A malaria model with partial immunity in humans

  • Received: 01 December 2007 Accepted: 29 June 2018 Published: 01 October 2008
  • MSC : 34D20, 34D23, 92D30

  • In this paper, we formulate a mathematical model for malaria transmission that includes incubation periods for both infected human hosts and mosquitoes. We assume humans gain partial immunity after infection and divide the infected human population into subgroups based on their infection history. We derive an explicit formula for the reproductive number of infection, R0, to determine threshold conditions whether the disease spreads or dies out. We show that there exists an endemic equilibrium if R0>1. Using an numerical example, we demonstrate that models having the same reproductive number but different numbers of progression stages can exhibit different transient transmission dynamics.

    Citation: Jia Li. A malaria model with partial immunity in humans[J]. Mathematical Biosciences and Engineering, 2008, 5(4): 789-801. doi: 10.3934/mbe.2008.5.789

    Related Papers:

    [1] Zindoga Mukandavire, Abba B. Gumel, Winston Garira, Jean Michel Tchuenche . Mathematical analysis of a model for HIV-malaria co-infection. Mathematical Biosciences and Engineering, 2009, 6(2): 333-362. doi: 10.3934/mbe.2009.6.333
    [2] Peter Witbooi, Gbenga Abiodun, Mozart Nsuami . A model of malaria population dynamics with migrants. Mathematical Biosciences and Engineering, 2021, 18(6): 7301-7317. doi: 10.3934/mbe.2021361
    [3] Pride Duve, Samuel Charles, Justin Munyakazi, Renke Lühken, Peter Witbooi . A mathematical model for malaria disease dynamics with vaccination and infected immigrants. Mathematical Biosciences and Engineering, 2024, 21(1): 1082-1109. doi: 10.3934/mbe.2024045
    [4] Yilong Li, Shigui Ruan, Dongmei Xiao . The Within-Host dynamics of malaria infection with immune response. Mathematical Biosciences and Engineering, 2011, 8(4): 999-1018. doi: 10.3934/mbe.2011.8.999
    [5] Zhong-Kai Guo, Hai-Feng Huo, Hong Xiang . Global dynamics of an age-structured malaria model with prevention. Mathematical Biosciences and Engineering, 2019, 16(3): 1625-1653. doi: 10.3934/mbe.2019078
    [6] Bassidy Dembele, Abdul-Aziz Yakubu . Controlling imported malaria cases in the United States of America. Mathematical Biosciences and Engineering, 2017, 14(1): 95-109. doi: 10.3934/mbe.2017007
    [7] Jinliang Wang, Jingmei Pang, Toshikazu Kuniya . A note on global stability for malaria infections model with latencies. Mathematical Biosciences and Engineering, 2014, 11(4): 995-1001. doi: 10.3934/mbe.2014.11.995
    [8] Zhilan Feng, Carlos Castillo-Chavez . The influence of infectious diseases on population genetics. Mathematical Biosciences and Engineering, 2006, 3(3): 467-483. doi: 10.3934/mbe.2006.3.467
    [9] Kento Okuwa, Hisashi Inaba, Toshikazu Kuniya . An age-structured epidemic model with boosting and waning of immune status. Mathematical Biosciences and Engineering, 2021, 18(5): 5707-5736. doi: 10.3934/mbe.2021289
    [10] Qian Ding, Jian Liu, Zhiming Guo . Dynamics of a malaria infection model with time delay. Mathematical Biosciences and Engineering, 2019, 16(5): 4885-4907. doi: 10.3934/mbe.2019246
  • In this paper, we formulate a mathematical model for malaria transmission that includes incubation periods for both infected human hosts and mosquitoes. We assume humans gain partial immunity after infection and divide the infected human population into subgroups based on their infection history. We derive an explicit formula for the reproductive number of infection, R0, to determine threshold conditions whether the disease spreads or dies out. We show that there exists an endemic equilibrium if R0>1. Using an numerical example, we demonstrate that models having the same reproductive number but different numbers of progression stages can exhibit different transient transmission dynamics.


  • This article has been cited by:

    1. Yoram Vodovotz, Gregory Constantine, James Faeder, Qi Mi, Jonathan Rubin, John Bartels, Joydeep Sarkar, Robert H. Squires, David O. Okonkwo, Jörg Gerlach, Ruben Zamora, Shirley Luckhart, Bard Ermentrout, Gary An, Translational Systems Approaches to the Biology of Inflammation and Healing, 2010, 32, 0892-3973, 181, 10.3109/08923970903369867
    2. Jinhu Xu, Yicang Zhou, Hopf bifurcation and its stability for a vector-borne disease model with delay and reinfection, 2016, 40, 0307904X, 1685, 10.1016/j.apm.2015.09.007
    3. Jia Li, Modelling of transgenic mosquitoes and impact on malaria transmission, 2011, 5, 1751-3758, 474, 10.1080/17513758.2010.523122
    4. Kazeem O. Okosun, Ouifki Rachid, Nizar Marcus, Optimal control strategies and cost-effectiveness analysis of a malaria model, 2013, 111, 03032647, 83, 10.1016/j.biosystems.2012.09.008
    5. Liming Cai, Xuezhi Li, Necibe Tuncer, Maia Martcheva, Abid Ali Lashari, Optimal control of a malaria model with asymptomatic class and superinfection, 2017, 288, 00255564, 94, 10.1016/j.mbs.2017.03.003
    6. Liming Cai, Necibe Tuncer, Maia Martcheva, How does within-host dynamics affect population-level dynamics? Insights from an immuno-epidemiological model of malaria, 2017, 40, 01704214, 6424, 10.1002/mma.4466
    7. Li-Ming Cai, Abid Ali Lashari, Il Hyo Jung, Kazeem Oare Okosun, Young Il Seo, Mathematical Analysis of a Malaria Model with Partial Immunity to Reinfection, 2013, 2013, 1085-3375, 1, 10.1155/2013/405258
    8. Yang Li, Jia Li, Discrete-time model for malaria transmission with constant releases of sterile mosquitoes, 2019, 13, 1751-3758, 225, 10.1080/17513758.2018.1551580
    9. K.O. Okosun, Rachid Ouifki, Nizar Marcus, Optimal control analysis of a malaria disease transmission model that includes treatment and vaccination with waning immunity, 2011, 106, 03032647, 136, 10.1016/j.biosystems.2011.07.006
    10. O.D. Makinde, K.O. Okosun, Impact of Chemo-therapy on Optimal Control of Malaria Disease with Infected Immigrants, 2011, 104, 03032647, 32, 10.1016/j.biosystems.2010.12.010
    11. Yijun Lou, Xiao-Qiang Zhao, The periodic Ross–Macdonald model with diffusion and advection, 2010, 89, 0003-6811, 1067, 10.1080/00036810903437804
    12. Yijun Lou, Xiao-Qiang Zhao, A Climate-Based Malaria Transmission Model with Structured Vector Population, 2010, 70, 0036-1399, 2023, 10.1137/080744438
    13. DYNAMICS OF STAGE-STRUCTURED DISCRETE MOSQUITO POPULATION MODELS, 2011, 1, 2156-907X, 53, 10.11948/2011005
    14. Hongyan Yin, Cuihong Yang, Xin'an Zhang, Jia Li, Dynamics of malaria transmission model with sterile mosquitoes, 2018, 12, 1751-3758, 577, 10.1080/17513758.2018.1498983
    15. Jia Li, Simple discrete-time malarial models, 2013, 19, 1023-6198, 649, 10.1080/10236198.2012.672566
    16. A. K. Misra, Anupama Sharma, Jia Li, A mathematical model for control of vector borne diseases through media campaigns, 2013, 18, 1553-524X, 1909, 10.3934/dcdsb.2013.18.1909
    17. Shangbing Ai, Jia Li, Junliang Lu, Mosquito-Stage-Structured Malaria Models and Their Global Dynamics, 2012, 72, 0036-1399, 1213, 10.1137/110860318
    18. Arman Rajaei, Amin Vahidi‐Moghaddam, Amir Chizfahm, Mojtaba Sharifi, Control of malaria outbreak using a non‐linear robust strategy with adaptive gains, 2019, 13, 1751-8652, 2308, 10.1049/iet-cta.2018.5292
    19. Yanyuan Xing, Zhiming Guo, Jian Liu, Backward bifurcation in a malaria transmission model, 2020, 14, 1751-3758, 368, 10.1080/17513758.2020.1771443
    20. Rashid Jan, Sultan Alyobi, Mustafa Inc, Ali Saleh Alshomrani, Muhammad Farooq, A robust study of the transmission dynamics of malaria through non-local and non-singular kernel, 2023, 8, 2473-6988, 7618, 10.3934/math.2023382
    21. S.Y. Tchoumi, H. Rwezaura, J.M. Tchuenche, A mathematical model with numerical simulations for malaria transmission dynamics with differential susceptibility and partial immunity, 2023, 3, 27724425, 100165, 10.1016/j.health.2023.100165
    22. Ge Zhang, Ying Peng, Ruoheng Wang, Cuihong Yang, Xin'an Zhang, The impact of releasing sterile mosquitoes on the dynamics of competition between different species of mosquitoes, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024016
  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3302) PDF downloads(643) Cited by(22)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog