Research article Special Issues

Analytical formula for fractional-order conditional moments of a nonlinear drift CEV process with regime switching: Hybrid approach with applications to finance

  • Published: 28 January 2026
  • MSC : 91G20, 91G80

  • This paper presents the development of an analytical methodology for computing fractional-order conditional moments in nonlinear drift constant elasticity of variance (NLD-CEV) processes, where regime transitions are governed by continuous-time finite-state irreducible Markov chains. Through the implementation of a hybrid systems framework, we establish closed-form solutions for conditional moments spanning arbitrary fractional orders across multiple regime states, significantly advancing the analytical tractability of NLD-CEV processes under stochastic regime conditions. The theoretical foundation of our approach relies on the construction and resolution of an intricate system of coupled partial differential equations, derived through the application of the Feynman–Kac formula in the context of switching diffusions. Our analysis extends to a detailed examination of asymptotic behaviors exhibited by fractional-order conditional moments within a two-state regime-switching framework, particularly emphasizing the interplay between the Markov chain intensity matrix's symmetry properties and various parametric configurations in determining the process' evolution. To illustrate the practical relevance of our approach, Monte Carlo simulations for the process with regime-switching are applied to validate the accuracy and computational efficiency of the analytical formulas. Furthermore, to demonstrate significant improvements over traditional methods, we apply our findings for the valuation of financial derivatives within a dynamic nonlinear mean-reverting regime-switching process. This work offers substantial contributions to financial modeling and derivative pricing by providing a robust tool for practitioners and researchers who are dealing with complex stochastic environments.

    Citation: Kittisak Chumpong, Khamron Mekchay, Fukiat Nualsri, Phiraphat Sutthimat. Analytical formula for fractional-order conditional moments of a nonlinear drift CEV process with regime switching: Hybrid approach with applications to finance[J]. AIMS Mathematics, 2026, 11(1): 2816-2851. doi: 10.3934/math.2026113

    Related Papers:

  • This paper presents the development of an analytical methodology for computing fractional-order conditional moments in nonlinear drift constant elasticity of variance (NLD-CEV) processes, where regime transitions are governed by continuous-time finite-state irreducible Markov chains. Through the implementation of a hybrid systems framework, we establish closed-form solutions for conditional moments spanning arbitrary fractional orders across multiple regime states, significantly advancing the analytical tractability of NLD-CEV processes under stochastic regime conditions. The theoretical foundation of our approach relies on the construction and resolution of an intricate system of coupled partial differential equations, derived through the application of the Feynman–Kac formula in the context of switching diffusions. Our analysis extends to a detailed examination of asymptotic behaviors exhibited by fractional-order conditional moments within a two-state regime-switching framework, particularly emphasizing the interplay between the Markov chain intensity matrix's symmetry properties and various parametric configurations in determining the process' evolution. To illustrate the practical relevance of our approach, Monte Carlo simulations for the process with regime-switching are applied to validate the accuracy and computational efficiency of the analytical formulas. Furthermore, to demonstrate significant improvements over traditional methods, we apply our findings for the valuation of financial derivatives within a dynamic nonlinear mean-reverting regime-switching process. This work offers substantial contributions to financial modeling and derivative pricing by providing a robust tool for practitioners and researchers who are dealing with complex stochastic environments.



    加载中


    [1] D. H. Ahn, B. Gao, A parametric nonlinear model of term structure dynamics, Rev. Financ. Stud., 12 (1999), 721–762. https://doi.org/10.1093/rfs/12.4.721 doi: 10.1093/rfs/12.4.721
    [2] W. J. Anderson, Continuous-time Markov chains: An applications-oriented approach, 1 Ed., New York: Springer Science & Business Media, 2012. http://dx.doi.org/10.1007/978-1-4612-3038-0
    [3] A. A. Araneda, N. Bertschinger, The sub-fractional CEV model, Physica A, 573 (2021), 125974. https://doi.org/10.1016/j.physa.2021.125974 doi: 10.1016/j.physa.2021.125974
    [4] N. A. Baran, G. Yin, C. Zhu, Feynman–Kac formula for switching diffusions: Connections of systems of partial differential equations and stochastic differential equations, Adv. Differ. Equ., 2013 (2013), 315. https://doi.org/10.1186/1687-1847-2013-315 doi: 10.1186/1687-1847-2013-315
    [5] S. Boyarchenko, S. Levendorskii, American options in regime-switching models, SIAM J. Control Optim., 48 (2009), 1353–1376. https://doi.org/10.1137/070682897 doi: 10.1137/070682897
    [6] J. Buffington, R. J. Elliott, Regime switching and European options, In: Stochastic theory and control, Lecture Notes in Control and Information Sciences, Berlin: Springer, 2002. https://doi.org/10.1007/3-540-48022-6_5
    [7] J. Cao, J. H. Kim, W. Zhang, Pricing variance swaps under hybrid CEV and stochastic volatility, J. Comput. Appl. Math., 386 (2021), 113220. https://doi.org/10.1016/j.cam.2020.113220 doi: 10.1016/j.cam.2020.113220
    [8] P. Carr, L. Wu, Leverage effect, volatility feedback, and self-exciting market disruptions, J. Financ. Quant. Anal., 52 (2017), 2119–2156. https://doi.org/10.1017/S0022109017000564 doi: 10.1017/S0022109017000564
    [9] K. C. Chan, G. A. Karolyi, F. A. Longstaff, A. B. Sanders, An empirical comparison of alternative models of the short-term interest rate, J. Finance, 47 (1992), 1209–1227. https://doi.org/10.1111/j.1540-6261.1992.tb04011.x doi: 10.1111/j.1540-6261.1992.tb04011.x
    [10] K. Chumpong, K. Mekchay, F. Nualsri, P. Sutthimat, Closed-form formula for the conditional moment-generating function under a regime-switching, nonlinear drift CEV process, with applications to option pricing, Mathematics, 12 (2024), 2667. https://doi.org/10.3390/math12172667 doi: 10.3390/math12172667
    [11] K. Chumpong, R. Tanadkithirun, C. Tantiwattanapaibul, Simple closed-form formulas for conditional moments of inhomogeneous nonlinear drift constant elasticity of variance process, Symmetry, 14 (2022), 1345. https://doi.org/10.3390/sym14071345 doi: 10.3390/sym14071345
    [12] J. Cox, Notes on option pricing i: Constant elasticity of variance diffusions, Unpublished note, Stanford University, Graduate School of Business, 1975.
    [13] J. C. Cox, S. A. Ross, The valuation of options for alternative stochastic processes, J. Financ. Econ., 3 (1976), 145–166. https://doi.org/10.1016/0304-405X(76)90023-4 doi: 10.1016/0304-405X(76)90023-4
    [14] J. Driffill, T. Kenc, M. Sola, F. Spagnolo, The effects of different parameterizations of Markov-switching in a CIR model of bond pricing, Stud. Nonlinear Dyn. E., 13 (2009). https://doi.org/10.2202/1558-3708.1490 doi: 10.2202/1558-3708.1490
    [15] D. Dufresne, Laguerre series for Asian and other options, Math. Financ., 10 (2000), 407–428. https://doi.org/10.1111/1467-9965.00101 doi: 10.1111/1467-9965.00101
    [16] B. Dupoyet, R. T. Daigler, Z. Chen, A simplified pricing model for volatility futures, J. Futures Markets, 31 (2011), 307–339. https://doi.org/10.1002/fut.20471 doi: 10.1002/fut.20471
    [17] B. Dumas, J. Fleming, R. E. Whaley, Implied volatility functions: Empirical tests, J. Finance, 53 (1998), 2059–2106. https://doi.org/10.1111/0022-1082.00083 doi: 10.1111/0022-1082.00083
    [18] R. J. Elliott, G. H. Lian, Pricing variance and volatility swaps in a stochastic volatility model with regime switching: Discrete observations case, Quant. Financ., 13 (2013), 687–698. http://dx.doi.org/10.1080/14697688.2012.676208 doi: 10.1080/14697688.2012.676208
    [19] L. A. Grzelak, C. W. Oosterlee, On the Heston model with stochastic interest rates, SIAM J. Financ. Math., 2 (2011), 255–286. https://doi.org/10.1137/090756119 doi: 10.1137/090756119
    [20] R. E. Haddad, Repeated integration and explicit formula for the $ n $-th integral of $ x^ m (\ln x)^{m'} $, arXiv Preprint, 2021. https://doi.org/10.48550/arXiv.2102.11723
    [21] X. J. He, S. Lin, A new nonlinear stochastic volatility model with regime switching stochastic mean reversion and its applications to option pricing, Expert Syst. Appl., 212 (2023), 118742. http://dx.doi.org/10.1016/j.eswa.2022.118742 doi: 10.1016/j.eswa.2022.118742
    [22] J. Hull, A. White, Pricing interest-rate-derivative securities, Rev. Financ. Stud., 3 (1990), 573–592. https://doi.org/10.1093/rfs/3.4.573 doi: 10.1093/rfs/3.4.573
    [23] C. S. Jones, Nonlinear mean reversion in the short-term interest rate, Rev. Financ. Stud., 16 (2003), 793–843. https://doi.org/10.1093/rfs/hhg014 doi: 10.1093/rfs/hhg014
    [24] J. Li, Trading VIX futures under mean reversion with regime switching, Int. J. Financ. Eng., 3 (2016), 1650021. https://doi.org/10.1142/S2424786316500213 doi: 10.1142/S2424786316500213
    [25] S. Lin, X. J. He, A regime switching fractional Black–Scholes model and European option pricing, Commun. Nonlinear Sci., 85 (2020), 105222. http://dx.doi.org/10.1016/j.cnsns.2020.105222 doi: 10.1016/j.cnsns.2020.105222
    [26] T. Liu, F. Soleymani, M. Z. Ullah, Solving multi-dimensional European option pricing problems by integrals of the inverse quadratic radial basis function on non-uniform meshes, Chaos Soliton. Fract., 185 (2024), 115156. https://doi.org/10.1016/j.chaos.2024.115156 doi: 10.1016/j.chaos.2024.115156
    [27] T. A. Marsh, E. R. Rosenfeld, Stochastic processes for interest rates and equilibrium bond prices, J. Finance, 38 (1983), 635–646. https://doi.org/10.1111/j.1540-6261.1983.tb02275.x doi: 10.1111/j.1540-6261.1983.tb02275.x
    [28] S. Mirevski, L. Boyadjiev, On some fractional generalizations of the Laguerre polynomials and the Kummer function, Comput. Math. Appl., 59 (2010), 1271–1277. https://doi.org/10.1016/j.camwa.2009.06.037 doi: 10.1016/j.camwa.2009.06.037
    [29] M. Mongkolsin, K. Mekchay, P. Sutthimat, Analytical solutions for time-fractional Cauchy problem based on OU, CIR and Jacobi processes with time-dependent parameters, Results Appl. Math., 28 (2025), 100657. https://doi.org/10.1016/j.rinam.2025.100657 doi: 10.1016/j.rinam.2025.100657
    [30] S. Rujivan, S. P. Zhu, A simple closed-form formula for pricing discretely-sampled variance swaps under the Heston model, ANZIAM J., 56 (2014), 1–27. https://doi.org/10.1017/S1446181114000236 doi: 10.1017/S1446181114000236
    [31] S. Rujivan, A. Sutchada, K. Chumpong, N. Rujeerapaiboon, Analytically computing the moments of a conic combination of independent noncentral chi-square random variables and its application for the extended Cox–Ingersoll–Ross process with time-varying dimension, Mathematics, 11 (2023), 1276. http://dx.doi.org/10.3390/math11051276 doi: 10.3390/math11051276
    [32] Y. Shen, T. K. Siu, Pricing variance swaps under a stochastic interest rate and volatility model with regime-switching, Oper. Res. Lett., 41 (2013), 180–187. http://dx.doi.org/10.1016/j.orl.2012.12.008 doi: 10.1016/j.orl.2012.12.008
    [33] P. Sutthimat, K. Mekchay, S. Rujivan, Closed-form formula for conditional moments of generalized nonlinear drift CEV process, Appl. Math. Comput., 428 (2022), 127213. http://dx.doi.org/10.1016/j.amc.2022.127213 doi: 10.1016/j.amc.2022.127213
    [34] P. Sutthimat, K. Mekchay, Closed-form formulas for conditional moments of inhomogeneous Pearson diffusion processes, Commun. Nonlinear Sci., 106 (2022), 106095. https://doi.org/10.1016/j.cnsns.2021.106095 doi: 10.1016/j.cnsns.2021.106095
    [35] Z. Tong, Modelling VIX and VIX derivatives with reducible diffusions, J. Futures Markets, 3 (2017), 153–175. https://doi.org/10.1504/IJBD.2017.084927 doi: 10.1504/IJBD.2017.084927
    [36] J. A. Wood, The chain rule for matrix exponential functions, Coll. Math. J., 35 (2004), 220–222. https://doi.org/10.2307/4146900 doi: 10.2307/4146900
    [37] D. D. Yao, Q. Zhang, X. Y, Zhou, Stochastic processes, optimization, and control theory: Applications in financial engineering, queueing networks, and manufacturing systems, Boston: Springer, 2006,281–300. https://doi.org/10.1007/0-387-33815-2_14
    [38] C. Yuan, X. Mao, Convergence of the Euler–Maruyama method for stochastic differential equations with Markovian switching, Math. Comput. Simulat., 64 (2004), 223–235. https://doi.org/10.1016/j.matcom.2003.09.001 doi: 10.1016/j.matcom.2003.09.001
    [39] H. Zhou, Itô conditional moment generator and the estimation of short-rate processes., J. Financ. Economet., 1 (2003), 250–271. https://doi.org/10.1093/jjfinec/nbg009 doi: 10.1093/jjfinec/nbg009
    [40] S. P. Zhu, A. Badran, X. Lu, A new exact solution for pricing European options in a two-state regime-switching economy, Comput. Math. Appl., 64 (2012), 2744–2755. https://doi.org/10.1016/j.camwa.2012.08.005 doi: 10.1016/j.camwa.2012.08.005
  • Reader Comments
  • © 2026 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(159) PDF downloads(30) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog