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1. Introduction

Throughout this paper, let g be a prime power and F,» denote the finite field with g™ elements
where m is a positive integer. An [n, k, d] linear code C over F,n is a k-dimensional subspace of IFZm
with minimum Hamming distance d. Defined as {y € F’;m | x -y = Oforall x € C}, the dual code
C* of Cis an [n,n — k, d*] linear code with minimum Hamming distance d*. The dual code C*+ of
an [n, k, d] linear code C over F,n is said to be almost distance-optimal if there is no [n,n — k', d’]
linear code over Fym withn — k" > (n— k) + 1 (ie., k¥’ < k — 1) (resp. d’ > d* + 1) that makes
it substantially deviate from distance-optimal behavior, or if it either closely approaches meeting a
bound for linear codes (in terms of distance optimality) or exhibits performance that is nearly distance-
optimal. The punctured code C* of C is obtained by removing the ith coordinate from each codeword
of C. Its generator matrix is derived from C’s generator matrix G by deleting column i and discarding
any resulting zero or duplicate rows.

For a linear code C, the weight distribution is the sequence (Ag, Ay, . . ., A,), Where A; is the number
of codewords of Hamming weight i (with Ag = 1). Closely related to the weight distribution is the
weight enumerator (or weight counter) of C, defined as the polynomial We(z) = X7 A;7', which
compactly encodes the number of codewords of each weight. The code is called a t-weight code if there
are exactly ¢ nonzero A; for 1 < i < n. Linear codes with few weights are of particular interest due
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to their applications in association schemes, strongly regular graphs [1], combinatorial z-designs [2],
and cryptography [3]. Recently, significant progress has been made in constructing such codes and
determining their weight distributions using exponential sums and trace representations using defining
sets [4], with studies covering various families, including optimal few-weight codes.

In the context of constructing optimal linear codes, the subfield code was first introduced in [5,
6]. Most subfield codes have few weights and good parameters. The next lemma presents the trace
representation of the subfield code in terms of the generator matrix of the linear code over Fym.

Lemma 1.1 ([7, Lemma 1]). Let G = (g;;) € F’(;ff,” be a generator matrix of the linear code C over

Fym. Then the trace representation of the subfield code C}q) over F, is given by

k k
C}q) - {(Trq’”/q (Z aign),"' »Trgmyq Zaigm)) |ay, -+ ,ax € ]qu},

i:] l:]

where Trym, is the trace function from Fym to F,.

Building on these foundations, Ding and Heng [8] initiated the study of subfield codes’ properties
and determined the weight distributions of those derived from elliptic quadric codes and Tits ovoid
codes. In [9], Xu et al. first presented a construction framework of three-dimensional linear codes Cf*

with generator matrix
1

G*} =|x , (1)
y (x,y)eS
where S = {(x,y) € Fflm | f(x,y) = 0}, and discussed their subfield codes. Furthermore, consider a
3 X (#S + 1) matrix
0
Gr=|1 G}, @
0

where #S denotes the cardinality of S. Then, a [#S+1, 3, d] linear code can be obtained from the matrix
(2), denoted by Cy. Obviously, the punctured code C;; is obtained by deleting the first coordinate of C,
resulting in a [#S, 3] code with generator matrix G*.. Subsequent works further extended this research
to subfield codes from various linear codes, optimal cyclic codes [10], and other few-weight linear
codes [11,12].

Inspired by the above work, we investigate the subfield codes C}q) and their punctured versions

C;Z(q) for three carefully chosen functions:
o f(x,y) =Tramp(x - y) +Nomp(x +y);
o f(x,y) =Tromp(x-y);
o f(x,y)= Trps/p(x2 +y2), where p = 3 (mod 4).

This paper is organized as follows. Section 2 introduces basic concepts and lemmas related to
finite field functions and linear codes. Section 3 studies two types of subfield and punctured codes
(with their duals) derived from two specific functions, including their key properties and parameter
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advantages illustrated by examples. Section 4 investigates a further subfield code and its punctured
code based on another function, confirming excellent parameters through examples. Section 5 presents
two classes of 2-designs are derived from several codes. Section 6 concludes the paper with comments.

2. Preliminaries

The trace function from Fym to F,, denoted as Tr,m/,, is defined by

m—1
Trymq(x) = Z x4 forallx € Fgm.
i=0

The norm function from Fym to F, is denoted as N m . It can be expressed as

m—1

2 qgm-1
Nq’"/q(x) =x-x7-x7 - x4 =x"aT forallx e Fym.

Let g = p¢ with p a prime and e a positive integer. An additive character of F, is a nonzero function
x : F, — C*, where C* is the set of nonzero complex numbers such that

x(x+y)=xx)x(y) forallx,yeF,.

For any a € F,, the function

Try)p(ax)

Xa(x) =, forx € F,

defines an additive character of IF,, where {, = ™7 is a primitive pth root of unity.

If a = 0, then yo(x) = 1 for all x € Fy, which is called the trivial additive character of Fy; if a = 1,
X1 1s called the canonical additive character of F,,.

Clearly, y,(x) = xi(ax) for all x € F,. Additive characters satisfy the following orthogonality

relation:
qg ifa=0,
a\X) =
ZX() {O ifaelFZ.

x€F,

Note that if y and y’ denote the canonical additive characters of F, and F,m, respectively, then
X' =xoTrym,.
A multiplicative character of Fy is a nonzero homomorphism ¢ : F;, — C* such that

Y(xy) =y (x)y(y) forallx,yeF,.

Let g be a fixed primitive element of F, where F, = (g), and let {41 = e?7i/(a=1) be a primitive
(g — 1)th root of unity. All multiplicative characters of F, can be expressed as

13
lﬁj(gk) =§;_1 fork=0,1,---,9 -2,

where Y is called the trivial multiplicative character; for odd q, ¥ (41,2 is the quadratic character of
F,, denoted by 5. Similarly, the guadratic character of Fym is denoted by 7’.
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Multiplicative characters satisfy the following orthogonality relation:

g-1 forj=0,
(x) =
Zw’() {0 for j # 0.

*
x€F,

For an additive character y and a multiplicative character ¢ of F,, the Gaussian sum G (¢, x) over
IF, is defined by

G, x)= Y wx)x(x).

"
x€F,

In general, the explicit determination of the Gaussian sum is a difficult problem. In the case of ¥ = 1,
Gaussian sums are explicitly determined in [13].

Lemma 2.1 ( [13]). Let g = p¢ with p an odd prime, and let x| be the canonical additive character of
Fy. Then,

(-t yg ifp=1 (mod4),

G(n, x1) = e
G (—1)e‘l(ﬁ) VG ifp=3 (modd).

Let x be the nontrivial additive character of F, and f € F,[x] a positive-degree polynomial. The
character sums

D x(f()

x€F,

are called Weil sums. For quadratic polynomials over F, with odd g, Weil sums are characterized as
follows.

Lemma 2.2 ([13]). Let x;, be a nontrivial additive character of F, with odd q, and let f(x) = ax’> +
arx +ap € Fy[x] with ay # 0. Then,
aj
2 xe(f(©) = x| a0 = 2= | n(a2) G (. x).
cely, a2
Let (1, A, -+, A;b) denote the weight distribution of its dual code C*. Now, recall the Pless power

moments, which describe the relationship between the weight distributions of C and C+. The first four
Pless power moments are given by:
n
> Ai=ph
i=0
n

ZiAi = pk-! (pn—n—A7y);
i=0

n
Z A, = p* 2 [(p = Dn(pn—n+1) — 2pn — p - 2n+2) A+ +2A%] ;
=0
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Zi3A,~ :pk_3((p - )n (pzn2 —2pn* +3pn—p+n*-3n +2)

i=0
- (?)pzn2 —3p*n—6pn*+ 12pn+ p*> —6p +3n*> —9n + 6) Ay
+6(pn—p—n+2)Ay - 6A3L).

In this paper, we consider the linear codes Cy over F = with generator matrix (2). According to
Lemma 1.1, the subfield code C}q) has the following trace representation:

C}q) _ {ca,b,c - (Trqm/q(b), (a+ Trymq(bx + CY))(x,y)es) |a€F, b,cec qu} . 3)

In the following sections, we focus on calculating the parameters and weight distributions of the
subfield codes and punctured codes as well as their dual codes.

3. Weight distributions of C;” and C;® with their duals

In this section, take g = 2. It is easy to observe that the length of the subfield code C}z) (resp. the
punctured code C;(z)) is #S5 + 1 (resp. #5). Now, we aim to discuss the weight distributions of C](CZ) and
C;(z) and to analyze their dual codes. Let &1 = F> X Fom X Fom for short. Set

Naope =# {(x,y) €S| a+Trmp(bx+cy) = O} for (a, b, c) € &;. 4)
For any (a, b, ¢) € &, the weight of the codeword ¢, 5 . in C}z) is equal to
Wt(ca,b,c) = #S - Nap,c + 5(b), &)

where §(x) is a function from Fym to {0, 1} defined as:

0 if Trom =0,
5(x :{ ez o (3) ©6)

1 if Trompp(x) # 0.

3.1. Weight distributions of linear codes from f(x,y) = Trom/p(x - y) + Nomp(x +y)

In this subsection, the lengths and weight distributions of C}Z) and C;(Z) are explicitly given for
f(x,y) = Tromp(x - y) + Nomjo(x + y). Below, we prove a few more auxiliary results which will be
used to calculate the weight distribution of the codes.

Lemma 3.1. Let (a, b, c) € &, and define wi = a + Trom2(bc) + Nomjp (b + ¢ + 1).
(i) Let Ty = {(a, b, c) € Fy X F},, X Fom | w1 =0, Tromj2(b) = 0}; then #Ty = 2>m~1 —2m,
(i) Let T> = {(a, b,c) € Fo X F},, X Fom | w1 = 0, Trom2(b) # 0}; then #T, = 2>,

(iii) Let T3 = {(a, b, c) € Fy X F},, x Fom | wy = 1, Trom)2(b) # 0}; then #T5 = 22"\,
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(iv) Let Ty = {(a, b, c) € Fy X F}, X Fom | w1 = 1, Tromp(b) = 0}; then #T, = 22m~1 — 2™,
(v) Let Ts = {(a,0,¢) € Fo x {0} X F},, | w1 = 0}; then #T5 = 2" — 1.
(vi) Let T = {(a,0,c) € Fo x {0} X B}, | w1 = 1}; then #Tg = 2" — 1.

Proof. We will only prove (i) and (ii), as the others can be derived similarly.
(i) From the orthogonal property of the canonical additive character, we have

#7 = 2" Z Z X (1Trom (b))

UEF, bEF,,

=271 ) D K (ub)

HEF; bEF,,
— 22m—1 _m

(if) The set of triples (a, b, ¢) € Fy X F%,, X Fom where w; = 0 has 22" — 2" elements. It has two

distinct subsets: 77 (with Trym 2 (b) = 0) and T (with Trym 5 (b) # 0). Thus, #7, = (22" — M) —#T) =

22m—1‘ O

Define a character sum

Iy = x(a) Z X (Trampa(x - y) + Nowpa (x + ) X' (bx + ¢y) 0
(x.y)€F,,

where (a, b, c) € &1. From the orthogonal property of the canonical additive character, we obtain

"¢ = y(a) Z X (Nompp(x +y)) X' (x -y + bx +cy)

(x,y) EFom

=x(@ > x(Nomp(s)) ¥/ (1+5+b+c)x) x'(cs)

(s,x)eF%m
=2"y(a)x'(bc)x (sz/z(b +c+ 1))

=2"(-1)“1,
where the second equality follows from s = x + y, and w; is as defined in Lemma 3.1.

Theorem 3.2. The subfield code C}z) defined in Eq. (3) is a binary linear code with parameters
[22m=1 —2m=1 4 1, 2m + 1,222 — 2"~1], and its weight distribution is given in Table 1. Its dual code

is a binary linear code with parameters [22’"_1 —m=l 41 p2m=1 _om=1_ 19,y 3].
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Table 1. Weight distribution of C}”.

Weight Multiplicity
0 1
22m—2 22m—1 -1
22m—2 +1 22m—1
22m—2 + 2m—1 22m—1 -1
22m—2 + 2m—1 +1 22m—1
22m—1 + 2m—l 1

Proof. We begin by determining the length of the code. To this end, we compute #S. Using the
orthogonal property of the canonical additive character and y’ = y o Trom/,, we have

#S=3 Z Z X (K (Trympa(x - y) + Nompa (x +3)))

k€Fy (x,y)eFd,,

1
_ 2m 1_'_5 Z X(Trzm/z(x.y)+N2m/2(x+y))

(X’Y)GF%W'
1
=275 3 X (Tranpa(x(s = ) + Nawpa(s))
(s x)eIF%m
— 22m—1 2m—1

where s = x + y. Thus, the length of C}Z) jg 22m=1 _om=1 4 1
In view of Eq (5), we discuss N, for (a,b,c) € &1. Clearly, Nopo = #S, and N, 00 = O for
a € F,. When b and c are not both zero, using additive character properties,

2Ngpe = Z Z X (k(a+ Trymja(bx + cy)))

k€F, (x,y)eS

=#S + Z X (@ + Trym s (bx + cy))
(x,y)eS

=#S+ y(a) Z ¥ (bx +cy)
(x,y)€S

1 7
=#S+ x(a) Z (5 Z X (1(Trompa(x - y) + Nompp (x +3)) ) | ¥ (bx +cy)
(x,y)ngm HER,

1 ’ 1 a,b,c
=#S+ 5)(((1) Z x (bx +cy)+ EFI
(x9y)€F§m

| A
= #5+ 5T
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From the above discussion, we derive the weight of the codeword ¢, p . in C}Z) as follows:

0 ifa=b=c=0,

Wt(Cqpe) = 4271 —pm-l ifa#0, b=c=0,
§(b) +22m72 —2m=2 _Lpeheif p ¢ notall 0,
0 fa=b=c=0,
22m=1 _pm-1 ifa=1,b=c=0,
22m=2 if (a,b,c) € Tg U Ty,

) 22m=2 4 ] if (a,b,c) € T,
p2m=2 _ pm-1 if (a,b,c) €eT5sUT,
22m=2 _om=1 1] if (a,b,c) € Ty,
where T; (i = 1,...,6) are defined in Lemma 3.1. This shows that C}z) is a binary linear code with

parameters [22"~1 — 21 4 1,2m + 1,222 — 2"-1]. Applying Lemma 3.1 allows us to immediately
determine the frequency of each weight.

At last, it is easy to know that the dual code of C}Z) has length 22"~! — 2= 4 1 and dimension
22m=1 —2m=1 _ 2m. By using the first four power moments, we find that AT = A} =0, and A7 > 0.
This completes the proof. O

Remark 3.3. Xu et al. studied, in [9], Theorems 7, 9, 12, 14, subfield codes, and the weight distributions
of their dual codes for g = 2 using various functions. We extend the function to f(x,y) = Trom/(x -
y) + Nom»(x +y) to study the same for g = 2.

Example 3.4. The examples provided below demonstrate that the subfield code C}z) possesses ex-
cellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].

(1) Form = 2, C}Z) is a clearly best-known [7, 5, 2] binary linear code with weight enumerator 1 +

772 +82% + 77% + 822 + 8. Tts dual C}z)L is an almost distance-optimal code [7, 2, 3].

(2) Form =3, C}z) is a best-known [29, 7, 12] binary linear code with weight enumerator 1 + 31z'? +
32713 + 31210 + 327! + 228, Tts dual is an almost distance-optimal code [29, 22, 3].

(3) Form =4, C](,z) is a best-known [121, 9, 56] binary linear code with weight enumerator 1+127z
1282%7 + 12775 + 12825 + 7129, Its dual is an almost distance-optimal dual code [121, 112, 3] .

56+

Using the relationship between C}z) and its punctured code C; @ , along with Theorem 3.2, we
obtain the following result. The minimum distance of the dual code can be computed with the first four
power moments, and the calculation is omitted here.

Theorem 3.5. The punctured code C;; @ isa three-weight 221 =21 2m+ 1,222 — 2"~ binary
linear code, and its weight enumerator is

1 + (22m _ 1)Z22m—2 + (22)11 _ 1)Z22m—2_2m—1 + Z22m—l_2m—l.
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Its dual is a [22m~1 = 2m=1 22m=1 _om=1 _ 2y _ 1, 4] binary linear code.

Remark 3.6. Xu et al. studied, in [9, Theorems 8, 10, 11, 13, 15], subfield codes and the weight
distributions of their dual codes for ¢ = 2 using various functions. We extend the function to f(x,y) =
Tromjp(x - y) + Nom 2 (x +y) to study the same for g = 2.

Example 3.7. The examples provided below demonstrate that the punctured code c:@ possesses
excellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].

(1) For m = 3, C; @ is a binary linear code with parameters and weight enumerator 1 + 63z!> +

63716 + 728128, 7, 12]. Its dual code is a binary linear code, and both codes attain the best-known
parameters|[28, 21, 4].
(2) Let m = 4. C;. @ s a binary linear code with parameters and weight enumerator 1 +

2552°0 + 25575 + 71201120, 9, 56]. Its dual is a binary linear code, and both have the best-known
parameters[120, 111, 4].
3.2. Weight distributions of linear codes from f(x,y) = Trom/p(x - y)

In this subsection, the lengths and weight distributions of C}z) and C;(z) are explicitly given for
f(x,y) = Trymja(x - y). Below, we prove a few more auxiliary results which will be used to calculate
the weight distributions of the codes.

Similar to the proof of Lemma 3.1, we omit the proof here.

Lemma 3.8. Let (a, b, c) € &, and define wy = a + Trom p(bc).

(i) Let Q1 = {(a,b,c) € Fy X F},, X Fom | wy = 0, Trom2(b) = 0}; then #Qy = 22m~1 —2m,

(i) Let Oy = {(a, b, c) € Fy X F}, X Fom | wy = 0, Tromjp(b) # 0}; then #Q, = 2271,
(iii) Let Q3 = {(a, b,c) € Fy X F}, X Fom | wz = 1, Trompp(b) # 0}; then #Q3 = 22"~

(iv) Let Qs = {(a,b,c) € Fo X F},, X Fom | wy = 1, Tramj2(b) = 0}; then #Q4 = 22"~1 — 2™,

(v) Let Qs = {(a,b,c) € Fy x Fom X F},, | a =0, b =0}, then #Qs = 2" — 1.

(vi) Let Q¢ = {(a,b,c) € Fy X Fon X F5,, | a =1, b =0}, then #Q¢ = 2" — 1.

Define a character sum
e = y(a) Z X (Trympp(x - y)) X' (bx +cy), ®)
(x,y)€F

where (a,b,c) € &;. Using the orthogonal property of the canonical additive character and y’ =
x o Tromp, we have

T3P = x(@) > x (Trana(x - ) X' (bx +cy)
(x.y)€F3,,

=x(@ > X (x-y+bx+cy)
(x.y)€F3,,
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=x(@ > X () ) X ((y+b)x)

yEFzm xe€Fym
=2"x(a)x'(bc)

where w, is as defined in Lemma 3.8.
Theorem 3.9. The subfield code C](CZ) defined in Eq (3) is a binary linear code with parameters [2°" '+

2m=V 4 1, 2m +1,2%"2), and its weight distribution is given in Table 2. Its dual code is a binary linear
code with parameters [2%"~1 +2m=1 41, 22m=1 L om=1 _9p 3],

Table 2. Weight distribution of C}”.

Weight Multiplicity
0 1
22m—2 22m—1 -1
22m—2 +1 22m—1
22m—2 + 2m—l 22m—1 -1
22m—2 + 2m—1 +1 22m—1
22m—1 + 2m—1 1

Proof. We begin by determining the length of the code. To this end, we compute #S. Using the
orthogonal property of the canonical additive character and y’ = y o Trom/,, we have

#S = % Z Z X (K : Trzm/z(x'y))

k€ (x,y) ngm

_ 1
=m=1 4 3 Z X (Trzm/z(x . y))
(x,y)€F

m-— 1 7
=2 1+§ Z X' (x-y)

(xvy) ngm

o1 ,
=22 > X (0)
yeFym

— 22m—1 + 2m—1

Thus, the length of C{* is 2271 + 271 4 1.

Using calculations similar to those in Eqs (4) and (5) with detailed derivations omitted, the weight

AIMS Mathematics Volume 11, Issue 1, 2797-2815.
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of the codeword ¢, 5 - in C}z) is

0 ifa=b=c=0,
wt(Cqpe) = 3221 4 om-1 ifa+0, b=c=0,
8(b) +2¥m=2 4 2m=2 _ 1782 if p ¢ notall 0,
0 ifa=b=c=0,
p2m=1 4 pm-1 ifa=1,b=c=0,
22m=2 if (a,b,c) € Q5 U 0y,
T o224 if (a,b,c) € 0s,
22m=2 4 pm—1 if (a,b,c) € Qg U Qua,
22m=2 4 om=1 4 1 if (a,b,c) € Q3.

where Q; (i = 1,...,6) are defined in Lemma 3.8. This means that C 2 isa binary linear code with
parameters [22’" Uy 2m=1 4 1,2m +1,22"2]. Applying Lemma 3.8 1mmed1ately gives the frequency
of each weight.

Finally, it is easy to see that the dual code of C ) has length 221 4 2’” "'+ 1 and dimension

22m=1 4 om=1 _ 2. Using the first four power moments we find that A{- = Ay =0, and A3 > 0. This
completes the proof. O

Remark 3.10. Xu et al. studied, in [9], Theorems 7, 9, 12, 14, subfield codes and the weight
distributions of their dual codes for ¢ = 2 using various functions. We extend the function to
f(x,y) = Trymp(x - y) to study the same for g = 2.

Example 3.11. The examples provided below demonstrate that the subfield code C}z) possesses ex-

cellent parameters. For comparison, the best-known parameters are retrieved from the code tables

available at [14].

(1) For m = 2, CJ(CZ) is a clearly best-known [11,5,4] binary linear code with weight enumerator
1+772* +82° + 720 + 827 + z!0. Its dual is an almost distance-optimal code [11, 6, 3].

(2) For m = 3, C}Z) is a clearly best-known [37,7, 16] binary linear code with weight enumerator
1+312'0 432717 + 31229 + 3272 + 236, Tts dual is an almost distance-optimal code [37, 30, 3].

(3) Form =4, C}Z) is a best-known [137, 9, 64] binary linear code with weight enumerator 1+ 127754+

1282% + 127772 + 128773 + 2136 Its dual is an almost distance-optimal code [137, 128, 3].

Using the relationship between C;Z) and its punctured code C; @ together with Theorem 3.9 and
the first four power moments, we immediately derive the following result. The minimum distance of
the dual code can be computed with the first four power moments, and the calculation is omitted here.

Theorem 3.12. The punctured code C; ) is a three-weight [22"~1 +2m=1 2m+1,22"-2] binary linear
code, and its weight enumerator is
22m—2+2m—l " 22m—l+2m—] .

1+ (22— D27 4 (22~ 1)z

Its dual is a [27m~1 4 2m=1 22m=1 L om=1 _ 2y _ 1,4)] binary linear code.
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Remark 3.13. Xu et al. studied, in [9, Theorems 8, 10, 11, 13, 15], subfield codes and the weight
distributions of their dual codes for ¢ = 2 using various functions. We extend the function to f(x, y) =
Trom2(x - y) to study the same for g = 2.

Example 3.14. The examples provided below demonstrate that the punctured code C;. @ possesses
excellent parameters. For comparison, the best-known parameters are retrieved from the Code Tables
available at [14].

(1) Form =2, C; @ isa binary linear code with parameters and weight enumerator 1 + 15z% + 1525 +

z19[10, 5,4]. Its dual is a binary linear code, and both codes attain the best-known parameters
[10,5,4].
(2) Form = 3, C;; @isa binary linear code with parameters and weight enumerator 1+63z'6+63z20+

z36[36, 7,16]. Its dual is a binary linear code, and both codes attain the best-known parameters
[36,29,4].
(3) For m = 4, C;; @ s a binary linear code with parameters and weight enumerator 1 + 255z7%% +

25577 + 7139[136,9, 64]. Its dual is a binary linear code, and both codes attain the best-known
parameters [136, 127, 4].

4. Weight distributions of C’J(,p ) and C’;Z(p ) with their duals

In this section, we set ¢ = p (where p = 3 (mod 4)) and m = 3. It is easy to observe that the length
of the subfield code C](Cp ) (resp. the punctured code C;(p ))is #S + 1 (resp. #S). The function f(x, y)

is defined as f(x,y) = Tr,3,,(x* + y%). Here, we aim to discuss the weight distributions of C}p ) and

C;Z(p ), and to analyze their dual codes. Let & = Fp X F,3 X F 3 for short. Set

N/

abe = # {(x,y) eS|la+ Trps/p(bx +cy) = 0} for any (a, b, c) € &. 9)
For any (a, b, ¢) € &, the weight of the codeword ¢, 5 - in C}p ) is given by

wt(Cape) = #S — N/

a,b,c

+6'(b), (10)

where ¢’ (x) is a function from F s to {0, 1} defined as:

0 ifTr x) =0,
5 (x) = 3 /p(X)
1 if Trps,,(x) # 0.

(1)

Next, we will study the weight distributions of C}p ) and C;(p ), and analyze their dual codes. To this
end, we will prove some auxiliary results below, which will help us calculate the weight distributions
of the aforementioned codes.

Lemma 4.1. Let (b,c) € F 3 XF 3, and define w3 = Trps/p(b2 +c?).

(i) Let Ry = {(b,c) € F\s X F3 | w3 =0, Try3,,(b) = 0}, then #Ry = p* — p3 + p.

(ii) Let Ry = {(b,c) EF Xy | w3 =0, Try, (b) = o}; then #Ry = p* — p3 + p? — 1.
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(iii) Let R3 = {(b,¢) € F,3 X Fy3 | w3 =0, Trys,,(b) # 0}, then #R3 = p° — p*.

(iv) Let Ry = {(b,c) € Fps X Fys | w3 # 0, Trys;,(b) = 0}; then #Rs = p° — p* + p* — p2.
(v) Let Rs = {(b,c) € F,s xF3 | w3 #0, Tr3,,(b) # 0}, then #Rs = p® —2p° + p*.
(vi) Let Rg = {(b,c) € Fps XFps | ws = 0}, then #Rs = p> — p* + p*.

(vii) Let Ry = {(b,c) € F\s x F | Try3;,(b) = 0}; then #R; = p°.

Proof. The conclusion of (vii) follows directly from the definition. Additionally, the cardinalities #R;
to #Rs can be derived using set theory based on the following relationships: R, = (Rg N R7) \ {(0,0)},
R3 =R\ R7, R4 = R7 \ Rg, and Rs = (Rg U R7)“. Thus, we only need to prove (i) and (vi).

By utilizing the orthogonal property of the canonical additive character, together with y’ = yoTr 3,
and Lemma 2.2, we have:

()
=z 30 3 3 (T (67 u0)) 3%k (T )

KEF, uel, beF »3 cer3

= Z D, 2 X Wb (kb)) x (k)

k€F, uelF, beF »3 CEFP3

=p +—Z77(K)2G(X n)?

KGF

:p4—p +p .
(vi)

#R¢ = ! Z Z X (KTI'p3/p(b2+C2))

(b,c)er k€Fp

=p’+— Z 2 (KTrzﬂ/p(bz) +’<Trp3/1’(cz))

KEF* (b, c)eIF‘2

=p5+%z 2 () 3k (xe?)

«€F, bEF 3 c€F 3

=p +—Z77(K) G(x'. 1)

KEIF
_ .5
=p - P +P .
Od
Define a character sum
Fg"b’c = Z x(ka) Z Z X (/JTI‘p3/p(y2) +,uTrp3/p(x2)) x(kbx + kcy), (12)
k€F}, uEF}, (x,y)eFi3
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where (a,b,c) € & for any such triple. Using the orthogonal property of the canonical additive
character, along with y’ = y o Tl‘p3 /p and Lemma 2.2, we have

ng,b,c = Z x (ka) Z Z )((,u Trps/p(yz) +/1Trp3/p(x2))x(/<bx +Kcy)

KEFS, peF;, (x,y)eF2
= Z x(ka) Z ux* + kbx) Z X (1y? + key)
(k1) €FS? x€F 3 yeF 3
2012 4 2
’ 7 K (b +C ) 7 7
= >, xa)n i~ )G )
(k) €F2 K
2032 4 2
K (b +C ) / ’ ’
= Z X(Ka — Trps/p(4—))77 (/l)zG(X > 1] )2
% 2 “
(«,1)€F,
20p2 4+ 2
=Gy, n)? Z /\/(Ka Tr,s, (g))
4p
(ko) €Fp?

-p*(p-1? ifa=0, ws3=0,
={p3(p-1 ifa=0,w3#0,0ora+#0, w3=0,

—p3 ifa#0, wy #0,

where w3 is as defined in Lemma 4.1.

Theorem 4.2. The subfield code C}p ) defined in Eq (3) is a linear code over F, with parameters

[p° = p> +p?+ 1,7, p° — p* = p3 + p?], and its weight distribution is presented in Table 3. Its dual
code C](pp)l is also a linear code over F), with parameters (P -p+p>+1,p°—p*+p*>-6,3].

Table 3. The Weight distribution of C\"".

Weight Multiplicity
0 1
p>-p*+p? p-1
pS_p4_p3+2p2 p6_2p5+2p4_2p3+p2
pS_p4_p3+2p2+1 p7_3p6+3p5_p4
P —p4 pt-pP+pr-1
p’>-p* +1 p>-p*
p’-p* —p +p 2p° =3p*+3p* —-2p? - p+1
p>-pt-pP+pr+l 2p® —4p° +2p*

Proof. We begin by determining the length of the code. To compute #S, note that #S = #R¢, so we can
directly conclude that the length of C}p ) is P -pl+p*+1.

Following the same computational approach as in Egs (4) and (5), analogous calculations apply to
Eqgs (9) and (10). As a consequence, the weight of the codeword ¢, 5 . in C](cp ) is derived as follows
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(detailed steps are omitted):

0 ifa=b=c=0,
wt(Cape) = p° — p° +p? ifa#0,b=c=0,
§'(b) +p*(p-1) +#[(p— D(p? - p*) =T¢"¢] if b, c notall 0,
0 ifa=b=c=0,
p’—p+p? ifa#0,b=c=0,
p>-pt-p*+2p? ifa #0, (b,c) € Ry,
p>-pt-pP+2p?+1 ifa #0, (b,c) €Rs,
={p°-p* ifa=0, (b,c) € R,
p’-pt+1 ifa=0, (b,c) € R,
p>—pt-p+p? ifa=0, (b,c)€Ry
ora#0, (b,c) € Ry,
pP-pt-pP+p+l ifa=0, (b,c) €Rs
ora#0, (b,c) € R3,

where R; (i = 2,...,5) are defined in Lemma 4.1. Thus, C](cp ) is a linear code with parameters | p5 -
PP+ p2+1,7,p° - p* = p> + p?], and applying Lemma 4.1 immediately gives the frequency of each
weight.

Finally, it is easy to see that the dual code C}p 'L has length p°> — p? + p? + 1 and dimension

p> — p? + p* — 6. Using the first four power moments, we find that A} = Ay = 0, and A3 > 0. This
completes the proof. O

Example 4.3. The examples provided below demonstrate that the subfield code C}p ) possesses ex-

cellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].
For p = 3, Cj(f) is a ternary linear code with weight enumerator 1+304z'444+6487'4+360z'°3+6487!54+

627162 + 1627193 +27223[226, 7, 144]. Tts dual is attains the best-known parameters [226, 219, 3].

Using the relationship between CJ(C” ) and its punctured code C; (P) together with Theorem 4.2 and
the first four power moments, we immediately derive the following result. The minimum distance of
the dual code can be computed with the first four power moments, and the calculation is omitted here.

Theorem 4.4. The punctured code C';. P s a four-weight linear code over F, with parameters | P> -

P>+ p2. 7, p° — p* — p3 + p?], and its weight distribution is presented in Table 4. Its dual is a linear
code over F,, with parameters [p° = p+p%p° - p+p>-1,3].
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Table 4. The Weight distribution of C; .

Weight Multiplicity
0 1
p’-pi+p? p-1
pS_p4_p3+2p2 p7_2p6+p5+p4_2p3+p2
p>-p* pP-p +p?-1

p-pt=p+p* 2p°-2p° - p*+3pP -2p*—p+1

Example 4.5. The examples provided below demonstrate that the punctured code c: P possesses
excellent parameters. For comparison, the best-known parameters are retrieved from the Code Tables
available at [14].

For p =3, C'; () is a best-known [225, 7, 144] ternary linear code with weight enumerator 149527144+

1008z!33 +2247192 427225 Tts dual is a ternary linear code, and both share the best-known parameters
[225,218, 3].

5. Constructing t-designs

Let ¢, n, k, A be positive integers with ¢ < k < n. An incidence structure D = (P, B) is called
a t-(n, k, 1) design or simply a t-design if it satisfies two core conditions: % is a set of n elements
called points, B is a family of k-element subsets of # called blocks, and every ¢-element subset of #
is contained in exactly A blocks from $B. This design satisfies the combinatorial identity ('t’ )A = (’;)b,
where b = |B| and b denote the total number of blocks. Key variants include the simple ¢-design (with
no repeated blocks in B) and the Steiner system, which is a z-design with t > 2 and 4 = 1 and is
denoted S(t, «,n). For an [n, k, d] linear code C over Fy, its coordinate set is P = {p1,p2,..., P},
and the support set of a codeword ¢ € C is defined as supp(c) = {i | ¢; # 0,i € P}. Let kx be a code
weight with A, # 0, where A, counts the number of weight-« codewords in C, and let B, be the family
of support sets from all weight-x codewords in C. If (P, B,) forms a 7-(n, k, A) design, the code C is
said to hold a t-(n, k, A) support design (denoted D, (C)), or equivalently, the support sets of weight-«
codewords in C form a ¢-design.

By Assmus and Mattson [15], the following theorem suffices for a linear code and its dual to form

simple t-designs.

Theorem 5.1 (Assmus—Mattson Theorem). Let C be an [n, k, d] code over By, with d* as the minimum
distance of C*. Let w be the largest integer < n satisfying

w_{LH|<d,
q-1

and w* defined analogously by replacing d with d*. Let (A, and (Af);lzo be the weight distributions
of C and C*, respectively. For a positive integer t < d, let s be the number of i € [1,n—t] with A;- # 0.
If s < d —t, then the following assertions hold:

o Weight-i codewords of C form a t-design if A; # 0, and d <i < w;
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o Weight-i codewords of C* form a t-design if A # 0, and d*- < i < min{n —t,w*}.

Theorem 5.2. Let f(x,y) = Trom/a(x - y) + Nomja(x +y) and m > 3. The codewords of Hamming
weight 2712 — M1 op 22m=2 iy C}<2) form a 2-design. Moreover, for all k with 4 < k < 22m~1 —pm=1

the Hamming weight-k codewords in C;';Q)l form this 2-design.

Proof. Through the integration of Theorem 3.5 and Theorem 5.1, we arrive at the conclusions for this
2-design. O

Theorem 5.3. Let f(x,y) = Trom/a(xy) and m > 2. The Hamming weight 22m=2 4 gm=1 gp p2m=2
codewords in C;Z(z) form a 2-design . Moreover, for all k with 4 < k < 2°"~' + 2"~ the Hamming

weight-k codewords in ()}‘(2)l form this 2-design.

Proof. The combination of Theorem 3.12 and Theorem 5.1 gives the desired conclusions for this 2-
design. O

6. Conclusions

This paper extends the framework proposed in [9] for constructing three-dimensional linear codes
Cr over F,m that are parameterized by functions. Specifically, we investigate the weight distributions
of the subfield code C}z), the punctured code C;(z), and their dual codes for the case g = 2. For g = p
(where p = 3 (mod 4) and m = 3), we conduct a similar analysis on the weight distributions of the
subfield code C}p ), the punctured code C;.(p ) , and their dual codes. Codes with favorable parameters
are rare, and relevant examples are provided in Examples 3.4, 3.7, 3.11, 3.14, 4.3, and 4.5. Further-
more, through our careful comparison, many of the obtained codes either have new parameters or are
inequivalent to the known subfield codes (see Table 5). Lastly, two classes of 2-designs are derived
from several codes presented in this work.

Table 5. Some known subfield codes in the literature.

q-Ary [n, k,d] Codes Conditions Ref.
g-ary [¢*+1,5,4° - q* - q] gisevenand m =3 [9] Thm. 3
p-ary [p2(pP -1 +2,4,p*(p+1)(p-2)+1] m=2 [16] Thm. 3.3
p-ary [p’"+l,2m+l,p’""(p—1)—p%71] m > 1isodd [17] Thm.16
p-ary [p?+1,3m+1,p™ Y (p-1)-p™'] m>1 [8] Thm. 4.6
p-ary  [p™+1,3m+1, (p" ' = p™ ) (p-1)] m>1 [8] Thm.4.7
p-ary [pm"+1l,m+1,(p-1)p™!] m>1 [18] Thm. V.1
p-ary [p’"+1,2m,p’""(p—1)—pm2_]] p and m are odd [18] Thm. V1.7
binary [27+ 1, m+1,2] m> 1 [18] Thm. VIL4
binary [2"+2,m+2,2] m>1 [17] Thm. 11
binary [27 +2,2m+ 1,27 —2"5"] m> 1 [17] Thm. 13
binary [27 +2,2m + 1,21 — 2™ va(m) < vali — j) d = ged(m,i — j)  [7]Thm. 10
m2d-
binary [27 +1,2m+ 1,27 — 2™ va(m) = va(i — j) + 1 d = ged(m, i — j) [7] Thm. 18
binary [2%7~! +1,2m,2%""2) m > 1iseven [9] Thm. 7
binary [22771 +1,2m+1,22m2 — 235 1] m > 1is odd [9] Thm. 9
binary [22771 +1,2m+1,22m2 _ 3% m > 1is even [9] Thm. 12
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