In this paper, we first determine the weight distributions of some subfield codes $ \mathcal{C}_{f}^{(p)} $ and punctured codes $ \mathcal{C}_{f}^{*(p)} $ constructed from special functions, both of which are few-weight codes. Furthermore, we derive the parameters of their dual codes. Notably, some of these codes and their duals turn out to be optimal or almost distance-optimal. As an application, two classes of 2-designs are constructed from some codes.
Citation: Shanshan Liu, Yan Liu, Xiaoyu Yu. Weight distributions of subfield codes from special functions[J]. AIMS Mathematics, 2026, 11(1): 2797-2815. doi: 10.3934/math.2026112
In this paper, we first determine the weight distributions of some subfield codes $ \mathcal{C}_{f}^{(p)} $ and punctured codes $ \mathcal{C}_{f}^{*(p)} $ constructed from special functions, both of which are few-weight codes. Furthermore, we derive the parameters of their dual codes. Notably, some of these codes and their duals turn out to be optimal or almost distance-optimal. As an application, two classes of 2-designs are constructed from some codes.
| [1] |
C. Carlet, C. Ding, J. Yuan, Linear Codes from Perfect Nonlinear Mappings and Their Secret Sharing Schemes, IEEE Trans. Inf. Theory, 51 (2005), 2089–2102. https://doi.org/10.1109/TIT.2005.847722 doi: 10.1109/TIT.2005.847722
|
| [2] |
C. Ding, Linear Codes from Some 2-Designs, IEEE Trans. Inf. Theory, 61 (2015), 3265–3275. https://doi.org/10.1109/TIT.2015.2420118 doi: 10.1109/TIT.2015.2420118
|
| [3] |
R. Calderbank, W. M. Kantor, The Geometry of Two-Weight Codes, Bull. London Math. Soc., 18 (1986), 97–122. https://doi.org/10.1112/blms/18.2.97 doi: 10.1112/blms/18.2.97
|
| [4] |
Y. Ding, S. Zhu, A Family of Linear Codes with Few Weights and Their Subfield Codes, Cryptogr. Commun., 17 (2025), 207–238. https://doi.org/10.1007/s12095-024-00753-8 doi: 10.1007/s12095-024-00753-8
|
| [5] |
A. Canteaut, P. Charpin, H. Dobbertin, Weight Divisibility of Cyclic Codes, Highly Nonlinear Functions on $\mathbb{F}_{2^m}$, and Crosscorrelation of Maximum-Length Sequences, SIAM J. Discrete Math., 13 (2000), 105–138. https://doi.org/10.1137/S0895480198350057 doi: 10.1137/S0895480198350057
|
| [6] |
C. Carlet, P. Charpin, V. Zinoviev, Codes, bent functions and permutations suitable for DES-like cryptosystems, Designs, Codes, Cryptogr., 15 (1998), 125–156. https://doi.org/10.1023/A:1008344232130 doi: 10.1023/A:1008344232130
|
| [7] |
X. Wang, D. Zheng, The subfield codes of several classes of linear codes, Cryptogr. Commun., 12 (2020), 1111–1131. https://doi.org/10.1007/s12095-020-00432-4 doi: 10.1007/s12095-020-00432-4
|
| [8] |
C. Ding, Z. Heng, The Subfield Codes of Ovoid Codes, IEEE Trans. Inf. Theory, 65 (2019), 4715–4729. https://doi.org/10.1109/TIT.2019.2907276 doi: 10.1109/TIT.2019.2907276
|
| [9] |
L. Xu, C. Fan, S. Mesnager, R. Luo, H. Yan, Subfield codes of several few-weight linear codes parameterized by functions and their consequences, IEEE Trans. Inf. Theory, 70 (2024), 3941–3964. https://doi.org/10.1109/TIT.2023.3328932 doi: 10.1109/TIT.2023.3328932
|
| [10] |
F. Hernández, G. Vega, The Subfield and Extended Codes of a Subclass of Optimal Three-Weight Cyclic Codes, Algorithmica, 85 (2023), 3973–3995. https://doi.org/10.1007/s00453-023-01173-5 doi: 10.1007/s00453-023-01173-5
|
| [11] |
X. Qiao, X. Du, W. Yuan, Several classes of linear codes with AMDS duals and their subfield codes, Cryptogr. Commun., 16 (2024), 1429–1448. https://doi.org/10.1007/s12095-024-00729-8 doi: 10.1007/s12095-024-00729-8
|
| [12] |
Y. Wu, Optimal few-weight codes and their subfield codes, J. Algebra Appl., 23 (2024), 2450248. https://doi.org/10.1142/S0219498824502487 doi: 10.1142/S0219498824502487
|
| [13] | R. Lidl, H. Niederreiter. Finite Fields. Cambridge University Press, 1997. |
| [14] | M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, Markus Grassl, 2007. Available from: http://www.codetables.de |
| [15] |
E. F. Assmus, H. F. Mattson, New 5-designs, J. Combinat. Theory, 6 (1969), 122–151. https://doi.org/10.1016/S0021-9800(69)80115-8 doi: 10.1016/S0021-9800(69)80115-8
|
| [16] | X. Ran, R. Luo, Two classes of subfield codes of linear codes, arXiv preprint arXiv: 2211.00426, (2022). https://doi.org/10.48550/arXiv.2211.00426 |
| [17] |
Z. Heng, C. Ding, The subfield codes of hyperoval and conic codes, Finite Fields Appl., 56 (2019), 308–331. https://doi.org/10.1016/j.ffa.2018.12.006 doi: 10.1016/j.ffa.2018.12.006
|
| [18] |
Z. Heng, C. Ding, The Subfield Codes of Some $[q+ 1, 2, q]$ MDS Codes, IEEE Trans. Inf. Theory, 68 (2022), 3643–3656. https://doi.org/10.1109/TIT.2022.3151721 doi: 10.1109/TIT.2022.3151721
|