Loading [Contrib]/a11y/accessibility-menu.js

Malaria model with stage-structured mosquitoes

  • Received: 01 November 2010 Accepted: 29 June 2018 Published: 01 June 2011
  • MSC : 39A11, 39A99, 92D25, 92D40.

  • A simple SEIR model for malaria transmission dynamics is formulated as our baseline model. The metamorphic stages in the mosquito population are then included and a simple stage-structured mosquito population model is introduced, where the mosquito population is divided into two classes, with all three aquatic stages in one class and all adults in the other class, to keep the model tractable in mathematical analysis. After a brief investigation of this simple stage-structured mosquito model, it is incorporated into the baseline model to formulate a stage-structured malaria model. A basic analysis for the stage-structured malaria model is provided and it is shown that a theoretical framework can be built up for further studies on the impact of environmental or climate change on the malaria transmission. It is also shown that both the baseline and the stage-structured malaria models undergo backward bifurcations.

    Citation: Jia Li. Malaria model with stage-structured mosquitoes[J]. Mathematical Biosciences and Engineering, 2011, 8(3): 753-768. doi: 10.3934/mbe.2011.8.753

    Related Papers:

    [1] Jia Li . A malaria model with partial immunity in humans. Mathematical Biosciences and Engineering, 2008, 5(4): 789-801. doi: 10.3934/mbe.2008.5.789
    [2] Liming Cai, Shangbing Ai, Guihong Fan . Dynamics of delayed mosquitoes populations models with two different strategies of releasing sterile mosquitoes. Mathematical Biosciences and Engineering, 2018, 15(5): 1181-1202. doi: 10.3934/mbe.2018054
    [3] Bassidy Dembele, Abdul-Aziz Yakubu . Controlling imported malaria cases in the United States of America. Mathematical Biosciences and Engineering, 2017, 14(1): 95-109. doi: 10.3934/mbe.2017007
    [4] Mugen Huang, Zifeng Wang, Zixin Nie . A stage structured model for mosquito suppression with immigration. Mathematical Biosciences and Engineering, 2024, 21(11): 7454-7479. doi: 10.3934/mbe.2024328
    [5] Yang Li, Jia Li . Stage-structured discrete-time models for interacting wild and sterile mosquitoes with beverton-holt survivability. Mathematical Biosciences and Engineering, 2019, 16(2): 572-602. doi: 10.3934/mbe.2019028
    [6] Ann Nwankwo, Daniel Okuonghae . Mathematical assessment of the impact of different microclimate conditions on malaria transmission dynamics. Mathematical Biosciences and Engineering, 2019, 16(3): 1414-1444. doi: 10.3934/mbe.2019069
    [7] Divine Wanduku . The stochastic extinction and stability conditions for nonlinear malaria epidemics. Mathematical Biosciences and Engineering, 2019, 16(5): 3771-3806. doi: 10.3934/mbe.2019187
    [8] Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang . Global dynamics of an age-structured malaria model with prevention. Mathematical Biosciences and Engineering, 2019, 16(3): 1625-1653. doi: 10.3934/mbe.2019078
    [9] Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche . Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6(2): 333-362. doi: 10.3934/mbe.2009.6.333
    [10] Hongyong Zhao, Yangyang Shi, Xuebing Zhang . Dynamic analysis of a malaria reaction-diffusion model with periodic delays and vector bias. Mathematical Biosciences and Engineering, 2022, 19(3): 2538-2574. doi: 10.3934/mbe.2022117
  • A simple SEIR model for malaria transmission dynamics is formulated as our baseline model. The metamorphic stages in the mosquito population are then included and a simple stage-structured mosquito population model is introduced, where the mosquito population is divided into two classes, with all three aquatic stages in one class and all adults in the other class, to keep the model tractable in mathematical analysis. After a brief investigation of this simple stage-structured mosquito model, it is incorporated into the baseline model to formulate a stage-structured malaria model. A basic analysis for the stage-structured malaria model is provided and it is shown that a theoretical framework can be built up for further studies on the impact of environmental or climate change on the malaria transmission. It is also shown that both the baseline and the stage-structured malaria models undergo backward bifurcations.


  • This article has been cited by:

    1. Jia Li, Discrete-time models with mosquitoes carrying genetically-modified bacteria, 2012, 240, 00255564, 35, 10.1016/j.mbs.2012.05.012
    2. Jia Li, Simple discrete-time malarial models, 2013, 19, 1023-6198, 649, 10.1080/10236198.2012.672566
    3. Angelina Mageni Lutambi, Melissa A. Penny, Thomas Smith, Nakul Chitnis, Mathematical modelling of mosquito dispersal in a heterogeneous environment, 2013, 241, 00255564, 198, 10.1016/j.mbs.2012.11.013
    4. Manju Agarwal, Archana S. Bhadauria, A stage structured model of malaria transmission and efficacy of mosquito larvicides in its control, 2014, 05, 1793-9623, 1450023, 10.1142/S1793962314500238
    5. Gbenga J. Abiodun, Peter Witbooi, Kazeem O. Okosun, Modeling and analyzing the impact of temperature and rainfall on mosquito population dynamics over Kwazulu-Natal, South Africa, 2017, 10, 1793-5245, 1750055, 10.1142/S1793524517500553
    6. Jia Li, Liming Cai, Yang Li, Stage-structured wild and sterile mosquito population models and their dynamics, 2017, 11, 1751-3758, 79, 10.1080/17513758.2016.1159740
    7. Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li, Dynamics of malaria transmission model with sterile mosquitoes, 2018, 12, 1751-3758, 577, 10.1080/17513758.2018.1498983
    8. HUI WAN, HUAIPING ZHU, THE IMPACT OF RESOURCE AND TEMPERATURE ON MALARIA TRANSMISSION, 2012, 20, 0218-3390, 285, 10.1142/S0218339012500118
    9. Yang Li, Jia Li, Discrete-time model for malaria transmission with constant releases of sterile mosquitoes, 2019, 13, 1751-3758, 225, 10.1080/17513758.2018.1551580
    10. Shangbing Ai, Jia Li, Junliang Lu, Mosquito-Stage-Structured Malaria Models and Their Global Dynamics, 2012, 72, 0036-1399, 1213, 10.1137/110860318
    11. Jia Li, Maoan Han, Jianshe Yu, Simple paratransgenic mosquitoes models and their dynamics, 2018, 306, 00255564, 20, 10.1016/j.mbs.2018.10.005
    12. Zhiting Xu, Yiyi Zhang, Traveling wave phenomena of a diffusive and vector-bias malaria model, 2015, 14, 1534-0392, 923, 10.3934/cpaa.2015.14.923
    13. Liming Cai, Shangbing Ai, Jia Li, Dynamics of Mosquitoes Populations with Different Strategies for Releasing Sterile Mosquitoes, 2014, 74, 0036-1399, 1786, 10.1137/13094102X
    14. Yanyuan Xing, Zhiming Guo, Jian Liu, Backward bifurcation in a malaria transmission model, 2020, 14, 1751-3758, 368, 10.1080/17513758.2020.1771443
    15. Hai-Feng Huo, Guang-Ming Qiu, Stability of a Mathematical Model of Malaria Transmission with Relapse, 2014, 2014, 1085-3375, 1, 10.1155/2014/289349
    16. Jia Li, New revised simple models for interactive wild and sterile mosquito populations and their dynamics, 2017, 11, 1751-3758, 316, 10.1080/17513758.2016.1216613
    17. Olugbenga O. Oluwagbemi, Denye N. Ogeh, Adewole Adewumi, Segun A. Fatumo, Computational and Mathematical Modelling: Applicability to Infectious Disease Control in Africa, 2016, 9, 19921454, 88, 10.3923/ajsr.2016.88.105
    18. Manuel De la Sen, Asier Ibeas, Aitor J. Garrido, Stage-Dependent Structured Discrete-Time Models for Mosquito Population Evolution with Survivability: Solution Properties, Equilibrium Points, Oscillations, and Population Feedback Controls, 2019, 7, 2227-7390, 1181, 10.3390/math7121181
    19. E. T. Ngarakana-Gwasira, C. P. Bhunu, E. Mashonjowa, Assessing the impact of temperature on malaria transmission dynamics, 2014, 25, 1012-9405, 1095, 10.1007/s13370-013-0178-y
    20. Li-Ming Cai, Maia Martcheva, Xue-Zhi Li, Competitive exclusion in a vector–host epidemic model with distributed delay†, 2013, 7, 1751-3758, 47, 10.1080/17513758.2013.772253
    21. Yiyou Pang, Shuai Wang, Siyu Liu, Dynamics analysis of stage-structured wild and sterile mosquito interaction impulsive model, 2022, 16, 1751-3758, 464, 10.1080/17513758.2022.2079739
    22. Chuihong Yang, Xinan Zhang, Jia Li, COEXISTENCE FROM INTERSPECIFIC MATINGS FOR MOSQUITOES WITH STAGE STRUCTURE, 2022, 12, 2156-907X, 1043, 10.11948/20220106
    23. Shangbing Ai, Jia Li, Jianshe Yu, Bo Zheng, Stage-structured models for interactive wild and periodically and impulsively released sterile mosquitoes, 2022, 27, 1531-3492, 3039, 10.3934/dcdsb.2021172
    24. Z. S. Boxonov, A discrete-time dynamical system of mosquito population, 2023, 29, 1023-6198, 67, 10.1080/10236198.2022.2160245
    25. Payal Singh, Bhumi Gor, Kamal Hossain Gazi, Supriya Mukherjee, Animesh Mahata, Sankar Prasad Mondal, Analysis and interpretation of Malaria disease model in crisp and fuzzy environment, 2023, 26667207, 100257, 10.1016/j.rico.2023.100257
    26. Zhongcai Zhu, Xiaomei Feng, Linchao Hu, GLOBAL DYNAMICS OF A MOSQUITO POPULATION SUPPRESSION MODEL UNDER A PERIODIC RELEASE STRATEGY, 2023, 13, 2156-907X, 2297, 10.11948/20220501
    27. Kumama Regassa Cheneke, Chen Mengxin, Fractional Derivative Model for Analysis of HIV and Malaria Transmission Dynamics, 2023, 2023, 1607-887X, 1, 10.1155/2023/5894459
    28. Ge Zhang, Ying Peng, Ruoheng Wang, Cuihong Yang, Xin'an Zhang, The impact of releasing sterile mosquitoes on the dynamics of competition between different species of mosquitoes, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024016
    29. Javier Del-Águila-Mejía, Fernando Morilla, Juan de Mata Donado-Campos, A system dynamics modelling and analytical framework for imported dengue outbreak surveillance and risk mapping, 2024, 257, 0001706X, 107304, 10.1016/j.actatropica.2024.107304
    30. S. Patrick Nelson, R. Raja, P. Eswaran, J. Alzabut, G. Rajchakit, Modeling the dynamics of Covid-19 in Japan: employing data-driven deep learning approach, 2024, 1868-8071, 10.1007/s13042-024-02301-5
    31. Souad Bounouiga, Bilal Basti, Noureddine Benhamidouche, Mathematical Exploration of Malaria Transmission Dynamics: Insights from Fractional Models and Numerical Simulation, 2024, 2513-0390, 10.1002/adts.202400630
    32. 可 张, Two Release Strategies of Sterile Mosquitoes under Weak Allee Effect, 2025, 14, 2324-7991, 303, 10.12677/aam.2025.141031
  • Reader Comments
  • © 2011 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3544) PDF downloads(973) Cited by(32)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog