This study investigated the double-chain deoxyribonucleic acid (DNA) model that is at the heart of conservation and transmission of genetic information in biological systems. The model consists of a pair of strands that simulates DNA's intertwined chains of polynucleotides. These chains are bonded together by an elastic membrane that simulates hydrogen bonds between base pairs. To analyze the nonlinear dynamics of this system, the modified extended direct algebraic method was employed to derive exact analytical solutions, including bright solitons, dark solitons, Jacobi elliptic (JE) solutions, and periodic structures. The 3D, 2D, and polar visualizations obtained show longitudinal and transverse dynamics of the DNA helix. Visual examination of the outcomes confirmed the presence of solitary waves on DNA strands. In addition to presenting some dynamical analyses, such as bifurcation and stability analyses. The current study is a significant landmark in the area of DNA dynamics, with emphasis on prominent aspects of genetic information synthesis and transmission. The novelty of this work lies in the derivation of new exact soliton solutions to the governing DNA model that, to the best of our knowledge, have not been previously reported. The findings are expected to contribute to a deeper understanding of DNA dynamics and may also have broader implications in soliton theory, nonlinear science, plasma physics, fiber optics, and physical engineering.
Citation: Bassant Elkalzah, Mohammed S. Ghayad, M. Y. Hamada, Hatem E. Semary, Hamdy M. Ahmed, Soliman Alkhatib, Karim K. Ahmed. Solitary waves and bifurcation analysis in a double-chain DNA model[J]. AIMS Mathematics, 2026, 11(1): 2852-2889. doi: 10.3934/math.2026114
This study investigated the double-chain deoxyribonucleic acid (DNA) model that is at the heart of conservation and transmission of genetic information in biological systems. The model consists of a pair of strands that simulates DNA's intertwined chains of polynucleotides. These chains are bonded together by an elastic membrane that simulates hydrogen bonds between base pairs. To analyze the nonlinear dynamics of this system, the modified extended direct algebraic method was employed to derive exact analytical solutions, including bright solitons, dark solitons, Jacobi elliptic (JE) solutions, and periodic structures. The 3D, 2D, and polar visualizations obtained show longitudinal and transverse dynamics of the DNA helix. Visual examination of the outcomes confirmed the presence of solitary waves on DNA strands. In addition to presenting some dynamical analyses, such as bifurcation and stability analyses. The current study is a significant landmark in the area of DNA dynamics, with emphasis on prominent aspects of genetic information synthesis and transmission. The novelty of this work lies in the derivation of new exact soliton solutions to the governing DNA model that, to the best of our knowledge, have not been previously reported. The findings are expected to contribute to a deeper understanding of DNA dynamics and may also have broader implications in soliton theory, nonlinear science, plasma physics, fiber optics, and physical engineering.
| [1] |
J. D. Watson, F. H. C. Crick, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid, Nature, 171 (1953), 737–738. https://doi.org/10.1038/171737a0 doi: 10.1038/171737a0
|
| [2] |
S. Li, K. Paloja, M. M. C. Bastings, Pattern and precision: DNA-based mapping of spatial rules for T cell activation, Nanoscale Horizons, 2025. https://doi.org/10.1039/d5nh00412h doi: 10.1039/d5nh00412h
|
| [3] |
C. Howard-Varona, N. E. Solonenko, M. Burris, M. Urvoy, C. M. Sanderson, B. Bolduc, et al., Infection and genomic properties of single-and double-stranded DNA cellulophaga phages, Viruses, 17 (2025), 365. https://doi.org/10.3390/v17030365 doi: 10.3390/v17030365
|
| [4] |
X. Meng, G. Hu, X. Li, C. Gao, W. Song, W. Wei, et al., A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts, Nature Commun., 16 (2025), 31. https://doi.org/10.1038/s41467-024-55502-5 doi: 10.1038/s41467-024-55502-5
|
| [5] |
Y. Zhang, T. Wang, Z. Wang, X. E. Shi, J. Jin, Functions and therapeutic potentials of long noncoding RNA in skeletal muscle atrophy and dystrophy, J. Cachexia, Sarcopenia Muscle, 16 (2025), e13747. https://doi.org/10.1002/jcsm.13747 doi: 10.1002/jcsm.13747
|
| [6] |
S. W. Englander, N. R. Kallenbach, A. J. Heeger, J. A. Krumhansl, S. Litwin, Nature of the open state in long polynucleotide double helices: possibility of soliton excitations, Proc. Natl. Acad. Sci., 77 (1980), 7222–7226. https://doi.org/10.1073/pnas.77.12.7222. doi: 10.1073/pnas.77.12.7222
|
| [7] |
V. Muto, A. C. Scott, P. L. Christiansen, Thermally generated solitons in a toda lattice model of DNA, Phys. Lett. A, 136 (1989), 33–36. https://doi.org/10.1016/0375-9601(89)90671-3 doi: 10.1016/0375-9601(89)90671-3
|
| [8] |
A. Djine, N. O. Nfor, G. R. Deffo, S. B. Yamgoué, Higher order investigation on modulated waves in the Peyrard–Bishop–Dauxois DNA model, Chaos, Soliton. Fract., 181 (2024), 114706. https://doi.org/10.1016/j.chaos.2024.114706 doi: 10.1016/j.chaos.2024.114706
|
| [9] |
A. Djine, S. B. Yamgoué, N. O. Nfor, Fifth order approximation, solvent interaction in helicoidal Peyrard-Bishop-Dauxois model of DNA, Braz. J. Phys., 56 (2026), 13. https://doi.org/10.1007/s13538-025-01933-4 doi: 10.1007/s13538-025-01933-4
|
| [10] |
G. Arora, R. Rani, H. Emadifar, Soliton: a dispersion-less solution with existence and its types, Heliyon, 8 (2022), e12122. https://doi.org/10.1016/j.heliyon.2022.e12122 doi: 10.1016/j.heliyon.2022.e12122
|
| [11] |
M. A. B. Iqbal, M. Z. Raza, A. Khan, D. K. Almutairi, T. Abdeljawad, An innovative multivariate method for exploring soliton dynamics in nonlinear models, Results Eng., 26 (2025), 104892. https://doi.org/10.1016/j.rineng.2025.104892 doi: 10.1016/j.rineng.2025.104892
|
| [12] |
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 2248–2253. https://doi.org/10.1016/j.cnsns.2011.10.016 doi: 10.1016/j.cnsns.2011.10.016
|
| [13] | R. Hirota, The direct method in soliton theory, Cambridge University Press, 2004. https://doi.org/10.1017/CBO9780511543043 |
| [14] |
J. Zhang, X. Wei, Y. Lu, A generalized $\frac{G'}{G}$-expansion method and its applications, Phys. Lett. A, 372 (2008), 3653–3658. https://doi.org/10.1016/j.physleta.2008.02.027 doi: 10.1016/j.physleta.2008.02.027
|
| [15] |
Y. Liu, Z. Li, K. Wang, Symbolic computation of exact solutions for a nonlinear evolution equation, Chaos, Soliton. Fract., 31 (2007), 1173–1180. https://doi.org/10.1016/j.chaos.2005.09.055 doi: 10.1016/j.chaos.2005.09.055
|
| [16] |
M. S. Ghayad, M. Y. Hamada, H. M. Ahmed, H. Emadifar, K. K. Ahmed, Dynamical behavior of analytical solutions and bifurcation analysis for a novel structured (2+1)-dimensional Kadomtsev–Petviashvili equation via analytic approach, Sci. Rep., 15 (2025), 29832. https://doi.org/10.1038/s41598-025-15823-x doi: 10.1038/s41598-025-15823-x
|
| [17] |
C. L. Zheng, Comments on "The generalizing Riccati equation mapping method in nonlinear evolution equation: application to (2+1)-dimensional Boiti–Leon–Pempinelle equation", Chaos, Soliton. Fract., 39 (2009), 1493–1495. https://doi.org/10.1016/j.chaos.2007.04.026 doi: 10.1016/j.chaos.2007.04.026
|
| [18] |
B. Ghanbari, M. Inc, A new generalized exponential rational function method to find exact special solutions for the resonance nonlinear Schrödinger equation, Eur. Phys. J. Plus, 133 (2018), 142. https://doi.org/10.1140/epjp/i2018-11984-1 doi: 10.1140/epjp/i2018-11984-1
|
| [19] |
A. R. Seadawy, M. Bilal, M. Younis, S. T. R. Rizvi, S. Althobaiti, M. M. Makhlouf, Analytical mathematical approaches for the double-chain model of DNA by a novel computational technique, Chaos, Soliton. Fract., 144 (2021), 110669. https://doi.org/10.1016/j.chaos.2021.110669 doi: 10.1016/j.chaos.2021.110669
|
| [20] |
S. Kumar, A. Kumar, H. Kharbanda, Abundant exact closed-form solutions and solitonic structures for the double-chain deoxyribonucleic acid (DNA) model, Braz. J. Phys., 51 (2021), 1043–1068. https://doi.org/10.1007/s13538-021-00913-8 doi: 10.1007/s13538-021-00913-8
|
| [21] |
L. Ouahid, M. A. Abdou, S. Kumar, S. Owyed, S. S. Ray, A plentiful supply of soliton solutions for DNA Peyrard–Bishop equation by means of a new auxiliary equation strategy, Int. J. Mod. Phys. B, 35 (2021), 2150265. https://doi.org/10.1142/s0217979221502659 doi: 10.1142/s0217979221502659
|
| [22] |
K. J. Wang, A fast insight into the optical solitons of the generalized third-order nonlinear Schrödinger's equation, Results Phys., 40 (2022), 105872. https://doi.org/10.1016/j.rinp.2022.105872 doi: 10.1016/j.rinp.2022.105872
|
| [23] |
K. J. Wang, G. D. Wang, Variational theory and new abundant solutions to the (1+2)-dimensional chiral nonlinear Schrödinger equation in optics, Phys. Lett. A, 412 (2021), 127588. https://doi.org/10.1016/j.physleta.2021.127588 doi: 10.1016/j.physleta.2021.127588
|
| [24] |
K. J. Wang, The fractal active low-pass filter within the local fractional derivative on the Cantor set, COMPEL, 42 (2023), 1396–1407. https://doi.org/10.1108/compel-09-2022-0326 doi: 10.1108/compel-09-2022-0326
|
| [25] |
K. J. Wang, An effective computational approach to the local fractional low-pass electrical transmission lines model, Alex. Eng. J., 110 (2025), 629–635. https://doi.org/10.1016/j.aej.2024.07.021 doi: 10.1016/j.aej.2024.07.021
|
| [26] |
K. Wang, K. Yan, F. Shi, G. Li, X. Liu, Qualitative study of the (2+1)-dimensional BLMPE equation: variational principle, Hamiltonian and diverse wave solutions, AIMS Math., 10 (2025), 26168–26186. https://doi.org/10.3934/math.20251152 doi: 10.3934/math.20251152
|
| [27] |
A. Kukkar, S. Kumar, Dynamic behavior of dark and bright solitons with analytical solutions, together with other soliton forms in the double-chain DNA Model, Mod. Phys. Lett. B, 39 (2025), 2550203. https://doi.org/10.1142/s0217984925502033 doi: 10.1142/s0217984925502033
|
| [28] |
E. Fan, J. Zhang, Applications of the Jacobi elliptic function method to special-type nonlinear equations, Phys. Lett. A, 305 (2002), 383–392. https://doi.org/10.1016/s0375-9601(02)01516-5 doi: 10.1016/s0375-9601(02)01516-5
|
| [29] |
A. Akbulut, S. M. R. Islam, Study on the Biswas–Arshed equation with the beta time derivative, Int. J. Appl. Comput. Math., 8 (2022), 167. https://doi.org/10.1007/s40819-022-01350-0 doi: 10.1007/s40819-022-01350-0
|
| [30] |
Z. Li, Bifurcation and traveling wave solution to fractional Biswas-Arshed equation with the beta time derivative, Chaos, Soliton. Fract., 160 (2022), 112249. https://doi.org/10.1016/j.chaos.2022.112249 doi: 10.1016/j.chaos.2022.112249
|
| [31] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/tsci160111018a doi: 10.2298/tsci160111018a
|
| [32] |
U. Younas, J. Ren, L. Akinyemi, H. Rezazadeh, On the multiple explicit exact solutions to the double-chain DNA dynamical system, Math. Methods Appl. Sci., 46 (2023), 6309–6323. https://doi.org/10.1002/mma.8904 doi: 10.1002/mma.8904
|
| [33] |
M. Z. Yousaf, M. Abbas, T. Nazir, F. A. Abdullah, A. Birhanu, H. Emadifar, Investigation of the dynamical structures of double-chain deoxyribonucleic acid model in biological sciences, Sci. Rep., 14 (2024), 6410. https://doi.org/10.1038/s41598-024-55786-z doi: 10.1038/s41598-024-55786-z
|
| [34] |
M. S. Ghayad, H. M. Ahmed, N. M. Badra, W. B. Rabie, Wave propagation analysis of the fractional generalized (3+1)-dimensional P-type equation with local M-derivative, J. Umm Al-Qura Univ. Appl. Sci., 2025, 1–16. https://doi.org/10.1007/s43994-025-00238-1 doi: 10.1007/s43994-025-00238-1
|
| [35] |
S. T. Obeidat, K. K. Ahmed, H. M. Ahmed, W. W. Mohammed, M. S. Ghayad, Fractional derivative effects on exploration of soliton solutions of (3+1)-D Kadomtsev-Petviashvili-Sawada-Kotera-Ramani model using modified extended direct algebraic approach, Contemp. Math., 6 (2025), 5346–5367. https://doi.org/10.37256/cm.6420257594 doi: 10.37256/cm.6420257594
|