Citation: Divine Wanduku. The stochastic extinction and stability conditions for nonlinear malaria epidemics[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 3771-3806. doi: 10.3934/mbe.2019187
[1] | World malaria report 2017, Licence: CC BY-NC-SA 3.0, World Health Organization, Geneva, 2017. |
[2] | D. Wanduku, Threshold conditions for a family of epidemic dynamic models for malaria with distributed delays in a non-random environment, Int. J. Biomath., 11 (2018), 1850085–1850130. |
[3] | Dengue control, Report of World Health Organization, 2019. Available from: http://www.who. int/denguecontrol/human/en/. |
[4] | Malaria, Report of Global Health, Division of Parasitic Diseases and Malaria, 2019. Available from: https://www.cdc.gov/malaria/about/disease.html. |
[5] | J. M. Crutcher and S. L. Hoffman, Malaria, Chapter 83-malaria, Medical Microbiology, 4th edi-tion, Galveston (TX), University of Texas Medical Branch at Galveston, 1996. |
[6] | D. L. Doolan, C. Dobano and J. K. Baird, Acquired Immunity to Malaria, Clin. Microbiol. Rev.,22 (2009), 13–36. |
[7] | L. Hviid, Naturally acquired immunity to Plasmodium falciparum malaria, Acta Trop., 95 (2005), 270–275. |
[8] | E. Avila and V. Buonomo, Analysis of a mosquito-borne disease transmission model with vector stages and nonlinear forces of infection, Ric. Mat., 64 (2015), 377–390. |
[9] | Z. Bai and Y. Zhou, Global dynamics of an SEIRS epidemic model with periodic vaccination and seasonal contact rate, Nonlinear Anal. Real World Appl., 13 (2012), 1060–1068. |
[10] | M. De la Sena, S. Alonso-Quesadaa and A. Ibeasb, On the stability of an SEIR epidemic model withdistributedtime-delayandageneralclassoffeedbackvaccinationrules, Appl.Math.Comput.,270 (2015), 953–976. |
[11] | M. De la Sen, S. Alonso-Quesada and A. Ibeas, On the stability of an SEIR epidemic model with distributed time-delay and a general class of feedback vaccination rules, Appl. Math. Comput., 270 (2015), 953–976. |
[12] | N. H. Du and N. N. Nhu, Permanence and extinction of certain stochastic SIR models perturbed by a complex type of noises, Appl. Math. Lett., 64 (2017), 223–230. |
[13] | Z. Jiang, W. Ma and J. Wei, Global Hopf bifurcation and permanence of a delayed SEIRS epidemic model, Math. Comput. Simulation, 122 (2016), 35–54. |
[14] | Q. Liu, D. Jiang, N. Shi, et al., Asymptotic behaviors of a stochastic delayed SIR epidemic model with nonlinear incidence, Commun. Nonlinear Sci. Numer. Simul., 40 (2016), 89–99. |
[15] | Q. Liu and Q. Chen, Analysis of the deterministic and stochastic SIRS epidemic models with nonlinear incidence, Phys. A, 428 (2015), 140–153. |
[16] | J. P. Mateus and C. M. Silva, Existence of periodic solutions of a periodic SEIRS model with general incidence, Nonlinear Anal. Real World Appl., 34 (2017), 379–402. |
[17] | J. P. Mateus and C. M. Silva, A non-autonomous SEIRS model with general incidence rate, Appl. Math. Comput., 247 (2014), 169–189. |
[18] | L. Pang, S. Ruan, S. Liu, et al., Transmission dynamics and optimal control of measles epidemics,Appl. Math. Comput., 256 (2015), 131–147. |
[19] | S. Syafruddin and M. Salmi Md. Noorani, Lyapunov function of SIR and SEIR model for trans-mission of dengue fever disease, Int. J. Simul. Process Model., 8 (2013), 2–3. |
[20] | D. Wanduku, Complete Global Analysis of a Two-Scale Network SIRS Epidemic Dynamic Model with Distributed Delay and Random Perturbation,J. Appl. Math. Comput., 294 (2017), 49–76. |
[21] | D. Wanduku and G. S. Ladde, Fundamental Properties of a Two-scale Network stochastic human epidemic Dynamic model, Neural Parallel Sci. Comput., 19 (2011), 229–270. |
[22] | R. Ross, The Prevention of Malaria, John Murray, London, 1911. |
[23] | R. M. Anderson and R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, 1991. |
[24] | N. Chitnis, J. M. Hyman and J. M. Cushing, Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model, Bull. Math. Biol., 70 (2008), 1272–1296. |
[25] | M. Y. Hyun, Malaria transmission model for different levels of acquired immunity and temperature dependent parameters (vector). Rev. Saude Publica, 34 (2000), 223–231. |
[26] | G. Macdonald, The analysis of infection rates in diseases in which superinfection occurs. Trop. Dis. Bull., 47 (1950), 907–915. |
[27] | G. A. Ngwa and W. Shu, A mathematical model for endemic malaria with variable human and mosquito population, Math. computer. model., 32 (2000), 747–763. |
[28] | G. A. Ngwa, A. M. Niger and A. B. Gumel, Mathematical assessment of the role of non-linear birth and maturation delay in the population dynamics of the malaria vector, Appl. Math. Comput.,217 (2010), 3286–3313. |
[29] | C. N. Ngonghala , G. A. Ngwa and M. I. Teboh-Ewungkem, Periodic oscillations and backward bifurcation in a model for the dynamics of malaria transmission. Math. Biosci., 240 (2012), 45–62. |
[30] | M. I. Teboh-Ewungkem and T. Yuster, A within-vector mathematical model of plasmodium fal-ciparum and implications of incomplete fertilization on optimal gametocyte sex ratio, J. Theory Biol., 264 (2010), 273–286. |
[31] | R. Reiner, M. Geary, P. Atkinson, et al., Seasonality of Plasmodium falciparum transmission: a systematic review, Malar. J, 14 (2015), 343. |
[32] | A. Teklehaimanot and P. Mejia, Malaria and poverty, Ann. N. Y. Acad. Sci., 1136 (2008), 32–37. |
[33] | D. Wanduku and G. S. Ladde, Global properties of a two-scale network stochastic delayed human epidemic dynamic model, Nonlinear Anal. Real World Appl., 13 (2012), 794–816. |
[34] | E. Beretta, V. Kolmanovskii and L. Shaikhet, Stability of epidemic model with time delay influ-enced by stochastic perturbations, Math. Comput. Simulat., 45 (1998), 269–277. |
[35] | E. J. Allen, L. J. S. Allen, A. Arciniega, et al., Construction of equivalent stochastic differential equation models, Stoch. Anal. Appl. , 26 (2008), 274–297. |
[36] | Y. Cai, J. jiao, Z. Gui, et al., Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210–226. |
[37] | M. Krstic, The effect of stochastic perturbation on a nonlinear delay malaria epidemic model,Math. Comput. Simulat., 82 (2011), 558–569. |
[38] | P. V. V. Le, P. Kumar and M. O. Ruiz, Stochastic lattice-based modelling of malaria dynamics,Malar. J., 17 (2018), 250. |
[39] | D. Wanduku, A comparative stochastic and deterministic study of a class of epidemic dynamic models for malaria: exploring the impacts of noise on eradication and persistence of disease, preprint arXiv:1809.03897. |
[40] | Y. Cai, Y. Kang and W. Wang, a stochastic SIRS epidemic model with nonlinear incidence, Appl. Math. Comput., 305 (2017), 221–240. |
[41] | Y. Cai, Y. kang, M. Banerjee, et al., A stochastic epidemic model incorporating media coverage,Commun. math sci., 14 (2016), 893–910. |
[42] | A. Gray, D. Greenhalgh, L. Hu, et al., A Stochastic Differential Equation SIS Epidemic Model,SIAM J. Appl. Math., 71 (2011), 876–902. |
[43] | A. lahrouz and L. Omari, extinction and stationary distribution of a stochastic SIRS epidemic model with non-linear incidence, Statist. Probab. Lett., 83 (2013), 960–968 |
[44] | Y. zhang, K. Fan, S. Gao, et al., A remark on stationary distribution of a stochastic SIR epidemic model with double saturated rates, Appl. Math. Lett., 76 (2018), 46–52. |
[45] | Y. Zhou, W. Zhang, S. Yuan, et al., Persistence And Extinction in Stochastic Sirs Models With General Nonlinear Incidence Rate, Electron. J. Differ. Eq., 2014 (2014), 1–17. |
[46] | K. L. Cooke, Stability analysis for a vector disease model. Rocky Mountain J. Math., 9 (1979), 31–42. |
[47] | C. McCluskey, Global Stability of an SIR epidemic model with delay and general nonlinear inci-dence, Math. Biosci. Eng., 4 (2010), 837–850. |
[48] | Y. Takeuchi, W. Ma and E. Beretta, Global asymptotic properties of a delay SIR epidemic model with finite incubation times, Nonlinear Anal., 42 (2000), 931–947. |
[49] | D. Wanduku, Modeling Highly Random Dynamical Infectious Systems, in Applied Mathemati-cal Analysis: Theory, Methods, and Applications (eds. Dutta H., Peters J.), Studies in Systems, Decision and Control, 177 (2020), Springer, Cham. |
[50] | D. Wanduku and G. S. Ladde, The global analysis of a stochastic two-scale Network Human Epidemic Dynamic Model With Varying Immunity Period, J. Appl. Math. Phys., 5 (2017), 1150–1173. |
[51] | D. Wanduku and G. S. Ladde, Global Stability of Two-Scale Network Human Epidemic Dynamic Model, Neural Parallel Sci. Comput., 19 (2011), 65–90. |
[52] | M. Zhien and C. Guirong, Persistence and extinction of a population in a polluted environment,Math Biosci., 101 (1990), 75–97. |
[53] | X. Zhang, D. Jiang, T. Hayat, et al., Dynamics of stochastic SIS model with doubles epidemic diseases driven by levy jumps, Phys. A, 47 (2017), 767–777. |
[54] | X. Mao, Stochastic differential equations and applications, 2nd ed, Horwood Publishing Ltd., 2008. |
[55] | D.Wanduku, SomestochasticstabilitypropertiesofanonlinearfamilyofSEIRSepidemicmodels, in press, 2019. |
[56] | S. Ruan, D. Xiao and J. C. Beier, On the delayed rossmacdonald model for malaria transmission.Bull. Math. Biol., 70 (2008), 1098–1114. |
[57] | R. E. Howes, K. E. Battle, K. N. Mendis, et al., Global Epidemiology of Plasmodium vivax, Am. J. Trop. Med. Hyg., 95 (2016), 15–34. |
[58] | Aedes aegypti in Brazil, Report of OXITEC, 2019. Available from: https://www.oxitec.com/friendly-mosquitoes/brazil/. |
[59] | Piracicaba, SP, Report of Atlas of Human Development in Brazil, 2019. Available from: http: //www.atlasbrasil.org.br/2013/en/perfil_m/piracicaba_sp/. |
[60] | The World Factbook, Report of Central Intelligence Agency, 2019. Available from: https://www.cia.gov/library/publications/the-world-factbook/geos/br.html. |
[61] | World Malaria Report 2011, Report of World Health Organization, 2011. Available from: https: //www.who.int/malaria/publications/atoz/9789241564403/en/. |
[62] | M. T Bretscher, N. Maire, I. Felger, et al. , Asymptomatic Plasmodium falciparum infections may not be shortened by acquired immunity, Malar. J., 14 (2015), 294. |
[63] | S. M. Moghadas and A. B. Gumel, Global Stability of a two-stage epidemic model with general-ized nonlinear incidence, Math. Comput. Simulat., 60 (2002), 107–118. |
[64] | K. L. Cooke and P. van den Driessche, Analysis of an SEIRS epidemic model with two delays, J. Math Biol. 35 (1996), 240–260. |