˉVkˉV|pdxc[Rn(|Dˉvk|2+|Dˉv|2)p22|DˉvkDˉv|2dx]12[Rn|Dˉvk|p+|Dˉv|pdx]12+c[Rn(|ˉvk|2+|ˉv|2)p22|ˉvkˉv|2dx]12[Rn|ˉvk|p+|ˉv|pdx]120.

    This implies that

    ˉhkˉhW1,p(Rn)=supˉφW1,p0(Rn)=1ˉhkˉh,ˉφW1,p(Rn),W1,p0(Rn)=supˉφW1,p0(Rn)=1RnˉVkˉV,(ˉφ,Dˉφ)dx0,

    and the lemma follows.

    Lemma 3.5. Under the assumption (1.7) and 1 < p < \infty , suppose that h_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) \ \overset{\ast}{\to} \ h_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) . Then

    \begin{equation*} \label{} \bar{h}_{k} \ \to \ \bar{h}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*}

    and

    \begin{equation} \left\{\begin{aligned} & \int_{\mathbb{R}^{n}_{T}} ( |\bar{v}_{k} |^{2} + |\bar{v}_{\infty}|^{2} )^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx \to 0, \\ & \int_{\mathbb{R}^{n}_{T}} \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx \to 0, \end{aligned}\right. \end{equation} (3.20)

    for \bar{v}_{k} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) and \bar{h}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) (k \in \mathbb{N} \cup \{ \infty \}) in Corollary 3.3.

    Proof. For any t \in [0, T] , by using Corollary 3.3, define \bar{h}_{k}(\cdot, t) \in W^{-1, p'}(\mathbb{R}^{n}) (k \in \mathbb{N} \cup \{ \infty \}) as

    \begin{equation} \begin{aligned} & \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t) , \bar{\varphi}(\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \\ & \quad = \int_{\mathbb{R}^{n}} \left \langle \left( |\bar{v}_{k}(\cdot, t)|^{p-2}\bar{v}_{k}(\cdot, t) , |D\bar{v}_{k}(\cdot, t)|^{p-2} D\bar{v}_{k}(\cdot, t) \right) , ( \bar{\varphi}(\cdot, t), D\bar{\varphi}(\cdot, t) ) \right \rangle \, dx, \end{aligned} \end{equation} (3.21)

    for any \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) . Here, v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N} \cup \{ \infty \}) is defined in Lemma 3.2 and \bar{v}_{k} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) is the zero extension of v_{k} (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) .

    For any t \in [0, T] , let \bar{V}_{k}(\cdot, t) \in L^{p'} (\mathbb{R}^{n}, \mathbb{R}^{n+1}) (k \in \mathbb{N} \cup \{ \infty \}) be the zero extension of

    \begin{equation} V_{k} (\cdot, t) : = \left( |v_{k}(\cdot, t)|^{p-2} v_{k}(\cdot, t) , |Dv_{k}(\cdot, t)|^{p-2} Dv_{k}(\cdot, t) \right) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}). \end{equation} (3.22)

    Suppose that (3.20) does not hold. Then there exist \delta > 0 and a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that

    \begin{equation} \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt > \delta \quad (k \in \mathbb{N}). \end{equation} (3.23)

    Since \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} (k \in \mathbb{N}) is bounded in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) , there exist v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) and a subsequence, which will be still denoted as \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} (k \in \mathbb{N}) , such that

    \begin{equation*} \label{} (\bar{v}_{k}, D\bar{v}_{k}) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \rightharpoonup (\tilde{v}_{0}, D\tilde{v}_{0}) \ \text{in }\ L^{p} (\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*}

    where \tilde{v}_{0} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) is the zero extension of v_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\Omega^{\infty}) \big) . By a direct calculation and Corollary 3.3,

    \begin{equation*} \begin{aligned} \label{} \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} & = \frac{1}{\left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}_{T}) \big)} } \int_{\mathbb{R}^{n}_{T}} \left \langle \left( |\bar{v}_{k}|^{p-2}\bar{v}_{k}, |D\bar{v}_{k}|^{p-2} D\bar{v}_{k} \right) , ( \bar{v}_{k} , D\bar{v}_{k} ) \right \rangle \, dx dt \\ & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt. \end{aligned} \end{equation*}

    Since v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big)} ^{-1} \in W^{1, p}_{0}(\Omega^{k}) (k \in \mathbb{N}) , we find from (3.8) in Corollary 3.3 and Definition 1.5 that

    \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} (\cdot, t), \bar{v}_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\mathbb{R}^{n}) , W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & \quad = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{k} (\cdot, t), v_{k}(\cdot, t) \left \| \bar{v}_{k} \right \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{k}) , W^{1, p}_{0}(\Omega^{k}) \rangle } \, dt \\ & \quad \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*}

    By taking \varphi = \bar{v}_{k} \left \| \bar{v}_{k} \right \|_{L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} ^{-1} in (3.21), we combine the above equality and limit to find that

    \begin{equation*} \begin{aligned} \label{} & \| \bar{v}_{k} \|_{L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)}^{p-1} \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h_{\infty} (\cdot, t) , v_{0} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{ \langle W^{-1, p'}(\Omega^{\infty}) , W^{1, p}_{0}(\Omega^{\infty}) \rangle } \, dt . \end{aligned} \end{equation*}

    So \bar{v}_{k} is bounded in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) , and there exists a subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , such that

    \begin{equation} \left\{ \begin{array}{ccccl} D\bar{v}_{k} \ \rightharpoonup \ D\bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{v}_{k} \ \rightharpoonup \ \bar{v}_{0} & \text{ in } & L^{p}(\mathbb{R}^{n}_{T}), \\ \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{0} & \text{ in } & L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{array}\right. \end{equation} (3.24)

    where \bar{v}_{0} \in L^{p}(\mathbb{R}^{n}_{T}) is weakly differentiable in \mathbb{R}^{n}_{T} with respect to x -variable. Because of the assumption (1.7), one can also show that

    \begin{equation} \bar{v}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} \quad \text{and} \quad \bar{V}_{0} = 0 \text{ a.e. in } \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty}. \end{equation} (3.25)

    Let [w]_{h}(\cdot, t) = \frac{1}{h} \int_{0}^{h} w(\cdot, t + \tau) \, d\tau be Steklov average of w . In view of (1.7),

    \begin{equation} \text{there exists } K \in \mathbb{N} {\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega^{\infty}) . \end{equation} (3.26)

    By (3.21) and Definition 1.5, it follows that

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t), ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{k} } \left \langle V_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \Omega^{\infty} } \left \langle V_{\infty}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.24) and (3.26),

    \begin{equation*} \begin{aligned} \label{} \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{k}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx & = \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{k}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & \to \frac{1}{h} \int_{t}^{t+h} \int_{ \mathbb{R}^{n} } \left \langle \bar{V}_{0}(x, \tau) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx d\tau \\ & = \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx, \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . Thus

    \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = 0 \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . For any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) , there exists \varphi_{\epsilon} (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) with \| \varphi (\cdot, t) - \varphi_{\epsilon} (\cdot, t) \|_{W^{1, p}_{0}(\Omega^{\infty})} < \epsilon . So we find that

    \begin{equation*} \begin{aligned} \label{} & \left| \int_{ \mathbb{R}^{n} } \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h} (x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx \right| \leq \epsilon \left[ \| [\bar{V}_{\infty}]_{h}(\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} + \| [\bar{V}_{0}]_{h} (\cdot, t) \|_{L^{p'}(\mathbb{R}^{n})} \right], \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) and the zero extension \bar{\varphi} (\cdot, t) \in W^{1, p}_{0}(\mathbb{R}^{n}) of \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) . Since \epsilon > 0 was arbitrary chosen, we find from (3.25) that

    \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\mathbb{R}^{n}} \left \langle [\bar{V}_{\infty} - \bar{V}_{0}]_{h}(x, t) , ( \bar{\varphi}(x, t), D\bar{\varphi}(x, t) ) \right \rangle \, dx = \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx \end{aligned} \end{equation*}

    for any \varphi (\cdot, t) \in W^{1, p}_{0}(\Omega^{\infty}) . We now integrate it with respect to time variable t to find that

    \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}]_{h}(x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt \end{aligned} \end{equation*}

    for any 0 < h < \epsilon < T and \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) . Since V_{\infty} - V_{0} \in L^{p'}(\Omega_{T}^{\infty}) , we use [26, Lemma 3.2] to find that

    \begin{equation*} \begin{aligned} \label{} 0 & = \int_{\epsilon}^{T-\epsilon} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation*}

    for any 0 < \epsilon < T and \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . Thus

    \begin{equation} \begin{aligned} 0 & = \int_{0}^{T} \int_{\Omega^{\infty}} \left \langle [V_{\infty} - V_{0}](x, t) , ( \varphi(x, t), D\varphi(x, t) ) \right \rangle \, dx dt, \end{aligned} \end{equation} (3.27)

    for any \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) .

    Fix \varphi (\cdot, t) \in C_{c}^{\infty}(\Omega^{\infty}) . By (3.26), there exists K \in \mathbb{N} with

    \begin{equation*} \label{} (\bar{v}_{k} - \bar{v}_{\infty} \varphi ) (\cdot, t) \in W^{1, p}_{0}(\Omega^{k}) \cap W^{1, p}_{0}(\Omega^{\infty}) \qquad ( k \geq K). \end{equation*}

    By a direct calculation,

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad = \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( (\bar{v}_{k} - \bar{v}_{\infty} \varphi ), D [\bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \\ & \qquad - \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt . \end{aligned} \end{equation} (3.28)

    Also by (3.24), (\bar{v}_{k} - \bar{v}_{\infty} \varphi, D [\bar{v}_{k} - \bar{v}_{\infty} \varphi]) \rightharpoonup (\bar{v}_{0} - \bar{v}_{\infty} \varphi, D[\bar{v}_{0} -\bar{v}_{\infty} \varphi]) in L^{p}(\mathbb{R}^{n}_{T}) . So by Definition 1.5,

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{\infty} , \left( \bar{v}_{0} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{0} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt , \end{aligned} \end{equation*}

    which implies that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty} \varphi , D [ \bar{v}_{k} - \bar{v}_{\infty} \varphi ] \right) \right \rangle \, dx dt \to 0. \end{aligned} \end{equation} (3.29)

    By (3.24),

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty}, \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt. \end{aligned} \end{equation} (3.30)

    By combining (3.28), (3.29) and (3.30), we use (3.27) to find that

    \begin{equation} \begin{aligned} & \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{k} - \bar{V}_{\infty} , \left( \bar{v}_{k} - \bar{v}_{\infty}, D [ \bar{v}_{k} - \bar{v}_{\infty} ] \right) \right \rangle \, dx dt \\ & \quad \to \int_{\mathbb{R}^{n}_{T}} \left \langle \bar{V}_{0} - \bar{V}_{\infty} , \left( \bar{v}_{\infty} (1-\varphi), D [ \bar{v}_{\infty} (1-\varphi) ] \right) \right \rangle \, dx dt = 0, \end{aligned} \end{equation} (3.31)

    because of that \bar{v}_{\infty} (1-\varphi) \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . So by Lemma 2.11 and (3.22),

    \begin{equation*} \begin{aligned} \label{} & \int_{ \mathbb{R}^{n}_{T} } \left( |\bar{v}_{k}|^{2} + |\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |\bar{v}_{k} - \bar{v}_{\infty}|^{2} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } \left( |D\bar{v}_{k}|^{2} + |D\bar{v}_{\infty}|^{2} \right)^{\frac{p-2}{2}} |D\bar{v}_{k} - D\bar{v}_{\infty}|^{2} \, dx dt \to 0, \end{aligned} \end{equation*}

    but this contradicts (3.23) and we find that (3.20) holds. Then by Lemma 2.12

    \begin{equation*} \begin{aligned} \label{} & \int_{\mathbb{R}^{n}_{T}} |\bar{V}_{k} - \bar{V}_{\infty}|^{p'} \, dx dt \to 0, \end{aligned} \end{equation*}

    which implies that

    \begin{equation*} \begin{aligned} \label{} \| \bar{h}_{k} - \bar{h}_{\infty} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big)} & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \left\langle {\left\langle {} \right.} \right. \bar{h}_{k} - \bar{h}_{\infty} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\langle W^{-1, p'}(\mathbb{R}^{n}), W^{1, p}_{0}(\mathbb{R}^{n}) \rangle } \, dt \\ & = \int_{0}^{T} \sup\limits_{ \| \bar{\varphi} \|_{ L^{p} \big( 0, T ; W^{1, p}_{0}(\mathbb{R}^{n}) \big)} = 1 } \int_{\mathbb{R}^{n}} \left\langle {\left\langle {} \right.} \right. [\bar{V}_{k} - \bar{V}_{\infty}] , (\bar{\varphi}, D\bar{\varphi}) \left. {\left. {} \right\rangle } \right\rangle \, dx dt \\ & \to 0, \end{aligned} \end{equation*}

    and the lemma follows.

    To obtain a weak convergence for \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) (k \in \mathbb{N}) , we consider the zero extension in Corollary 3.3. We remark that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. h, \eta \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{h}, \bar{\eta} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt, \end{equation*}

    for any \eta \in W^{1, p}_{0}(\Omega) and the zero extension \bar{\eta} \in W^{1, p}_{0}(\mathbb{R}^{n}) of \eta \in W^{1, p}_{0}(\Omega) , where \bar{h} is defined in Corollary 3.3.

    Lemma 3.6. Under the assumption (1.7) and 1 < p < \infty , let \Omega^{k} \subset \mathbb{R}^{n} (k \in \mathbb{N}) be a sequence of open bounded domains. If v_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) (k \in \mathbb{N}) satisfy

    \begin{equation*} \label{} \| v_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*}

    for some M > 0 , then there exists v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) such that

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{*}{\rightharpoonup} \ \bar{v}_{\infty} {{\ in \ }} L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{equation*}

    where \bar{v}_{k} (k \in \mathbb{N} \cup \{ \infty \}) is defined in Corollary 3.3, which implies that

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{k} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \end{aligned} \end{equation*}

    for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) .

    Proof. Since v_{k} \in L^{p'} \big(0, T; W^{-1, p'}_{0}(\Omega^{k}) \big) (k \in \mathbb{N}) , for each t \in [0, T] , there exists V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) such that

    \begin{equation} \left\langle {\left\langle {} \right.} \right. v_{k}(\cdot, t) , \varphi(\cdot) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} = \int_{\Omega^{k}} \langle V_{k} (\cdot, t), (\varphi, D\varphi) (\cdot) \rangle \, dx \text{ for any } \varphi \in W^{1, p}_{0}(\Omega^{k}), \end{equation} (3.32)

    by Proposition 3.2. Moreover,

    \begin{equation*} \label{} \| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } = \inf \left \{ \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} : V_{k} (\cdot, t) \text{ satisfies } (3.32) \right\}, \end{equation*}

    for any t \in [0, T] . So for t \in [0, T] , choose V_{k}(\cdot, t) \in L^{p'} (\Omega^{k}, \mathbb{R}^{n+1}) (k \in \mathbb{N}) so that

    \begin{equation*} \label{} \| V_{k}(\cdot, t) \|_{L^{p'} (\Omega^{k}, \mathbb{R}^{n+1})} \leq 2\| v_{k} (\cdot, t) \|_{W^{-1, p'}(\Omega^{k}) } \qquad (k \in \mathbb{N}), \end{equation*}

    which implies that

    \begin{equation*} \| V_{k} \|_{L^{p'}(\Omega_{T}^{k} , \mathbb{R}^{n+1})} = \| V_{k} \|_{L^{p'} \big( 0, T ; L^{p'}(\Omega^{k} , \mathbb{R}^{n+1}) \big)} \leq 2\| v_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \leq 2M. \end{equation*}

    for any k \in \mathbb{N} .

    Let \bar{V}_{k} be the zero extension of V_{k} from \Omega_{T}^{k} to \mathbb{R}^{n}_{T} . Since \| \bar{V}_{k} \|_{ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) } \leq 2M (k \in \mathbb{N}) , by Proposition 2.3, there exists a weakly convergent subsequence, which will be still denoted by \{ \bar{V}_{k} \}_{k = 1}^{\infty} , which converges to \bar{V}_{\infty} \in L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}) , say

    \begin{equation*} \label{} \bar{V}_{k} \ \rightharpoonup \ \bar{V}_{\infty} \ \text{in }\ L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n+1}), \end{equation*}

    which implies that

    \begin{equation} \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta}, D\bar{\eta}) \rangle \, dx dt \to \int_{\mathbb{R}^{n}_{T} } \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta} ) \rangle \, dx dt, \end{equation} (3.33)

    for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) . Then one can check from (1.7) that \bar{V}_{\infty} = 0 a.e. in \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} . So define v_{\infty} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{\infty}) \big) as

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle v_{\infty} (\cdot, t) , \eta (\cdot, t) \rangle _{\Omega^{\infty}} \, dt & = \int_{\Omega_{T}^{\infty}} \langle \bar{V}_{\infty}, (\eta , D\eta ) \rangle\, dx dt, \end{aligned} \end{equation*}

    for any \eta \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{\infty}) \big) . Then by Corollary 3.3,

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{\infty} (\cdot, t) , \bar{\eta} (\cdot, t) \rangle_{\mathbb{R}^{n}} \, dt & = \int_{\mathbb{R}^{n}_{T}} \langle \bar{V}_{\infty}, (\bar{\eta}, D\bar{\eta}) \rangle\, dx dt, \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} \int_{0}^{T} \langle \bar{v}_{k}(\cdot, t), \bar{\eta} (\cdot, t) \rangle_{\Omega^{k}} \, dt & = \int_{ \mathbb{R}^{n}_{T} } \langle \bar{V}_{k}, (\bar{\eta} , D\bar{\eta} ) \rangle \, dx dt, \end{aligned} \end{equation*}

    for any \bar{\eta} \in L^{p} \big(0, T; W^{1, p}_{0}(\mathbb{R}^{n}) \big) . So the lemma follows from (3.33).

    Lemma 3.7. Under the assumption (1.7) and 1 < p < \infty , let \Omega^{k} \subset \mathbb{R}^{n} (k \in \mathbb{N}) be a sequence of open bounded domains. If v_{k} \in L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) (k \in \mathbb{N}) satisfy

    \begin{equation*} \label{} \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*}

    for some M > 0 , then there exists v_{\infty} \in L^{\infty} \big(0, T; L^{2}(\Omega^{\infty}) \big) such that

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty}\; \mathit{\text{in}}\; L^{\infty} \big( 0, T ;L^{2}(\mathbb{R}^{n}) \big) \end{equation*}

    where \bar{v}_{k} is the zero extension of v_{k} to L^{\infty} \big(0, T; L^{2}(\mathbb{R}^{n}) \big) for k \in \mathbb{N} \cup \{ \infty \} .

    Proof. L^{\infty} \big(0, T; L^{2}(\Omega^{k}) \big) is dual of L^{1} \big(0, T; L^{2}(\Omega^{k}) \big) for k \in \mathbb{N} \cup \{ \infty \} . We denote \bar{v}_{k} as the zero extensions of v_{k} to L^{\infty} \big(0, T; L^{2} (\mathbb{R}^{n}) \big) for k \in \mathbb{N} \cup \{ \infty \} . Since

    \begin{equation*} \label{} \| \bar{v}_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big) } = \| v_{k} \|_{ L^{\infty} \big( 0, T ; L^{2}(\Omega^{k}) \big) } \leq M \qquad (k \in \mathbb{N}), \end{equation*}

    by Proposition 2.3 we find that there exists a weakly convergent subsequence, which will be still denoted as \{ \bar{v}_{k} \}_{k = 1}^{\infty} , which converges as

    \begin{equation*} \label{} \bar{v}_{k} \ \overset{\ast}{\rightharpoonup} \ \bar{v}_{\infty} \text{ in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{equation*}

    We remark that weak- \ast convergence was used instead of weak convergence, because (L^{\infty})^{\ast} \not = L^{1} . One can easily check from (1.7) that \bar{v}_{\infty} = 0 a.e. in \mathbb{R}^{n}_{T} \setminus \Omega_{T}^{\infty} . So the lemma follows by taking v_{\infty} = \bar{v}_{\infty} \cdot1_{\Omega_{T}^{\infty} } .

    Now recall the energy estimate (3.2).

    \begin{equation} \begin{aligned} & \sup\limits_{ 0 \leq \tau \leq T } \int_{\Omega^{k}} \left| \bar{u}_{k} (\cdot, \tau) \right|^{2} \, dx + \int_{\Omega_{T}^{k}} |D\bar{u}_{k}|^{p} \, dx dt \\ & \quad \leq c \left[ \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} + \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } + \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} + \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } \right]. \end{aligned} \end{equation} (3.34)

    Let \bar{F}_{k}, \bar{\gamma}_{k}, D\bar{\gamma}_{k} \in L^{p}(\mathbb{R}^{n}_{T}) be the zero extension of F_{k}, \gamma_{k}, D\gamma_{k} \in L^{p}(\Omega_{T}^{k}) , respectively. (We remark that \bar{\gamma}_{k} might not be weakly differentiable in \mathbb{R}^{n}_{T} , but we abuse the notation for the simplicity of the computation.) We apply Lemma 3.1 to (1.9). Then

    \begin{equation} \left\{\begin{array}{rcll} |\bar{F}_{k}|^{p-2}\bar{F}_{k} & \to & |\bar{F}|^{p-2}\bar{F} & \text{in } L^{p'}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{\gamma}_{k} & \to & \bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}), \\ D\bar{\gamma}_{k} & \to & D\bar{\gamma} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \end{array}\right. \end{equation} (3.35)

    which implies that

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| |F_{k}|^{p-2}F_{k} \|_{L^{p'}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| |\bar{F}_{k}|^{p-2}\bar{F}_{k} \|_{L^{p'}(\mathbb{R}^{n}_{T})} = \| |\bar{F}|^{p-2}\bar{F} \|_{L^{p'}(\mathbb{R}^{n}_{T})}, \end{aligned} \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| D\gamma_{k} \|_{L^{p}(\Omega_{T}^{k})} = \lim\limits_{k \to \infty} \| D\bar{\gamma}_{k} \|_{L^{p}(\mathbb{R}^{n}_{T})} = \| D\bar{\gamma} \|_{L^{p}(\mathbb{R}^{n}_{T})}. \end{aligned} \end{equation*}

    Let \bar{f}_{k} , \partial_{t} \bar{\gamma}_{k} , \bar{f} and \partial_{t} \bar{\gamma} be the zero extension of f_{k}, \partial_{t} \gamma_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) and f, \partial_{t} \gamma \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) in Corollary 3.3 respectively. By Corollary 3.3 and Lemma 3.5, we find from (1.8) that

    \begin{equation} \left\{\begin{array}{rcll} \bar{f}_{k} & \overset{\ast}{\to} & \bar{f} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \\ \partial_{t}\bar{\gamma}_{k} & \overset{\ast}{\to} & \partial_{t} \bar{\gamma} & \text{in } L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big), \end{array}\right. \end{equation} (3.36)

    which implies that

    \begin{equation*} \label{} \lim\limits_{k \to \infty} \| f_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega^{k}) \big) } = \lim\limits_{k \to \infty} \| \bar{f}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\mathbb{R}^{n}) \big) } = \| \bar{f} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) }, \end{equation*}

    and

    \begin{equation*} \begin{aligned} \label{} \lim\limits_{k \to \infty} \| \partial_{t} \gamma_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \lim\limits_{k \to \infty} \| \partial_{t} \bar{\gamma}_{k} \|_{ L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big) } = \| \partial_{t} \bar{\gamma} \|_{L^{p'} \big( 0, T ; W^{-1, p'}(\Omega) \big)}. \end{aligned} \end{equation*}

    So the right-hand side of (3.34) is bounded, and one can apply Aubin-Lions Lemma, Lemma 3.7 and the zero extension to find that there exists a subsequence of \{ \bar{u}_{k} \}_{k = 1}^{\infty} , which will be still denote by \{ \bar{u}_{k} \}_{k = 1}^{\infty} , and \bar{u}_{0} \in L^{p} \big(0, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(0, T; L^{2}(\mathbb{R}^{n}) \big) such that

    \begin{equation} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u}_{0} & \text{in } L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} (3.37)

    Here, the compactness method is applied to some ball satisfying B \supset \Omega^{k} (k \in \mathbb{N}) and B \supset \Omega by using the zero extensions.

    By (1.10),

    \begin{equation*} \begin{aligned} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt = \int_{\Omega^{k}_{T} } \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi - \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle\; dx dt, \end{aligned} \end{equation*}

    for any \varphi \in L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) . Then we see that \| \partial_{t} u_{k} \|_{L^{p'} \big(0, T; W^{-1, p'} (\Omega^{k}) \big)} is bounded. We denote the zero extension of \partial_{t} u_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega^{k}) \big) in Corollary 3.3 as \partial_{t} \bar{u}_{k} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) . Then we find from Corollary 3.3 that

    \begin{equation} \| \partial_{t} \bar{u}_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\mathbb{R}^{n}) \big)} = \| \partial_{t} u_{k} \|_{L^{p'} \big( 0, T ; W^{-1, p'} (\Omega^{k}) \big)} \ (k \in \mathbb{N}) \text{ is bounded.} \end{equation} (3.38)

    So by Lemma 3.6, there exist \partial_{t} u_{0} \text{ in } L^{p'} \big(0, T; W^{-1, p'} (\Omega) \big) and a subsequence of \{ \bar{u}_{k} \}_{k = 1}^{\infty} , which will be still denoted by \{ \bar{u}_{k} \}_{k = 1}^{\infty} such that

    \begin{equation} \partial_{t} \bar{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \bar{u}_{0} \ \text{in }\ L^{p'} \big( 0, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big). \end{equation} (3.39)

    Here, we denoted the zero extension of \partial_{t} u_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\Omega) \big) in Corollary 3.3 as \partial_{t} \bar{u}_{0} \in L^{p'} \big(0, T; W^{-1, p'}(\mathbb{R}^{n}) \big) . Define u_{0} = \bar{u}_{0} + \gamma in \Omega_{T} . Then we have that following lemma. We remark that a different proof is shown in Step 4 in the proof of [30, Lemma 5.1].

    Lemma 3.8. For u_{0} = \bar{u}_{0} + \gamma in \Omega_{T} , we have that

    \begin{equation*} \label{} \lim\limits_{h \searrow 0} \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0. \end{equation*}

    Proof. Let \hat{u}_{k} be the zero extension of \bar{u}_{k} from \mathbb{R}^{n} \times [0, T] to \mathbb{R}^{n} \times [-T, T] , which means that \hat{u}_{k} = 0 in (\mathbb{R}^{n} \times [-T, T]) \setminus (\mathbb{R}^{n} \times [0, T]) . Also define \partial_{t} \hat{u}_{k} as

    \begin{equation*} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} = \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k}, \varphi \, \chi_{\Omega_{T}} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \text{ for any } \varphi \in L^{p} \big( -T, T ; W^{1, p} (\mathbb{R}^{n}) \big). \end{equation*}

    Then we see that \partial_{t} \hat{u}_{k} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) , because

    \begin{equation*} \begin{aligned} \int_{-T}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \hat{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt & = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = - \int_{0}^{T} \int_{ \mathbb{R}^{n} }\bar{u}_{k} \, \varphi_{t} \, dx dt = - \int_{-T}^{T} \int_{ \mathbb{R}^{n} } \hat{u}_{k} \, \varphi_{t} \, dx dt \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\mathbb{R}^{n} \times [-T, T]) . Here, we used that \bar{u}_{k} = 0 on \mathbb{R}^{n} \times \{ 0 \} .

    By (3.37) and (3.39), there exists a subsequence, which will be still denoted as \hat{u}_{k} and \partial_{t} \hat{u}_{k} (k \in \mathbb{N}) , such that

    \begin{equation} \left\{\begin{array}{rcll} D\hat{u}_{k} & \rightharpoonup & D\hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T), \mathbb{R}^{n}), \\ \hat{u}_{k} & \to & \hat{u}_{0} & \text{in } L^{p}(\mathbb{R}^{n} \times (-T, T)) , \\ \hat{u}_{k} & \overset{\ast}{\rightharpoonup} & \hat{u}_{0} & \text{in } L^{\infty} \big( -T, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation} (3.40)

    and

    \begin{equation*} \label{} \partial_{t} \hat{u}_{k} \ \overset{\ast}{\rightharpoonup} \ \partial_{t} \hat{u}_{0} \ \text{in }\ L^{p'} \big( -T, T ; W^{-1, p'} ( \mathbb{R}^{n} ) \big), \end{equation*}

    for some \hat{u}_{0} \in L^{p} \big(-T, T; W^{1, p}_{0} (\mathbb{R}^{n}) \big) \cap L^{\infty}\big(-T, T; L^{2}(\mathbb{R}^{n}) \big) and \partial_{t} \hat{u}_{0} \in L^{p'} \big(-T, T; W^{-1, p'} (\mathbb{R}^{n}) \big) . Then by Proposition 2.6, we have that \hat{u}_{0} \in C \big([-T, T]; L^{2}(\mathbb{R}^{n}) \big) , which implies that

    \begin{equation*} 0 = \lim\limits_{h \nearrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\hat{u}_{0}|^{2} \, dx dt = \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\mathbb{R}^{n}} |\bar{u}_{0}|^{2} \, dx dt , \end{equation*}

    where we used that \hat{u}_{0} = \bar{u}_{0} in \mathbb{R}^{n}_{T} , which holds from (3.37), (3.40) and that \hat{u}_{k} is the zero extension of \bar{u}_{k} from \mathbb{R}^{n}_{T} to \mathbb{R}^{n} \times [-T, T] . Since \bar{u}_{0} = u_{0} - \gamma in \Omega , we get

    \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |u_{0}(x, t) - \gamma(x, t)|^{2} \, dx dt = 0. \end{equation*}

    Since \gamma \in C\big([0, T]; L^{2}(\Omega) \big) , we find that

    \begin{equation*} \lim\limits_{h \searrow 0 } \frac{1}{h} \int_{0}^{h} \int_{\Omega} |\gamma(x, t) - \gamma(x, 0)|^{2} \, dx dt = 0, \end{equation*}

    and the lemma follows.

    Lemma 3.9. For the weak solutions u \in \gamma + L^{p} \big(0, T; W^{1, p}_{0}(\Omega) \big) \cap C \big([0, T]; L^{2}(\Omega) \big) of (1.6) and u_{k} \in \gamma_{k} + L^{p} \big(0, T; W^{1, p}_{0}(\Omega^{k}) \big) \cap C \big([0, T]; L^{2}(\Omega^{k}) \big) in (1.10), we have that

    \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \; dx dt = 0 {{\; for\; any \; }} \varphi \in C_{c}^{\infty}(\Omega)\; \mathit{\text{with}} \;0 \leq \varphi \leq 1, \end{equation*}

    and

    \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T}} |D\bar{u}_{k} - D\bar{u}|^{p} \; dx dt = 0 \quad {{for \;any}} \;\quad U \subset \subset \Omega. \end{equation} (3.41)

    Moreover, we have that

    \begin{equation*} \label{} \left\{\begin{array}{rcll} D\bar{u}_{k} & \rightharpoonup & D\bar{u} & \mathit{\text{in}} \; L^{p}(\mathbb{R}^{n}_{T}, \mathbb{R}^{n}), \\ \bar{u}_{k} & \to & \bar{u} & \mathit{\text{in}} \;L^{p}(\mathbb{R}^{n}_{T}) , \\ \bar{u}_{k} & \overset{\ast}{\rightharpoonup} & \bar{u} & \mathit{\text{in}}\; L^{\infty} \big( 0, T ; L^{2}(\mathbb{R}^{n}) \big). \end{array}\right. \end{equation*}

    Proof. Recall from (1.7) that

    \begin{equation} \lim\limits_{k \to \infty} d_{H} \left( \partial \Omega^{k}, \partial \Omega \right) = 0, \end{equation} (3.42)

    which implies that

    \begin{equation} \text{there exists } K \in \mathbb{N}{\text{ such that }} \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} (3.43)

    Fix \varphi(x) \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 , which is independent of t -variable. Choose K \in \mathbb{N} in (3.43). Test (1.10) by \left(\bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} to find that

    \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{ \Omega_{T}^{k} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{u}_{k} - D\bar{u}_{0})\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle \; dx dt\\ & \quad = \int_{ \Omega_{T}^{k} } \left \langle |F_{k}|^{p-2}F_{k}, (D\bar{u}_{k} - D\bar{u}_{0} )\varphi^{p} + p (\bar{u}_{k} - \bar{u}_{0} )\varphi^{p-1} D\varphi \right \rangle + f_{k} (\bar{u}_{k} - \bar{u}_{0}) \varphi^{p} \, dx dt, \end{aligned} \end{equation*}

    for any k \geq K . Recall that \bar{u}_{k} = u_{k} - \gamma_{k} , \bar{u}_{0} = u_{0} - \gamma and \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) for any k \geq K . For (\mathop{supp } \varphi)_{T} = \mathop{supp } \varphi \times [0, T] , we discover that

    \begin{equation*} \begin{aligned} \label{} & \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0}\right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \\ & \quad = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation*}

    where

    \begin{equation*} \begin{aligned} I_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) , (D\bar{\gamma}_{k} - D\bar{\gamma}) \varphi^{p} - p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle \; dx dt, \\ II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2}\bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt, \\ III_{k} & = - \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \langle a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0}) \varphi^p \rangle \; dx dt, \\ IV_{k} & = - \int_{0}^{T} \left \langle \partial_{t} \bar{\gamma}_{k} + \partial_{t} \bar{u}_{0} , \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \right \rangle_{\mathbb{R}^{n}} \, dt, \end{aligned} \end{equation*}

    for k \geq K . One can easily check from (3.35) and (3.37) that

    \begin{equation} \lim\limits_{k \rightarrow \infty} I_{k} = 0. \end{equation} (3.44)

    By a direct calculation, we have

    \begin{equation*} \begin{aligned} II_{k} & = \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}|^{p-2} \bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k} - |\bar{F}|^{p-2}\bar{F}, (D\bar{u}_{k} - D\bar{u}_{0} ) \varphi^p \right \rangle \, dx dt \\ & \quad + \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle |\bar{F}_{k}|^{p-2} \bar{F}_{k}, p (\bar{u}_{k} - \bar{u}_{0})\varphi^{p-1} D\varphi \right \rangle + \bar{f}_{k} (\bar{u}_{k} - \bar{u}_{0} ) \varphi^{p} \; dx dt. \end{aligned} \end{equation*}

    By (3.35)–(3.37),

    \begin{equation} \limsup\limits_{k \rightarrow \infty} II_{k} = 0. \end{equation} (3.45)

    We handle III_{k} . By Lemma 2.14,

    \begin{equation*} \begin{aligned} \label{} & \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'} \big( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} \big)} \leq \lim\limits_{ k \to \infty } \left\| a_{k}(Du_{0}, \cdot) - a(Du_{0}, \cdot) \right\|_{L^{p'}(\Omega_{T})} = 0. \end{aligned} \end{equation*}

    So by (3.37),

    \begin{equation} \limsup\limits_{k \rightarrow \infty} III_{k} = 0. \end{equation} (3.46)

    By (3.36) and (3.37),

    \begin{equation} \limsup\limits_{k \rightarrow \infty} IV_{k} = 0. \end{equation} (3.47)

    Since \varphi = \varphi(x) and 0 \leq \varphi \leq 1 , one can easily show that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \left( \bar{u}_{k} - \bar{u}_{0} \right), \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{p} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{\mathbb{R}^{n}} \frac{ \left| \left[ \left( \bar{u}_{k} - \bar{u}_{0} \right) \varphi^{\frac{p}{2}} \right] \left( x, T \right) \right|^{2} }{2} \, dx \geq 0. \end{equation*}

    because \bar{u}_{k} = 0 = \bar{u}_{0} on \mathbb{R}^{n} \times \{ 0 \} , which holds from Lemma 3.8. So by (3.44), (3.45), (3.46) and (3.47),

    \begin{equation*} \begin{aligned} \label{} \int_{ \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t) , (Du_{k} - Du_{0})\varphi^{p} \right \rangle \; dx dt \to 0, \end{aligned} \end{equation*}

    because \left \langle a_{k}(Du_{k}, x, t) - a_{k}(Du_{0}, x, t), (Du_{k} - Du_{0})\varphi^{p} \right \rangle \geq 0 in \mathbb{R}^{n}_{T} \cap (\mathop{supp } \varphi)_{T} , which implies that

    \begin{equation*} \label{} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt \to 0. \end{equation*}

    For any \kappa \in (0, \kappa_{1}] , we have from Lemma 2.7 that

    \begin{equation*} \begin{aligned} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt & \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \, dx dt\\ &\quad + c \kappa^{p-2} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{k}|^{2} + |Du_{0}|^{2} + s^{2})^{\frac{p-2}{2}} |Du_{k} - Du_{0}|^{2} \varphi^{p} dx dt. \end{aligned} \end{equation*}

    So we find that

    \begin{equation*} \begin{aligned} \label{} 0 & \leq \limsup\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt \leq c \kappa^{p} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } (|Du_{0}|^{2}+s^{2})^{\frac{p}{2}} \varphi^{p} \; dx dt. \end{aligned} \end{equation*}

    Since \kappa \in (0, \kappa_{1}] and \varphi \in C_{c}^{\infty}(\Omega) were arbitrary chosen, we discover that

    \begin{equation*} \label{} \lim\limits_{k \rightarrow \infty} \int_{\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} } |Du_{k} - Du_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation*}

    So by (3.35),

    \begin{equation} \lim\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \varphi^{p} \; dx dt = 0 \text{ for any } \varphi \in C_{c}^{\infty}(\Omega) \text{ with } 0 \leq \varphi \leq 1. \end{equation} (3.48)

    For any U \subset \subset \Omega , there exists a cut-off function \eta \in C_{c}^{\infty} (\Omega) such that 0 \leq \eta \leq 1 in \Omega and \eta = 1 on U . Moreover, by (3.42), there exists K \in \mathbb{N} such that

    \begin{equation} U \subset \subset \Omega^{k} \qquad (k \geq K). \end{equation} (3.49)

    So by (3.48),

    \begin{equation} \lim\limits_{k \to \infty} \int_{ U_{T} } |D\bar{u}_{k} - D\bar{u}_{0}|^{p} \; dx dt = 0 \quad \text{ for any } \quad U \subset \subset \Omega. \end{equation} (3.50)

    By Corollary 3.3 and (3.39),

    \begin{equation} \begin{aligned} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{k} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt \, \overset{\ast}{\to} \, \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \bar{u}_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\mathbb{R}^{n}} \, dt = \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0} , \bar{\varphi} \left. {\left. {} \right\rangle } \right\rangle_{\Omega} \, dt, \end{aligned} \end{equation} (3.51)

    for any \varphi \in C_{0 }^{\infty} (\Omega_{T}) .

    Now, we show that u_{0} is the weak solution of (1.6), which implies that u = u_{0} by the uniqueness. Fix \varphi \in C_{0 }^{\infty} (\Omega_{T}) and choose U \subset \subset \Omega with \text{supp } \varphi \subset \overline{U_{T}} . By (3.42), there exists K \in \mathbb{N} such that U \subset \subset \Omega^{k} (k \geq K) . We have from (1.10) that

    \begin{equation*} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , \varphi \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k}} \, dt + \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , D\varphi \rangle \; dx dt = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D\varphi \rangle + f_{k} \varphi \; dx dt, \end{equation*}

    for any k \geq K . So by Lemma 2.10, Lemma 2.14, (3.35), (3.36), (3.50) and (3.51),

    \begin{equation*} \begin{aligned} &\int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{0}, \varphi \left. {\left. {} \right\rangle } \right\rangle_{ \Omega } + \int_{ \Omega_{T} } \langle a(Du_{0}, x, t) , D\varphi \rangle \, dx dt = \int_{ \Omega_{T} } \langle |F|^{p-2}F, D\varphi \rangle + f \varphi \, dx dt. \end{aligned} \end{equation*}

    We find from Lemma 3.8 that u_{0} \in L^{\infty} \big(0, T; L^{2}(\Omega) \big) \cap L^{p} \big(0, T; W^{1, p}_{0} (\Omega) \big) is also the weak solution of (1.6). By uniqueness of the weak solution, we find that u_{0} = u , and the lemma follows from (3.37), (3.48) and (3.50).

    We next estimate the concentration of D\bar{u}_{k} near the boundary \partial \Omega \times [0, T] .

    Lemma 3.10. For any \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 , we have that

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega} \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right]. \end{aligned} \end{equation*}

    Proof. Fix \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 . We have from (1.7) that

    \begin{equation} \text{there exists $K \in \mathbb{N}$ such that } \mathop{supp} \varphi \subset \subset \Omega^{k} \, (k \geq K) \text{ for any } \varphi \in C_{c}^{\infty}(\Omega). \end{equation} (3.52)

    We next take \kappa = \kappa_{1}(n, p, \lambda, \Lambda) in Lemma 2.7 to find that

    \begin{equation} \begin{aligned} \int_{\Omega_{T}^{k}} |Du_{k} - D\gamma_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt & \leq c \int_{\Omega_{T}^{k}} (|D\gamma_{k}|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad + c \int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt, \end{aligned} \end{equation} (3.53)

    for any k \geq K . In view of (1.2), we discover that

    \begin{equation} \begin{aligned} &\int_{\Omega_{T}^{k}} (|Du_{k}|^{2}+|D\gamma_{k}|^{2}+s^{2})^{\frac{p-2}{2}}|Du_{k}-D\gamma_{k}|^{2} \left( 1- \varphi^{p} \right) \, dx dt\\ &\quad \leq c \int_{\Omega_{T}^{k}} \langle a(Du_{k}, x, t) - a(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \rangle \left( 1- \varphi^{p} \right) \; dx dt, \end{aligned} \end{equation} (3.54)

    for any k \geq K .

    We will estimate the limit superior of the right-hand side of (3.54). We test (1.10) by (u_{k}- \gamma_{k}) \left(1-\varphi^{p} \right) to find that

    \begin{equation} \begin{aligned} & \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt = I_{k} + II_{k} + III_{k} + IV_{k}, \end{aligned} \end{equation} (3.55)

    where

    \begin{equation*} \begin{aligned} \label{} & I_{k} = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , \left( u_{k} - \gamma_{k} \right) p\varphi^{p-1} D\varphi \rangle \; dx dt , \\ & II_{k} = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \; dx dt , \\ & III_{k} = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt , \\ & IV_{k} = - \int_{0}^{T} \langle \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \rangle_{\Omega^{k}} \, dt, \end{aligned} \end{equation*}

    for any k \geq K .

    We estimate the limit of the right-hand side as k \to \infty . Without loss of generality, assume that k \geq K . Then we have from (3.52) that

    \begin{equation*} \label{} \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}). \end{equation*}

    We first compute the limit of I_{k} . By the triangle inequality,

    \begin{equation*} \begin{aligned} & \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})} \\ & \ \leq \left\| \left| a_{k}(Du_{k}, x, t) - a_{k}(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} + \left\| \left| a_{k}(Du, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}} (\mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T})}. \end{aligned} \end{equation*}

    Since \varphi \in C_{c}^{\infty}(\Omega) \cap C_{c}^{\infty}(\Omega^{k}) , we have from Lemma 2.10, Lemma 2.14 and (3.41) in Lemma 3.9 that

    \begin{equation} \lim\limits_{k \to \infty} \left\| \left| a_{k}(Du_{k}, x, t) - a(Du, x, t) \right| |D\varphi| \right\|_{L^{\frac{p}{p-1}}( \mathbb{R}^{n}_{T} \cap ( \mathop{supp } \varphi )_{T} )} = 0. \end{equation} (3.56)

    By Lemma 3.9, we have that \bar{u}_{k} \to \bar{u} in L^{p}(\mathbb{R}^{n}_{T}) . Since u_{k} - \gamma_{k} = \bar{u}_{k} in \Omega_{T}^{k} and u - \gamma = \bar{u} in \Omega_{T} , we find from (3.50) that

    \begin{equation} \begin{aligned} I_{k} & = \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) , ( u_{k} - \gamma_{k}) p\varphi^{p-1} D\varphi \rangle \, dx dt \to \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle \, dx dt. \end{aligned} \end{equation} (3.57)

    Similarly, by the triangle inequality,

    \begin{equation*} \begin{aligned} & \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } \\ & \quad \leq \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )} + \left\| a_{k}(D\gamma, x, t) \cdot 1_{\Omega_{T}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} )}. \end{aligned} \end{equation*}

    So we get from (3.35), Lemma 2.10 and Lemma 2.14 that

    \begin{equation*} \lim\limits_{k \to \infty} \left\| a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} - a(D\gamma, x, t) \cdot 1_{\Omega_{T}} \right\|_{L^{ p' }( \mathbb{R}^{n}_{T} ) } = 0, \end{equation*}

    and it follows from Lemma 3.9 that

    \begin{equation} \begin{aligned} II_{k} & = - \int_{\Omega_{T}^{k}} \langle a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & = - \int_{\mathbb{R}^{n}_{T} } \langle a_{k}(D\gamma_{k}, x, t) \cdot 1_{\Omega_{T}^{k}} , D\bar{u}_{k} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \to - \int_{ \mathbb{R}^{n}_{T} } \langle a(D\gamma, x, t) \cdot 1_{\Omega_{T}}, D\bar{u} \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & = - \int_{\Omega_{T}} \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \, dx dt. \end{aligned} \end{equation} (3.58)

    Recall that

    \begin{equation*} \begin{aligned} \label{} III_{k} & = \int_{\Omega_{T}^{k}} \langle |F_{k}|^{p-2}F_{k}, D[(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) ] \rangle + f_{k}(u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation*}

    Then one can easily check from (3.35), (3.36) and Lemma 3.9 that

    \begin{equation} \begin{aligned} III_{k} \to \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt. \end{aligned} \end{equation} (3.59)

    Now, we estimate IV_{k} .

    \begin{equation*} \begin{aligned} \label{} IV_{k} & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \\ & = - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega_{T}^{k} } - \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt. \end{aligned} \end{equation*}

    Since \varphi = \varphi(x) , 0 \leq \varphi \leq 1 and u_{k} - \gamma_{k} = 0 on \Omega^{k} \times \{ 0 \} , we find that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u_{k} - \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } dt = \int_{\Omega^{k}} \frac{ | [(u_{k}-\gamma_{k}) (1-\varphi^{p})^{\frac{1}{2}}] ( x , T ) |^{2} }{2} \, dx \geq 0. \end{equation*}

    Since u_{k} - \gamma_{k} = \bar{u}_{k} in \Omega_{T}^{k} and u - \gamma = \bar{u} in \Omega_{T} , we find from (3.36) and Lemma 3.9 that

    \begin{equation*} \label{} \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma_{k} , (u_{k} - \gamma_{k}) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega^{k} } \, dt \to \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{equation*}

    Thus

    \begin{equation} \begin{aligned} & \limsup\limits_{k \to \infty} IV_{k} \leq - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation} (3.60)

    In view of (3.55), we find from (3.57), (3.58), (3.59) and (3.60) that

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p\varphi^{p-1} D\varphi \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt \\ & \qquad + \int_{ \Omega_{T} } \langle |F|^{p-2} F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + f(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt \\ & \qquad - \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*}

    By taking (u-\gamma) \left(1 - \varphi^{p} \right) in (1.6), we get that

    \begin{equation*} \begin{aligned} \label{} &\int_{\Omega_{T}} \langle a(Du, x, t) , \left( u - \gamma \right) p \varphi^{p-1} D\gamma \rangle - \langle a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \rangle \; dx dt\\ &\quad + \int_{\Omega_{T}} \langle |F|^{p-2}F, D[(u - \gamma) \left( 1-\varphi^{p} \right) ] \rangle + g(u - \gamma) \left( 1-\varphi^{p} \right) \; dx dt\\ &\qquad = \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt. \end{aligned} \end{equation*}

    Thus

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{0}^{T} \left\langle {\left\langle {} \right.} \right. \partial_{t} u - \partial_{t} \gamma , (u - \gamma) \left( 1-\varphi^{p} \right) \left. {\left. {} \right\rangle } \right\rangle_{\Omega } \, dt . \end{aligned} \end{equation*}

    Since \bar{u} = u-\gamma , we find that

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\Omega_{T}^{k}} \langle a_{k}(Du_{k}, x, t) - a_{k}(D\gamma_{k}, x, t), (Du_{k} - D\gamma_{k}) \left( 1-\varphi^{p} \right) \rangle \, dx dt \\ & \quad \leq \int_{\Omega_{T}} \left \langle a(Du, x, t) - a(D\gamma, x, t), (Du - D\gamma) \left( 1-\varphi^{p} \right) \right \rangle \; dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}} ] ( x , T) |^{2} }{2} \, dx. \end{aligned} \end{equation*}

    Since \bar{u}_{k} = u_{k} - \gamma_{k} , by (3.35), (3.53) and (3.54),

    \begin{equation*} \begin{aligned} \label{} & \limsup\limits_{ k \to \infty} \int_{\mathbb{R}^{n}_{T}} |D\bar{u}_{k}|^{p} \left( 1- \varphi^{p} \right) \, dx dt\\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*}

    and the lemma follows.

    We are ready to prove Theorem 1.6.

    Proof of Theorem 1.6. By Lemmas 3.9 and 3.10,

    \begin{equation*} \begin{aligned} & \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \\ & \quad = \limsup\limits_{ k \to \infty}\left[ \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \varphi^{p} \, dx dt + \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} (1-\varphi^{p}) \, dx dt \right] \\ & \quad \leq c \left[ \int_{\Omega_{T}} (|Du|^{2} + |D\gamma|^{2}+s^{2})^{\frac{p}{2}} \left( 1- \varphi^{p} \right) \, dx dt + \int_{ \Omega } \frac{ |[ \bar{u} (1-\varphi^{p})^{\frac{1}{2}}] ( x , T) |^{2} }{2} \, dx \right], \end{aligned} \end{equation*}

    for any \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 . Since \varphi \in C_{c}^{\infty}(\Omega) with 0 \leq \varphi \leq 1 can be arbitrary chosen in the above estimates, one can choose a sequence of monotone increasing functions in C_{c}^{\infty}(\Omega) which converges to 1 a.e. in \Omega . Then by Lebesgue's dominated convergence theorem, we get

    \begin{equation*} \limsup\limits_{k \rightarrow \infty} \int_{ \mathbb{R}^{n}_{T} } |D\bar{u}_{k} - D\bar{u}|^{p} \, dx dt \leq 0. \end{equation*}

    This contradicts (3.1). So we find that (1.11) holds.

    Y. Kim was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. NRF-2020R1C1C1A01013363). S. Ryu was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2020R1C1C1A01014310). P. Shin was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. NRF-2020R1I1A1A01066850). The authors would like to thank the referee for the careful reading of this manuscript and for offering valuable comments.

    The authors declare no conflict of interest.



    [1] E. Acerbi, N. Fusco, Regularity for minimizers of nonquadratic functionals: the case 1 < p < 2, J. Math. Anal. Appl., 140 (1989), 115–135. https://doi.org/10.1016/0022-247X(89)90098-X doi: 10.1016/0022-247X(89)90098-X
    [2] E. Acerbi, G. Mingione, Regularity results for a class of functionals with non-standard growth, Arch. Rational Mech. Anal., 156 (2001), 121–140. https://doi.org/10.1007/s002050100117 doi: 10.1007/s002050100117
    [3] E. Acerbi, G. Mingione, Gradient estimates for the p(x)-Laplacean system, J. Reine Angew. Math., 584 (2005), 117–148. https://doi.org/10.1515/crll.2005.2005.584.117 doi: 10.1515/crll.2005.2005.584.117
    [4] E. Acerbi, G. Mingione, Gradient estimates for a class of parabolic systems, Duke Math. J., 136 (2007), 285–320. https://doi.org/10.1215/S0012-7094-07-13623-8 doi: 10.1215/S0012-7094-07-13623-8
    [5] R. A. Adams, J. J. F. Fournier, Sobolev spaces, Amsterdam: Elsevier/Academic Press, 2003.
    [6] P. Baroni, Lorentz estimates for degenerate and singular evolutionary systems, J. Differ. Equations, 255 (2013), 2927–2951. https://doi.org/10.1016/j.jde.2013.07.024 doi: 10.1016/j.jde.2013.07.024
    [7] P. Baroni, Riesz potential estimates for a general class of quasilinear equations, Calc. Var., 53 (2015), 803–846. https://doi.org/10.1007/s00526-014-0768-z doi: 10.1007/s00526-014-0768-z
    [8] P. Baroni, V. Bögelein, Calderón-Zygmund estimates for parabolic p(x, t)-Laplacian systems, Rev. Mat. Iberoam., 30 (2014), 1355–1386. https://doi.org/10.4171/RMI/817 doi: 10.4171/RMI/817
    [9] P. Baroni, M. Colombo, G. Mingione, Regularity for general functionals with double phase, Calc. Var., 57 (2018), 62. https://doi.org/10.1007/s00526-018-1332-z doi: 10.1007/s00526-018-1332-z
    [10] L. Beck, G. Mingione, Lipschitz bounds and nonuniform ellipticity, Commun. Pure Appl. Math., 73 (2020), 944–1034. https://doi.org/10.1002/cpa.21880 doi: 10.1002/cpa.21880
    [11] V. Bögelein, Global Calderón-Zygmund theory for nonlinear parabolic systems, Calc. Var., 51 (2014), 555–596. https://doi.org/10.1007/s00526-013-0687-4 doi: 10.1007/s00526-013-0687-4
    [12] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
    [13] M. Bulíček, S.-S. Byun, P. Kaplický, J. Oh, S. Schwarzacher, On global L^{q}-estimates for systems with p-growth in rough domains, Calc. Var., 58 (2019), 185. https://doi.org/10.1007/s00526-019-1621-1 doi: 10.1007/s00526-019-1621-1
    [14] S.-S. Byun, Y. Kim, Elliptic equations with measurable nonlinearities in nonsmooth domains, Adv. Math., 288 (2016), 152–200. https://doi.org/10.1016/j.aim.2015.10.015 doi: 10.1016/j.aim.2015.10.015
    [15] S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for general nonlinear parabolic equations in nonsmooth domains, J. Differ. Equations, 254 (2013), 4290–4326. https://doi.org/10.1016/j.jde.2013.03.004 doi: 10.1016/j.jde.2013.03.004
    [16] S.-S. Byun, J. Ok, S. Ryu, Global gradient estimates for elliptic equations of p(x)-Laplacian type with BMO nonlinearity, J. Reine Angew. Math., 715 (2016), 1–38. https://doi.org/10.1515/crelle-2014-0004 doi: 10.1515/crelle-2014-0004
    [17] S.-S. Byun, L. Wang, Parabolic equations in time dependent Reifenberg domains, Adv. Math., 212 (2007), 797–818. https://doi.org/10.1016/j.aim.2006.12.002 doi: 10.1016/j.aim.2006.12.002
    [18] I. Chlebicka, A pocket guide to nonlinear differential equations in Musielak-Orlicz spaces, Nonlinear Anal., 175 (2018), 1–27. https://doi.org/10.1016/j.na.2018.05.003 doi: 10.1016/j.na.2018.05.003
    [19] A. Cianchi, V. G. Maz'ya, Global Lipschitz regularity for a class of quasilinear elliptic equations, Commun. Part. Diff. Eq., 36 (2011), 100–133. https://doi.org/10.1080/03605301003657843 doi: 10.1080/03605301003657843
    [20] A. Cianchi, V. G. Maz'ya, Global boundedness of the gradient for a class of nonlinear elliptic systems, Arch. Rational Mech. Anal., 212 (2014), 129–177. https://doi.org/10.1007/s00205-013-0705-x doi: 10.1007/s00205-013-0705-x
    [21] M. Colombo, G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Rational Mech. Anal., 218 (2015), 219–273. https://doi.org/10.1007/s00205-015-0859-9 doi: 10.1007/s00205-015-0859-9
    [22] M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2
    [23] M. Colombo, G. Mingione, Calderón–Zygmund estimates and non-uniformly elliptic operators, J. Funct. Anal., 270 (2016), 1416–1478. https://doi.org/10.1016/j.jfa.2015.06.022 doi: 10.1016/j.jfa.2015.06.022
    [24] C. De Filippis, G. Mingione, On the regularity of minima of non-autonomous functionals, J. Geom. Anal., 30 (2020), 1584–1626. https://doi.org/10.1007/s12220-019-00225-z doi: 10.1007/s12220-019-00225-z
    [25] C. De Filippis, G. Palatucci, Hölder regularity for nonlocal double phase equations, J. Differ. Equations, 267 (2019), 547–586. https://doi.org/10.1016/j.jde.2019.01.017 doi: 10.1016/j.jde.2019.01.017
    [26] E. DiBenedetto, Degenerate parabolic equations, New York: Springer, 1993. https://doi.org/10.1007/978-1-4612-0895-2
    [27] L. Diening, B. Stroffolini, A. Verde, Everywhere regularity of functionals with \varphi-growth, Manuscripta Math., 129 (2009), 449–481. https://doi.org/10.1007/s00229-009-0277-0 doi: 10.1007/s00229-009-0277-0
    [28] F. Duzaar, G. Mingione, Local Lipschitz regularity for degenerate elliptic systems, Ann. Inst. H. Poincaré (C) Anal. Non Linéaire, 27 (2010), 1361–1396. https://doi.org/10.1016/J.ANIHPC.2010.07.002 doi: 10.1016/J.ANIHPC.2010.07.002
    [29] F. Duzaar, G. Mingione, Gradient estimates via non-linear potentials, Amer. J. Math., 133 (2011), 1093–1149. https://doi.org/10.1353/ajm.2011.0023 doi: 10.1353/ajm.2011.0023
    [30] A. H. Erhardt, Existence of solutions to parabolic problems with nonstandard growth and irregular obstacles, Adv. Differential Equations, 21 (2016), 463–504. https://doi.org/10.57262/ade/1457536498 doi: 10.57262/ade/1457536498
    [31] L. Esposito, G. Mingione, Some remarks on the regularity of weak solutions of degenerate elliptic systems, Rev. Mat. Complut., 11 (1998), 203–219. https://doi.org/10.5209/rev_REMA.1998.v11.n1.17325 doi: 10.5209/rev_REMA.1998.v11.n1.17325
    [32] L. Esposito, F. Leonetti, G. Mingione, Regularity results for minimizers of irregular integrals with (p, q) growth, Forum Math., 14 (2002), 245–272. https://doi.org/10.1515/form.2002.011 doi: 10.1515/form.2002.011
    [33] L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with (p, q) growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007
    [34] L. Evans, Partial differential equations, 2 Eds., Providence, RI: American Mathematical Society, 2010.
    [35] M. Giaquinta, G. Modica, Remarks on the regularity of the minimizers of certain degenerate functionals, Manuscripta Math., 57 (1986), 55–99. https://doi.org/10.1007/BF01172492 doi: 10.1007/BF01172492
    [36] C. Hamburger, Regularity of differential forms minimizing degenerate elliptic functionals, J. Reine Angew. Math., 431 (1992), 7–64. https://doi.org/10.1515/crll.1992.431.7 doi: 10.1515/crll.1992.431.7
    [37] P. Hästö, J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, J. Eur. Math. Soc., 24 (2022), 1285–1334. https://doi.org/10.4171/JEMS/1118 doi: 10.4171/JEMS/1118
    [38] Y. Kim, Gradient estimates for elliptic equations with measurable nonlinearities, J. Math. Pure. Appl. (9), 114 (2018), 118–145. https://doi.org/10.1016/j.matpur.2017.11.003 doi: 10.1016/j.matpur.2017.11.003
    [39] T. Kuusi, G. Mingione, Universal potential estimates, J. Funct. Anal., 262 (2012), 4205–4269. https://doi.org/10.1016/j.jfa.2012.02.018 doi: 10.1016/j.jfa.2012.02.018
    [40] T. Kuusi, G. Mingione, New perturbation methods for nonlinear parabolic problems, J. Math. Pure Appl. (9), 98 (2012), 390–427. https://doi.org/10.1016/j.matpur.2012.02.004 doi: 10.1016/j.matpur.2012.02.004
    [41] T. Kuusi, G. Mingione, Linear potentials in nonlinear potential theory, Arch. Rational Mech. Anal., 207 (2013), 215–246. https://doi.org/10.1007/s00205-012-0562-z doi: 10.1007/s00205-012-0562-z
    [42] T. Kuusi, G. Mingione, Riesz potentials and nonlinear parabolic equations, Arch. Rational Mech. Anal., 212 (2014), 727–780. https://doi.org/10.1007/s00205-013-0695-8 doi: 10.1007/s00205-013-0695-8
    [43] T. Kuusi, G. Mingione, Guide to nonlinear potential estimates, Bull. Math. Sci., 4 (2014), 1–82. https://doi.org/10.1007/s13373-013-0048-9 doi: 10.1007/s13373-013-0048-9
    [44] T. Kuusi, G. Mingione, Vectorial nonlinear potential theory, J. Eur. Math. Soc., 20 (2018), 929–1004. https://doi.org/10.4171/JEMS/780 doi: 10.4171/JEMS/780
    [45] G. Leoni, A first course in Sobolev spaces, Providence, RI: American Mathematical Society, 2009.
    [46] P. Marcellini, Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Rational Mech. Anal., 105 (1989), 267–284. https://doi.org/10.1007/BF00251503 doi: 10.1007/BF00251503
    [47] P. Marcellini, Regularity and existence of solutions of elliptic equations with p, q-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6
    [48] G. Mingione, The Calderón-Zygmund theory for elliptic problems with measure data, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 195–261.
    [49] G. Mingione, Gradient potential estimates, J. Eur. Math. Soc., 13 (2011), 459–486. https://doi.org/10.4171/JEMS/258 doi: 10.4171/JEMS/258
    [50] C. Scheven, Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., 146 (2015), 7–63. https://doi.org/10.1007/s00229-014-0684-8 doi: 10.1007/s00229-014-0684-8
    [51] R. E. Showalter, Monotone operators in Banach space and nonlinear partial differential equations, Providence, RI: American Mathematical Society, 1997.
    [52] P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, 51 (1984), 126–150. https://doi.org/10.1016/0022-0396(84)90105-0 doi: 10.1016/0022-0396(84)90105-0
    [53] K. Uhlenbeck, Regularity for a class of non-linear elliptic systems, Acta Math., 138 (1977), 219–240. https://doi.org/10.1007/BF02392316 doi: 10.1007/BF02392316
    [54] V. V. Zhikov, On some variational problems, Russian J. Math. Phys., 5 (1997), 105–116.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1635) PDF downloads(142) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog