In a previous paper a mathematical model was developed for thedynamics of activation and clonal expansion of T cells during theimmune response to a single type of antigen challenge, constructedphenomenologically in the macroscopic framework of a thermodynamictheory of continuum mechanicsfor reacting and proliferatingfluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.
Citation: D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 59-73. doi: 10.3934/mbe.2013.10.59
Related Papers:
[1]
Ernest Greene, Michael J. Hautus .
Demonstrating Invariant Encoding of Shapes Using A Matching Judgment Protocol. AIMS Neuroscience, 2017, 4(3): 120-147.
doi: 10.3934/Neuroscience.2017.3.120
[2]
Hannah Nordberg, Michael J Hautus, Ernest Greene .
Visual encoding of partial unknown shape boundaries. AIMS Neuroscience, 2018, 5(2): 132-147.
doi: 10.3934/Neuroscience.2018.2.132
[3]
Ernest Greene, Michael J. Hautus .
Evaluating persistence of shape information using a matching protocol. AIMS Neuroscience, 2018, 5(1): 81-96.
doi: 10.3934/Neuroscience.2018.1.81
[4]
Sherry Zhang, Jack Morrison, Wei Wang, Ernest Greene .
Recognition of letters displayed as successive contour fragments. AIMS Neuroscience, 2022, 9(4): 491-515.
doi: 10.3934/Neuroscience.2022028
[5]
Mirela Dubravac, Beat Meier .
Stimulating the parietal cortex by transcranial direct current stimulation (tDCS): no effects on attention and memory. AIMS Neuroscience, 2021, 8(1): 33-46.
doi: 10.3934/Neuroscience.2021002
[6]
Robert Friedman .
Themes of advanced information processing in the primate brain. AIMS Neuroscience, 2020, 7(4): 373-388.
doi: 10.3934/Neuroscience.2020023
[7]
Ernest Greene .
Comparing methods for scaling shape similarity. AIMS Neuroscience, 2019, 6(2): 54-59.
doi: 10.3934/Neuroscience.2019.2.54
[8]
Paul G. Nestor, Toshiyuki Ohtani, James J. Levitt, Dominick T. Newell, Martha E. Shenton, Margaret Niznikiewicz, Robert W. McCarley .
Prefrontal Lobe Gray Matter, Cognitive Control and Episodic Memory in Healthy Cognition. AIMS Neuroscience, 2016, 3(3): 338-355.
doi: 10.3934/Neuroscience.2016.3.338
[9]
Siri-Maria Kamp, Melissa Lehman, Kenneth J. Malmberg, Emanuel Donchin .
A Buffer Model Account of Behavioral and ERP Patterns in the Von Restorff Paradigm. AIMS Neuroscience, 2016, 3(2): 181-202.
doi: 10.3934/Neuroscience.2016.2.181
[10]
Timothy J. Ricker .
The Role of Short-term Consolidation in Memory Persistence. AIMS Neuroscience, 2015, 2(4): 259-279.
doi: 10.3934/Neuroscience.2015.4.259
Abstract
In a previous paper a mathematical model was developed for thedynamics of activation and clonal expansion of T cells during theimmune response to a single type of antigen challenge, constructedphenomenologically in the macroscopic framework of a thermodynamictheory of continuum mechanicsfor reacting and proliferatingfluid mixtures. The present contribution deals with approximate smooth solutions, called asymptotic waves, of the system of PDEs describing the introduced model, obtained using a suitable perturbative method. In particular, in the one-dimensional case, after deriving the expression of the velocity along the characteristic rays and the equation of the wave front, the transport equation for the first perturbation term of the asymptotic solution is obtained. Finally, it is shown that this transport equation can be reduced to an equation similar to Burgers equation.
References
[1]
Mathematical and Computer Modelling, 53 (2011), 314-329.
[2]
$1^{st}$ edition, Gauthier-Villars, Paris, 1965.
[3]
Annali di Matematica Pura ed Applicata, IV, CXI (1976), 31-44 (in french).
[4]
Bollettino U.M.I, 16-A (1976), 450-458 (in italian).
[5]
$1^{st}$ edition, Academic Press, New York, 1964.
[6]
Z. A. M. P. 14 (1963), 31-314.
[7]
SIAM Review, 14 (1972), 582-653.
[8]
Arch. Rational Mech. Anal., 14 (1963), 27-37.
[9]
Comm. Pure Appl. Math., 6 (1983), 231-238.
[10]
$1^{st}$ edition, Chapman and Hall, London, 1995.
[11]
$1^{st}$ edition, C. N. R. Press, Rome, 1987.
[12]
J. Math. Pures et Appl., 48 (1968), 117-158 (in french).
[13]
$1^{st}$ edition, Princeton University Press, Princeton, 1954.
$1^{st}$ edition, Springer, Berlin-Heidelberg-New York, 1998.
[22]
Bullettin of Mathematical Biology, 53 (1991), 721-749.
[23]
Theoretical Biology, 81 (1979,) 475-503.
[24]
Mathematical Biology, 68 (2006), 1819-1836.
[25]
Mathematical Medicine and Biology, 20 (2003), 341-366.
[26]
edition, Springer, Mediterranean Press , 1989.
[27]
$2^{nd}$ edition, Springer, Berlin-Heidelberg-New York, 2002.
[28]
$2^{nd}$ edition, Springer, Berlin-Heidelberg-New York, 2002.
[29]
Comm. Appl. Math., 3 (1950), 201-230.
This article has been cited by:
1.
Jana L. Gevertz, Peter S. Kim, Joanna R. Wares,
Mentoring Undergraduate Interdisciplinary Mathematics Research Students: Junior Faculty Experiences,
2017,
27,
1051-1970,
352,
10.1080/10511970.2016.1191571
2.
Daniel Santiago, Johannes Heidbuechel, Wendy Kandell, Rachel Walker, Julie Djeu, Christine Engeland, Daniel Abate-Daga, Heiko Enderling,
Fighting Cancer with Mathematics and Viruses,
2017,
9,
1999-4915,
239,
10.3390/v9090239
3.
Hang Xie, Yang Jiao, Qihui Fan, Miaomiao Hai, Jiaen Yang, Zhijian Hu, Yue Yang, Jianwei Shuai, Guo Chen, Ruchuan Liu, Liyu Liu, Nils Cordes,
Modeling three-dimensional invasive solid tumor growth in heterogeneous microenvironment under chemotherapy,
2018,
13,
1932-6203,
e0206292,
10.1371/journal.pone.0206292
4.
Syndi Barish, Michael F. Ochs, Eduardo D. Sontag, Jana L. Gevertz,
Evaluating optimal therapy robustness by virtual expansion of a sample population, with a case study in cancer immunotherapy,
2017,
114,
0027-8424,
E6277,
10.1073/pnas.1703355114
5.
Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell,
Mathematical Models for Immunology: Current State of the Art and Future Research Directions,
2016,
78,
0092-8240,
2091,
10.1007/s11538-016-0214-9
6.
Adrianne L. Jenner, Chae-Ok Yun, Peter S. Kim, Adelle C. F. Coster,
Mathematical Modelling of the Interaction Between Cancer Cells and an Oncolytic Virus: Insights into the Effects of Treatment Protocols,
2018,
80,
0092-8240,
1615,
10.1007/s11538-018-0424-4
7.
Victor Cervera-Carrascon, Riikka Havunen, Akseli Hemminki,
Oncolytic adenoviruses: a game changer approach in the battle between cancer and the immune system.,
2019,
19,
1471-2598,
443,
10.1080/14712598.2019.1595582
8.
Elzbieta Ratajczyk, Urszula Ledzewicz, Heinz Schättler,
Optimal Control for a Mathematical Model of Glioma Treatment with Oncolytic Therapy and TNF-
Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier,
On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach,
2017,
14,
1551-0018,
217,
10.3934/mbe.2017014
10.
Jiantao Zhao, Jianjun Paul Tian,
Spatial Model for Oncolytic Virotherapy with Lytic Cycle Delay,
2019,
81,
0092-8240,
2396,
10.1007/s11538-019-00611-2
11.
Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa,
2021,
Chapter 8,
978-981-15-8639-2,
157,
10.1007/978-981-15-8640-8_8
12.
Jana L. Gevertz, Joanna R. Wares,
Developing a Minimally Structured Mathematical Model of Cancer Treatment with Oncolytic Viruses and Dendritic Cell Injections,
2018,
2018,
1748-670X,
1,
10.1155/2018/8760371
13.
Adrianne L. Jenner, Federico Frascoli, Chae-Ok Yun, Peter S. Kim,
Optimising Hydrogel Release Profiles for Viro-Immunotherapy Using Oncolytic Adenovirus Expressing IL-12 and GM-CSF with Immature Dendritic Cells,
2020,
10,
2076-3417,
2872,
10.3390/app10082872
14.
Anna Park, Sangil Kim, Il Hyo Jung, Jong Hyuk Byun, Pinyi Lu,
An immune therapy model for effective treatment on inflammatory bowel disease,
2020,
15,
1932-6203,
e0238918,
10.1371/journal.pone.0238918
15.
Joseph Malinzi, Kevin Bosire Basita, Sara Padidar, Henry Ademola Adeola,
Prospect for application of mathematical models in combination cancer treatments,
2021,
23,
23529148,
100534,
10.1016/j.imu.2021.100534
16.
Adrianne L. Jenner, Peter S. Kim, Federico Frascoli,
Oncolytic virotherapy for tumours following a Gompertz growth law,
2019,
480,
00225193,
129,
10.1016/j.jtbi.2019.08.002
17.
Michael C. Luo, Elpiniki Nikolopoulou, Jana L. Gevertz,
From Fitting the Average to Fitting the Individual: A Cautionary Tale for Mathematical Modelers,
2022,
12,
2234-943X,
10.3389/fonc.2022.793908
18.
Olivia Cardinal, Chloé Burlot, Yangxin Fu, Powel Crosley, Mary Hitt, Morgan Craig, Adrianne L. Jenner,
Establishing combination PAC‐1 and TRAIL regimens for treating ovarian cancer based on patient‐specific pharmacokinetic profiles usingin silicoclinical trials,
2022,
2,
2689-9655,
10.1002/cso2.1035
19.
Christine E. Engeland, Johannes P.W. Heidbuechel, Robyn P. Araujo, Adrianne L. Jenner,
Improving immunovirotherapies: the intersection of mathematical modelling and experiments,
2022,
6,
26671190,
100011,
10.1016/j.immuno.2022.100011
20.
Morgan Craig, Jana L. Gevertz, Irina Kareva, Kathleen P. Wilkie,
A practical guide for the generation of model-based virtual clinical trials,
2023,
3,
2674-0702,
10.3389/fsysb.2023.1174647
21.
Mary P Choules, Peter L. Bonate, Nakyo Heo, Jared Weddell,
Prospective approaches to gene therapy computational modeling – spotlight on viral gene therapy,
2023,
1567-567X,
10.1007/s10928-023-09889-1
22.
Deivasundari P, M Kabong Nono, E B Megam Ngouonkadi, H B Fotsin, Anitha Karthikeyan,
Bistability and chaotic behaviors in a 4D cancer oncolytic Virotherapy mathematical model: Pspice and FPGA implementations,
2024,
99,
0031-8949,
035227,
10.1088/1402-4896/ad25cb
23.
Mohammed A. Hussein, Ekhlas H. Karam,
Design immune robust integral signum of the error controller for cancer tumor growth treatment based on improved crow search algorithm,
2024,
7,
27726711,
100472,
10.1016/j.prime.2024.100472
24.
Donggu Lee, Aurelio A. de los Reyes V, Yangjin Kim,
Optimal strategies of oncolytic virus-bortezomib therapy via the apoptotic, necroptotic, and oncolysis signaling network,
2024,
21,
1551-0018,
3876,
10.3934/mbe.2024173
25.
Anna Park, Jong Hyuk Byun, Il Hyo Jung, Shingo Iwami, Kwang Su Kim, Ning Cai,
Quantification of the Synergistic Inhibitory Effects of an Oncolytic Herpes Virus Plus Paclitaxel on Anaplastic Thyroid Cancer Cells,
2024,
2024,
1076-2787,
10.1155/cplx/3899849
D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 59-73. doi: 10.3934/mbe.2013.10.59
D. Criaco, M. Dolfin, L. Restuccia. Approximate smooth solutions of a mathematical model for the activation and clonal expansion of T cells[J]. Mathematical Biosciences and Engineering, 2013, 10(1): 59-73. doi: 10.3934/mbe.2013.10.59