
https://www.aimspress.com/journal/Math

AIMS Mathematics, 11(1): 2797–2815.
DOI: 10.3934/math.2026112
Received: 07 October 2025
Revised: 16 December 2025
Accepted: 15 January 2026
Published: 28 January 2026

Research article

Weight distributions of subfield codes from special functions

Shanshan Liu, Yan Liu*and Xiaoyu Yu

School of Mathematics and Statistics, Hefei University, Hefei 230601, China.

* Correspondence: Email:liuyan2612@126.com.

Abstract: In this paper, we first determine the weight distributions of some subfield codes C (𝑝)
𝑓

and punctured codes C∗(𝑝)
𝑓

constructed from special functions, both of which are few-weight codes.
Furthermore, we derive the parameters of their dual codes. Notably, some of these codes and their
duals turn out to be optimal or almost distance-optimal. As an application, two classes of 2-designs are
constructed from some codes.
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1. Introduction

Throughout this paper, let 𝑞 be a prime power and F𝑞𝑚 denote the finite field with 𝑞𝑚 elements
where 𝑚 is a positive integer. An [𝑛, 𝑘, 𝑑] linear code C over F𝑞𝑚 is a 𝑘-dimensional subspace of F𝑛𝑞𝑚
with minimum Hamming distance 𝑑. Defined as {y ∈ F𝑛𝑞𝑚 | x · y = 0 for all x ∈ C}, the dual code
C⊥ of C is an [𝑛, 𝑛 − 𝑘, 𝑑⊥] linear code with minimum Hamming distance 𝑑⊥. The dual code C⊥ of
an [𝑛, 𝑘, 𝑑] linear code C over F𝑞𝑚 is said to be almost distance-optimal if there is no [𝑛, 𝑛 − 𝑘′, 𝑑′]
linear code over F𝑞𝑚 with 𝑛 − 𝑘′ ≥ (𝑛 − 𝑘) + 1 (i.e., 𝑘′ ≤ 𝑘 − 1) (resp. 𝑑′ ≥ 𝑑⊥ + 1) that makes
it substantially deviate from distance-optimal behavior, or if it either closely approaches meeting a
bound for linear codes (in terms of distance optimality) or exhibits performance that is nearly distance-
optimal. The punctured code C∗ of C is obtained by removing the ith coordinate from each codeword
of C. Its generator matrix is derived from C’s generator matrix 𝐺 by deleting column 𝑖 and discarding
any resulting zero or duplicate rows.

For a linear code C, the weight distribution is the sequence (𝐴0, 𝐴1, . . . , 𝐴𝑛), where 𝐴𝑖 is the number
of codewords of Hamming weight 𝑖 (with 𝐴0 = 1). Closely related to the weight distribution is the
weight enumerator (or weight counter) of C, defined as the polynomial 𝑊C (𝑧) =

∑𝑛
𝑖=0 𝐴𝑖𝑧

𝑖, which
compactly encodes the number of codewords of each weight. The code is called a 𝑡-weight code if there
are exactly 𝑡 nonzero 𝐴𝑖 for 1 ≤ 𝑖 ≤ 𝑛. Linear codes with few weights are of particular interest due
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to their applications in association schemes, strongly regular graphs [1], combinatorial 𝑡-designs [2],
and cryptography [3]. Recently, significant progress has been made in constructing such codes and
determining their weight distributions using exponential sums and trace representations using defining
sets [4], with studies covering various families, including optimal few-weight codes.

In the context of constructing optimal linear codes, the subfield code was first introduced in [5,
6]. Most subfield codes have few weights and good parameters. The next lemma presents the trace
representation of the subfield code in terms of the generator matrix of the linear code over F𝑞𝑚 .

Lemma 1.1 ( [7, Lemma 1]). Let 𝐺 = (𝑔𝑖 𝑗 ) ∈ F𝑘×𝑛𝑞𝑚 be a generator matrix of the linear code C over

F𝑞𝑚 . Then the trace representation of the subfield code C (𝑞)
𝑓

over F𝑞 is given by

C (𝑞)
𝑓

=

{(
Tr𝑞𝑚/𝑞

(
𝑘∑︁
𝑖=1

𝑎𝑖𝑔𝑖1

)
, · · · ,Tr𝑞𝑚/𝑞

(
𝑘∑︁
𝑖=1

𝑎𝑖𝑔𝑖𝑛

))
| 𝑎1, · · · , 𝑎𝑘 ∈ F𝑞𝑚

}
,

where Tr𝑞𝑚/𝑞 is the trace function from F𝑞𝑚 to F𝑞.

Building on these foundations, Ding and Heng [8] initiated the study of subfield codes’ properties
and determined the weight distributions of those derived from elliptic quadric codes and Tits ovoid
codes. In [9], Xu et al. first presented a construction framework of three-dimensional linear codes C∗

𝑓

with generator matrix

𝐺∗
𝑓 =

©­«
1
𝑥

𝑦

ª®¬(𝑥,𝑦)∈𝑆 , (1)

where 𝑆 = {(𝑥, 𝑦) ∈ F2
𝑞𝑚 | 𝑓 (𝑥, 𝑦) = 0}, and discussed their subfield codes. Furthermore, consider a

3 × (#𝑆 + 1) matrix

𝐺 𝑓 =
©­­«
0
1 𝐺∗

𝑓

0

ª®®¬ , (2)

where #𝑆 denotes the cardinality of 𝑆. Then, a [#𝑆+1, 3, 𝑑] linear code can be obtained from the matrix
(2), denoted by C 𝑓 . Obviously, the punctured code C∗

𝑓
is obtained by deleting the first coordinate of C 𝑓 ,

resulting in a [#𝑆, 3] code with generator matrix 𝐺∗
𝑓
. Subsequent works further extended this research

to subfield codes from various linear codes, optimal cyclic codes [10], and other few-weight linear
codes [11, 12].

Inspired by the above work, we investigate the subfield codes C (𝑞)
𝑓

and their punctured versions

C∗(𝑞)
𝑓

for three carefully chosen functions:

• 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦);

• 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦);

• 𝑓 (𝑥, 𝑦) = Tr𝑝3/𝑝 (𝑥2 + 𝑦2), where 𝑝 ≡ 3 (mod 4).

This paper is organized as follows. Section 2 introduces basic concepts and lemmas related to
finite field functions and linear codes. Section 3 studies two types of subfield and punctured codes
(with their duals) derived from two specific functions, including their key properties and parameter
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advantages illustrated by examples. Section 4 investigates a further subfield code and its punctured
code based on another function, confirming excellent parameters through examples. Section 5 presents
two classes of 2-designs are derived from several codes. Section 6 concludes the paper with comments.

2. Preliminaries

The trace function from F𝑞𝑚 to F𝑞, denoted as Tr𝑞𝑚/𝑞, is defined by

Tr𝑞𝑚/𝑞 (𝑥) =
𝑚−1∑︁
𝑖=0

𝑥𝑞
𝑖

for all 𝑥 ∈ F𝑞𝑚 .

The norm function from F𝑞𝑚 to F𝑞 is denoted as N𝑞𝑚/𝑞. It can be expressed as

N𝑞𝑚/𝑞 (𝑥) = 𝑥 · 𝑥𝑞 · 𝑥𝑞2 · · · · · 𝑥𝑞𝑚−1
= 𝑥

𝑞𝑚−1
𝑞−1 for all 𝑥 ∈ F𝑞𝑚 .

Let 𝑞 = 𝑝𝑒 with 𝑝 a prime and 𝑒 a positive integer. An additive character of F𝑞 is a nonzero function
𝜒 : F𝑞 → C∗, where C∗ is the set of nonzero complex numbers such that

𝜒(𝑥 + 𝑦) = 𝜒(𝑥)𝜒(𝑦) for all 𝑥, 𝑦 ∈ F𝑞 .

For any 𝑎 ∈ F𝑞, the function

𝜒𝑎 (𝑥) = 𝜁
Tr𝑞/𝑝 (𝑎𝑥)
𝑝 for 𝑥 ∈ F𝑞

defines an additive character of F𝑞, where 𝜁𝑝 = 𝑒2𝜋𝑖/𝑝 is a primitive pth root of unity.
If 𝑎 = 0, then 𝜒0(𝑥) = 1 for all 𝑥 ∈ F𝑞, which is called the trivial additive character of F𝑞; if 𝑎 = 1,

𝜒1 is called the canonical additive character of F𝑞.
Clearly, 𝜒𝑎 (𝑥) = 𝜒1(𝑎𝑥) for all 𝑥 ∈ F𝑞. Additive characters satisfy the following orthogonality

relation: ∑︁
𝑥∈F𝑞

𝜒𝑎 (𝑥) =
{
𝑞 if 𝑎 = 0,
0 if 𝑎 ∈ F∗𝑞 .

Note that if 𝜒 and 𝜒′ denote the canonical additive characters of F𝑞 and F𝑞𝑚 , respectively, then
𝜒′ = 𝜒 ◦ Tr𝑞𝑚/𝑞.

A multiplicative character of F𝑞 is a nonzero homomorphism 𝜓 : F∗𝑞 → C∗ such that

𝜓(𝑥𝑦) = 𝜓(𝑥)𝜓(𝑦) for all 𝑥, 𝑦 ∈ F∗𝑞 .

Let 𝑔 be a fixed primitive element of F𝑞 where F∗𝑞 = ⟨𝑔⟩, and let 𝜁𝑞−1 = 𝑒2𝜋𝑖/(𝑞−1) be a primitive
(𝑞 − 1)th root of unity. All multiplicative characters of F𝑞 can be expressed as

𝜓 𝑗 (𝑔𝑘 ) = 𝜁
𝑗 𝑘

𝑞−1 for 𝑘 = 0, 1, · · · , 𝑞 − 2,

where 𝜓0 is called the trivial multiplicative character; for odd 𝑞, 𝜓(𝑞−1)/2 is the quadratic character of
F𝑞, denoted by 𝜂. Similarly, the quadratic character of F𝑞𝑚 is denoted by 𝜂′.
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Multiplicative characters satisfy the following orthogonality relation:∑︁
𝑥∈F∗𝑞

𝜓 𝑗 (𝑥) =
{
𝑞 − 1 for 𝑗 = 0,
0 for 𝑗 ≠ 0.

For an additive character 𝜒 and a multiplicative character 𝜓 of F𝑞, the Gaussian sum 𝐺 (𝜓, 𝜒) over
F𝑞 is defined by

𝐺 (𝜓, 𝜒) =
∑︁
𝑥∈F∗𝑞

𝜓(𝑥)𝜒(𝑥).

In general, the explicit determination of the Gaussian sum is a difficult problem. In the case of 𝜓 = 𝜂,
Gaussian sums are explicitly determined in [13].

Lemma 2.1 ( [13]). Let 𝑞 = 𝑝𝑒 with 𝑝 an odd prime, and let 𝜒1 be the canonical additive character of
F𝑞. Then,

𝐺 (𝜂, 𝜒1) =

(−1)𝑒−1 √𝑞 if 𝑝 ≡ 1 (mod 4),

(−1)𝑒−1
(√

−1
)𝑒−1 √

𝑞 if 𝑝 ≡ 3 (mod 4).

Let 𝝌 be the nontrivial additive character of F𝑞 and 𝑓 ∈ F𝑞 [𝑥] a positive-degree polynomial. The
character sums ∑︁

𝑥∈F𝑞
𝝌( 𝑓 (𝑥))

are called Weil sums. For quadratic polynomials over F𝑞 with odd 𝑞, Weil sums are characterized as
follows.

Lemma 2.2 ( [13]). Let 𝜒𝑏 be a nontrivial additive character of F𝑞 with odd 𝑞, and let 𝑓 (𝑥) = 𝑎2𝑥
2 +

𝑎1𝑥 + 𝑎0 ∈ F𝑞 [𝑥] with 𝑎2 ≠ 0. Then,

∑︁
𝑐∈F𝑞

𝜒𝑏 ( 𝑓 (𝑐)) = 𝜒𝑏

(
𝑎0 −

𝑎2
1

4𝑎2

)
𝜂(𝑎2)𝐺 (𝜂, 𝜒𝑏).

Let (1, 𝐴⊥
1 , · · · , 𝐴

⊥
𝑛 ) denote the weight distribution of its dual code C⊥. Now, recall the Pless power

moments, which describe the relationship between the weight distributions of C and C⊥. The first four
Pless power moments are given by:

𝑛∑︁
𝑖=0

𝐴𝑖 = 𝑝𝑘 ;

𝑛∑︁
𝑖=0

𝑖𝐴𝑖 = 𝑝𝑘−1 (
𝑝𝑛 − 𝑛 − 𝐴⊥

1
)

;

𝑛∑︁
𝑖=0

𝑖2𝐴𝑖 = 𝑝𝑘−2 [
(𝑝 − 1)𝑛(𝑝𝑛 − 𝑛 + 1) − (2𝑝𝑛 − 𝑝 − 2𝑛 + 2)𝐴⊥

1 + 2𝐴⊥
2

]
;
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𝑛∑︁
𝑖=0

𝑖3𝐴𝑖 = 𝑝𝑘−3

(
(𝑝 − 1)𝑛

(
𝑝2𝑛2 − 2𝑝𝑛2 + 3𝑝𝑛 − 𝑝 + 𝑛2 − 3𝑛 + 2

)
−

(
3𝑝2𝑛2 − 3𝑝2𝑛 − 6𝑝𝑛2 + 12𝑝𝑛 + 𝑝2 − 6𝑝 + 3𝑛2 − 9𝑛 + 6

)
𝐴⊥

1

+ 6(𝑝𝑛 − 𝑝 − 𝑛 + 2)𝐴⊥
2 − 6𝐴⊥

3

)
.

In this paper, we consider the linear codes C 𝑓 over F𝑞𝑚 with generator matrix (2). According to
Lemma 1.1, the subfield code C (𝑞)

𝑓
has the following trace representation:

C (𝑞)
𝑓

=

{
c𝑎,𝑏,𝑐 =

(
Tr𝑞𝑚/𝑞 (𝑏),

(
𝑎 + Tr𝑞𝑚/𝑞 (𝑏𝑥 + 𝑐𝑦)

)
(𝑥,𝑦)∈𝑆

)
| 𝑎 ∈ F𝑞, 𝑏, 𝑐 ∈ F𝑞𝑚

}
. (3)

In the following sections, we focus on calculating the parameters and weight distributions of the
subfield codes and punctured codes as well as their dual codes.

3. Weight distributions of C (2)
𝑓

and C∗(2)
𝑓

with their duals

In this section, take 𝑞 = 2. It is easy to observe that the length of the subfield code C (2)
𝑓

(resp. the

punctured code C∗(2)
𝑓

) is #𝑆 + 1 (resp. #𝑆). Now, we aim to discuss the weight distributions of C (2)
𝑓

and

C∗(2)
𝑓

and to analyze their dual codes. Let 𝜉1 = F2 × F2𝑚 × F2𝑚 for short. Set

𝑁𝑎,𝑏,𝑐 = #
{
(𝑥, 𝑦) ∈ 𝑆 | 𝑎 + Tr2𝑚/2(𝑏𝑥 + 𝑐𝑦) = 0

}
for (𝑎, 𝑏, 𝑐) ∈ 𝜉1. (4)

For any (𝑎, 𝑏, 𝑐) ∈ 𝜉1, the weight of the codeword c𝑎,𝑏,𝑐 in C (2)
𝑓

is equal to

wt(c𝑎,𝑏,𝑐) = #𝑆 − 𝑁𝑎,𝑏,𝑐 + 𝛿(𝑏), (5)

where 𝛿(𝑥) is a function from F2𝑚 to {0, 1} defined as:

𝛿(𝑥) =
{

0 if Tr2𝑚/2(𝑥) = 0,

1 if Tr2𝑚/2(𝑥) ≠ 0.
(6)

3.1. Weight distributions of linear codes from 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦)

In this subsection, the lengths and weight distributions of C (2)
𝑓

and C∗(2)
𝑓

are explicitly given for
𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦). Below, we prove a few more auxiliary results which will be
used to calculate the weight distribution of the codes.

Lemma 3.1. Let (𝑎, 𝑏, 𝑐) ∈ 𝜉1, and define 𝜔1 = 𝑎 + Tr2𝑚/2(𝑏𝑐) + N2𝑚/2(𝑏 + 𝑐 + 1).

(i) Let 𝑇1 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔1 = 0, Tr2𝑚/2(𝑏) = 0
}
; then #𝑇1 = 22𝑚−1 − 2𝑚.

(ii) Let 𝑇2 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔1 = 0, Tr2𝑚/2(𝑏) ≠ 0
}
; then #𝑇2 = 22𝑚−1.

(iii) Let 𝑇3 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔1 = 1, Tr2𝑚/2(𝑏) ≠ 0
}
; then #𝑇3 = 22𝑚−1.
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(iv) Let 𝑇4 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔1 = 1, Tr2𝑚/2(𝑏) = 0
}
; then #𝑇4 = 22𝑚−1 − 2𝑚.

(v) Let 𝑇5 =
{
(𝑎, 0, 𝑐) ∈ F2 × {0} × F∗2𝑚

�� 𝜔1 = 0
}
; then #𝑇5 = 2𝑚 − 1.

(vi) Let 𝑇6 =
{
(𝑎, 0, 𝑐) ∈ F2 × {0} × F∗2𝑚

�� 𝜔1 = 1
}
; then #𝑇6 = 2𝑚 − 1.

Proof. We will only prove (𝑖) and (𝑖𝑖), as the others can be derived similarly.
(𝑖) From the orthogonal property of the canonical additive character, we have

#𝑇1 = 2𝑚−1
∑︁
𝜇∈F2

∑︁
𝑏∈F∗2𝑚

𝜒
(
𝜇Tr2𝑚/2(𝑏)

)
= 2𝑚−1

∑︁
𝜇∈F2

∑︁
𝑏∈F∗2𝑚

𝜒′ (𝜇𝑏)

= 22𝑚−1 − 2𝑚 .

(𝑖𝑖) The set of triples (𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚 where 𝜔1 = 0 has 22𝑚 − 2𝑚 elements. It has two
distinct subsets: 𝑇1 (with Tr2𝑚/2(𝑏) = 0) and 𝑇2 (with Tr2𝑚/2(𝑏) ≠ 0). Thus, #𝑇2 = (22𝑚 − 2𝑚) − #𝑇1 =

22𝑚−1. □

Define a character sum

Γ
𝑎,𝑏,𝑐

1 = 𝜒(𝑎)
∑︁

(𝑥,𝑦)∈F2
2𝑚

𝜒
(
Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦)

)
𝜒′ (𝑏𝑥 + 𝑐𝑦) , (7)

where (𝑎, 𝑏, 𝑐) ∈ 𝜉1. From the orthogonal property of the canonical additive character, we obtain

Γ
𝑎,𝑏,𝑐

1 = 𝜒(𝑎)
∑︁

(𝑥,𝑦)∈F2
2𝑚

𝜒
(
N2𝑚/2(𝑥 + 𝑦)

)
𝜒′ (𝑥 · 𝑦 + 𝑏𝑥 + 𝑐𝑦)

= 𝜒(𝑎)
∑︁

(𝑠,𝑥)∈F2
2𝑚

𝜒
(
N2𝑚/2(𝑠)

)
𝜒′ ((1 + 𝑠 + 𝑏 + 𝑐)𝑥) 𝜒′(𝑐𝑠)

= 2𝑚𝜒(𝑎)𝜒′(𝑏𝑐)𝜒
(
N2𝑚/2(𝑏 + 𝑐 + 1)

)
= 2𝑚 (−1)𝜔1 ,

where the second equality follows from 𝑠 = 𝑥 + 𝑦, and 𝜔1 is as defined in Lemma 3.1.

Theorem 3.2. The subfield code C (2)
𝑓

defined in Eq. (3) is a binary linear code with parameters
[22𝑚−1 − 2𝑚−1 + 1, 2𝑚 + 1, 22𝑚−2 − 2𝑚−1], and its weight distribution is given in Table 1. Its dual code
is a binary linear code with parameters [22𝑚−1 − 2𝑚−1 + 1, 22𝑚−1 − 2𝑚−1 − 2𝑚, 3].
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Table 1. Weight distribution of C (2)
𝑓

.

Weight Multiplicity

0 1
22𝑚−2 22𝑚−1 − 1

22𝑚−2 + 1 22𝑚−1

22𝑚−2 + 2𝑚−1 22𝑚−1 − 1
22𝑚−2 + 2𝑚−1 + 1 22𝑚−1

22𝑚−1 + 2𝑚−1 1

Proof. We begin by determining the length of the code. To this end, we compute #𝑆. Using the
orthogonal property of the canonical additive character and 𝜒′ = 𝜒 ◦ Tr2𝑚/2, we have

#𝑆 =
1
2

∑︁
𝜅∈F2

∑︁
(𝑥,𝑦)∈F2

2𝑚

𝜒
(
𝜅
(
Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦)

) )
= 22𝑚−1 + 1

2

∑︁
(𝑥,𝑦)∈F2

2𝑚

𝜒
(
Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦)

)
= 22𝑚−1 + 1

2

∑︁
(𝑠,𝑥)∈F2

2𝑚

𝜒
(
Tr2𝑚/2(𝑥(𝑠 − 𝑥)) + N2𝑚/2(𝑠)

)
= 22𝑚−1 − 2𝑚−1,

where 𝑠 = 𝑥 + 𝑦. Thus, the length of C (2)
𝑓

is 22𝑚−1 − 2𝑚−1 + 1.
In view of Eq (5), we discuss 𝑁𝑎,𝑏,𝑐 for (𝑎, 𝑏, 𝑐) ∈ 𝜉1. Clearly, 𝑁0,0,0 = #𝑆, and 𝑁𝑎,0,0 = 0 for

𝑎 ∈ F2. When 𝑏 and 𝑐 are not both zero, using additive character properties,

2𝑁𝑎,𝑏,𝑐 =
∑︁
𝜅∈F2

∑︁
(𝑥,𝑦)∈𝑆

𝜒
(
𝜅
(
𝑎 + Tr2𝑚/2(𝑏𝑥 + 𝑐𝑦)

) )
= #𝑆 +

∑︁
(𝑥,𝑦)∈𝑆

𝜒
(
𝑎 + Tr2𝑚/2(𝑏𝑥 + 𝑐𝑦)

)
= #𝑆 + 𝜒(𝑎)

∑︁
(𝑥,𝑦)∈𝑆

𝜒′ (𝑏𝑥 + 𝑐𝑦)

= #𝑆 + 𝜒(𝑎)
∑︁

(𝑥,𝑦)∈F2
2𝑚

(
1
2

∑︁
𝜇∈F2

𝜒
(
𝜇
(
Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦)

) ) )
𝜒′ (𝑏𝑥 + 𝑐𝑦)

= #𝑆 + 1
2
𝜒(𝑎)

∑︁
(𝑥,𝑦)∈F2

2𝑚

𝜒′ (𝑏𝑥 + 𝑐𝑦) + 1
2
Γ
𝑎,𝑏,𝑐

1

= #𝑆 + 1
2
Γ
𝑎,𝑏,𝑐

1 .
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From the above discussion, we derive the weight of the codeword c𝑎,𝑏,𝑐 in C (2)
𝑓

as follows:

wt(c𝑎,𝑏,𝑐) =


0 if 𝑎 = 𝑏 = 𝑐 = 0,

22𝑚−1 − 2𝑚−1 if 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,

𝛿(𝑏) + 22𝑚−2 − 2𝑚−2 − 1
4Γ

𝑎,𝑏,𝑐

1 if 𝑏, 𝑐 not all 0,

=



0 if 𝑎 = 𝑏 = 𝑐 = 0,

22𝑚−1 − 2𝑚−1 if 𝑎 = 1, 𝑏 = 𝑐 = 0,

22𝑚−2 if (𝑎, 𝑏, 𝑐) ∈ 𝑇6 ∪ 𝑇4,

22𝑚−2 + 1 if (𝑎, 𝑏, 𝑐) ∈ 𝑇3,

22𝑚−2 − 2𝑚−1 if (𝑎, 𝑏, 𝑐) ∈ 𝑇5 ∪ 𝑇1,

22𝑚−2 − 2𝑚−1 + 1 if (𝑎, 𝑏, 𝑐) ∈ 𝑇2,

where 𝑇𝑖 (𝑖 = 1, . . . , 6) are defined in Lemma 3.1. This shows that C (2)
𝑓

is a binary linear code with
parameters [22𝑚−1 − 2𝑚−1 + 1, 2𝑚 + 1, 22𝑚−2 − 2𝑚−1]. Applying Lemma 3.1 allows us to immediately
determine the frequency of each weight.

At last, it is easy to know that the dual code of C (2)
𝑓

has length 22𝑚−1 − 2𝑚−1 + 1 and dimension
22𝑚−1 − 2𝑚−1 − 2𝑚. By using the first four power moments, we find that 𝐴⊥

1 = 𝐴⊥
2 = 0, and 𝐴⊥

3 > 0.
This completes the proof. □

Remark 3.3. Xu et al. studied, in [9], Theorems 7, 9, 12, 14, subfield codes, and the weight distributions
of their dual codes for 𝑞 = 2 using various functions. We extend the function to 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 ·
𝑦) + N2𝑚/2(𝑥 + 𝑦) to study the same for 𝑞 = 2.

Example 3.4. The examples provided below demonstrate that the subfield code C (2)
𝑓

possesses ex-
cellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].
(1) For 𝑚 = 2, C (2)

𝑓
is a clearly best-known [7, 5, 2] binary linear code with weight enumerator 1 +

7𝑧2 + 8𝑧3 + 7𝑧4 + 8𝑧5 + 𝑧6. Its dual C (2)⊥
𝑓

is an almost distance-optimal code [7, 2, 3].
(2) For 𝑚 = 3, C (2)

𝑓
is a best-known [29, 7, 12] binary linear code with weight enumerator 1 + 31𝑧12 +

32𝑧13 + 31𝑧16 + 32𝑧17 + 𝑧28. Its dual is an almost distance-optimal code [29, 22, 3].
(3) For 𝑚 = 4, C (2)

𝑓
is a best-known [121, 9, 56] binary linear code with weight enumerator 1+127𝑧56+

128𝑧57 + 127𝑧64 + 128𝑧65 + 𝑧120. Its dual is an almost distance-optimal dual code [121, 112, 3] .

Using the relationship between C (2)
𝑓

and its punctured code C∗ (2)
𝑓

, along with Theorem 3.2, we
obtain the following result. The minimum distance of the dual code can be computed with the first four
power moments, and the calculation is omitted here.

Theorem 3.5. The punctured code C∗ (2)
𝑓

is a three-weight [22𝑚−1 −2𝑚−1, 2𝑚 +1, 22𝑚−2 −2𝑚−1] binary
linear code, and its weight enumerator is

1 + (22𝑚 − 1)𝑧22𝑚−2 + (22𝑚 − 1)𝑧22𝑚−2−2𝑚−1 + 𝑧22𝑚−1−2𝑚−1
.
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Its dual is a [22𝑚−1 − 2𝑚−1, 22𝑚−1 − 2𝑚−1 − 2𝑚 − 1, 4] binary linear code.

Remark 3.6. Xu et al. studied, in [9, Theorems 8, 10, 11, 13, 15], subfield codes and the weight
distributions of their dual codes for 𝑞 = 2 using various functions. We extend the function to 𝑓 (𝑥, 𝑦) =
Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦) to study the same for 𝑞 = 2.

Example 3.7. The examples provided below demonstrate that the punctured code C∗ (2)
𝑓

possesses
excellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].
(1) For 𝑚 = 3, C∗ (2)

𝑓
is a binary linear code with parameters and weight enumerator 1 + 63𝑧12 +

63𝑧16 + 𝑧28[28, 7, 12]. Its dual code is a binary linear code, and both codes attain the best-known
parameters[28, 21, 4].

(2) Let 𝑚 = 4. C∗ (2)
𝑓

is a binary linear code with parameters and weight enumerator 1 +
255𝑧56 + 255𝑧64 + 𝑧120 [120, 9, 56] . Its dual is a binary linear code, and both have the best-known
parameters[120, 111, 4].

3.2. Weight distributions of linear codes from 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦)

In this subsection, the lengths and weight distributions of C (2)
𝑓

and C∗(2)
𝑓

are explicitly given for
𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦). Below, we prove a few more auxiliary results which will be used to calculate
the weight distributions of the codes.

Similar to the proof of Lemma 3.1, we omit the proof here.

Lemma 3.8. Let (𝑎, 𝑏, 𝑐) ∈ 𝜉1, and define 𝜔2 = 𝑎 + Tr2𝑚/2(𝑏𝑐).

(i) Let 𝑄1 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔2 = 0, Tr2𝑚/2(𝑏) = 0
}
; then #𝑄1 = 22𝑚−1 − 2𝑚.

(ii) Let 𝑄2 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔2 = 0, Tr2𝑚/2(𝑏) ≠ 0
}
; then #𝑄2 = 22𝑚−1.

(iii) Let 𝑄3 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔2 = 1, Tr2𝑚/2(𝑏) ≠ 0
}
; then #𝑄3 = 22𝑚−1.

(iv) Let 𝑄4 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F∗2𝑚 × F2𝑚

�� 𝜔2 = 1, Tr2𝑚/2(𝑏) = 0
}
; then #𝑄4 = 22𝑚−1 − 2𝑚.

(v) Let 𝑄5 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F2𝑚 × F∗2𝑚 | 𝑎 = 0, 𝑏 = 0

}
; then #𝑄5 = 2𝑚 − 1.

(vi) Let 𝑄6 =
{
(𝑎, 𝑏, 𝑐) ∈ F2 × F2𝑚 × F∗2𝑚 | 𝑎 = 1, 𝑏 = 0

}
; then #𝑄6 = 2𝑚 − 1.

Define a character sum

Γ
𝑎,𝑏,𝑐

2 = 𝜒(𝑎)
∑︁

(𝑥,𝑦)∈F2
2𝑚

𝜒
(
Tr2𝑚/2(𝑥 · 𝑦)

)
𝜒′ (𝑏𝑥 + 𝑐𝑦) , (8)

where (𝑎, 𝑏, 𝑐) ∈ 𝜉1. Using the orthogonal property of the canonical additive character and 𝜒′ =

𝜒 ◦ Tr2𝑚/2, we have

Γ
𝑎,𝑏,𝑐

2 = 𝜒(𝑎)
∑︁

(𝑥,𝑦)∈F2
2𝑚

𝜒
(
Tr2𝑚/2(𝑥 · 𝑦)

)
𝜒′ (𝑏𝑥 + 𝑐𝑦)

= 𝜒(𝑎)
∑︁

(𝑥,𝑦)∈F2
2𝑚

𝜒′ (𝑥 · 𝑦 + 𝑏𝑥 + 𝑐𝑦)
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= 𝜒(𝑎)
∑︁
𝑦∈F2𝑚

𝜒′ (𝑐𝑦)
∑︁
𝑥∈F2𝑚

𝜒′ ((𝑦 + 𝑏)𝑥)

= 2𝑚𝜒(𝑎)𝜒′(𝑏𝑐)
= 2𝑚 (−1)𝜔2 ,

where 𝜔2 is as defined in Lemma 3.8.

Theorem 3.9. The subfield code C (2)
𝑓

defined in Eq (3) is a binary linear code with parameters [22𝑚−1+
2𝑚−1 + 1, 2𝑚 + 1, 22𝑚−2], and its weight distribution is given in Table 2. Its dual code is a binary linear
code with parameters [22𝑚−1 + 2𝑚−1 + 1, 22𝑚−1 + 2𝑚−1 − 2𝑚, 3].

Table 2. Weight distribution of C (2)
𝑓

.

Weight Multiplicity
0 1

22𝑚−2 22𝑚−1 − 1
22𝑚−2 + 1 22𝑚−1

22𝑚−2 + 2𝑚−1 22𝑚−1 − 1
22𝑚−2 + 2𝑚−1 + 1 22𝑚−1

22𝑚−1 + 2𝑚−1 1

Proof. We begin by determining the length of the code. To this end, we compute #𝑆. Using the
orthogonal property of the canonical additive character and 𝜒′ = 𝜒 ◦ Tr2𝑚/2, we have

#𝑆 =
1
2

∑︁
𝜅∈F2

∑︁
(𝑥,𝑦)∈F2

2𝑚

𝜒
(
𝜅 · Tr2𝑚/2(𝑥 · 𝑦)

)
= 22𝑚−1 + 1

2

∑︁
(𝑥,𝑦)∈F2

2𝑚

𝜒
(
Tr2𝑚/2(𝑥 · 𝑦)

)
= 22𝑚−1 + 1

2

∑︁
(𝑥,𝑦)∈F2

2𝑚

𝜒′ (𝑥 · 𝑦)

= 22𝑚−1 + 1
2

∑︁
𝑦∈F2𝑚

𝜒′(0)

= 22𝑚−1 + 2𝑚−1.

Thus, the length of C (2)
𝑓

is 22𝑚−1 + 2𝑚−1 + 1.
Using calculations similar to those in Eqs (4) and (5) with detailed derivations omitted, the weight
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of the codeword c𝑎,𝑏,𝑐 in C (2)
𝑓

is:

wt(c𝑎,𝑏,𝑐) =


0 if 𝑎 = 𝑏 = 𝑐 = 0,

22𝑚−1 + 2𝑚−1 if 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,

𝛿(𝑏) + 22𝑚−2 + 2𝑚−2 − 1
4Γ

𝑎,𝑏,𝑐

2 if 𝑏, 𝑐 not all 0,

=



0 if 𝑎 = 𝑏 = 𝑐 = 0,

22𝑚−1 + 2𝑚−1 if 𝑎 = 1, 𝑏 = 𝑐 = 0,

22𝑚−2 if (𝑎, 𝑏, 𝑐) ∈ 𝑄5 ∪𝑄1,

22𝑚−2 + 1 if (𝑎, 𝑏, 𝑐) ∈ 𝑄2,

22𝑚−2 + 2𝑚−1 if (𝑎, 𝑏, 𝑐) ∈ 𝑄6 ∪𝑄4,

22𝑚−2 + 2𝑚−1 + 1 if (𝑎, 𝑏, 𝑐) ∈ 𝑄3.

where 𝑄𝑖 (𝑖 = 1, . . . , 6) are defined in Lemma 3.8. This means that C (2)
𝑓

is a binary linear code with
parameters [22𝑚−1 + 2𝑚−1 + 1, 2𝑚 + 1, 22𝑚−2]. Applying Lemma 3.8 immediately gives the frequency
of each weight.

Finally, it is easy to see that the dual code of C (2)
𝑓

has length 22𝑚−1 + 2𝑚−1 + 1 and dimension
22𝑚−1 + 2𝑚−1 − 2𝑚. Using the first four power moments, we find that 𝐴⊥

1 = 𝐴⊥
2 = 0, and 𝐴⊥

3 > 0. This
completes the proof. □

Remark 3.10. Xu et al. studied, in [9], Theorems 7, 9, 12, 14, subfield codes and the weight
distributions of their dual codes for 𝑞 = 2 using various functions. We extend the function to
𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦) to study the same for 𝑞 = 2.

Example 3.11. The examples provided below demonstrate that the subfield code C (2)
𝑓

possesses ex-
cellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].
(1) For 𝑚 = 2, C (2)

𝑓
is a clearly best-known [11, 5, 4] binary linear code with weight enumerator

1 + 7𝑧4 + 8𝑧5 + 7𝑧6 + 8𝑧7 + 𝑧10. Its dual is an almost distance-optimal code [11, 6, 3].
(2) For 𝑚 = 3, C (2)

𝑓
is a clearly best-known [37, 7, 16] binary linear code with weight enumerator

1 + 31𝑧16 + 32𝑧17 + 31𝑧20 + 32𝑧21 + 𝑧36. Its dual is an almost distance-optimal code [37, 30, 3].
(3) For 𝑚 = 4, C (2)

𝑓
is a best-known [137, 9, 64] binary linear code with weight enumerator 1+127𝑧64+

128𝑧65 + 127𝑧72 + 128𝑧73 + 𝑧136. Its dual is an almost distance-optimal code [137, 128, 3].
Using the relationship between C (2)

𝑓
and its punctured code C∗ (2)

𝑓
, together with Theorem 3.9 and

the first four power moments, we immediately derive the following result. The minimum distance of
the dual code can be computed with the first four power moments, and the calculation is omitted here.

Theorem 3.12. The punctured code C∗ (2)
𝑓

is a three-weight [22𝑚−1+2𝑚−1, 2𝑚+1, 22𝑚−2] binary linear
code, and its weight enumerator is

1 + (22𝑚 − 1)𝑧22𝑚−2 + (22𝑚 − 1)𝑧22𝑚−2+2𝑚−1 + 𝑧22𝑚−1+2𝑚−1
.

Its dual is a [22𝑚−1 + 2𝑚−1, 22𝑚−1 + 2𝑚−1 − 2𝑚 − 1, 4] binary linear code.
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Remark 3.13. Xu et al. studied, in [9, Theorems 8, 10, 11, 13, 15], subfield codes and the weight
distributions of their dual codes for 𝑞 = 2 using various functions. We extend the function to 𝑓 (𝑥, 𝑦) =
Tr2𝑚/2(𝑥 · 𝑦) to study the same for 𝑞 = 2.

Example 3.14. The examples provided below demonstrate that the punctured code C∗ (2)
𝑓

possesses
excellent parameters. For comparison, the best-known parameters are retrieved from the Code Tables
available at [14].
(1) For 𝑚 = 2, C∗ (2)

𝑓
is a binary linear code with parameters and weight enumerator 1 + 15𝑧4 + 15𝑧6 +

𝑧10 [10, 5, 4] . Its dual is a binary linear code, and both codes attain the best-known parameters
[10, 5, 4].

(2) For 𝑚 = 3, C∗ (2)
𝑓

is a binary linear code with parameters and weight enumerator 1+63𝑧16 +63𝑧20 +
𝑧36 [36, 7, 16] . Its dual is a binary linear code, and both codes attain the best-known parameters
[36, 29, 4].

(3) For 𝑚 = 4, C∗ (2)
𝑓

is a binary linear code with parameters and weight enumerator 1 + 255𝑧64 +
255𝑧72 + 𝑧136 [136, 9, 64] . Its dual is a binary linear code, and both codes attain the best-known
parameters [136, 127, 4].

4. Weight distributions of C (𝑝)
𝑓

and C∗(𝑝)
𝑓

with their duals

In this section, we set 𝑞 = 𝑝 (where 𝑝 ≡ 3 (mod 4)) and 𝑚 = 3. It is easy to observe that the length
of the subfield code C (𝑝)

𝑓
(resp. the punctured code C∗(𝑝)

𝑓
) is #𝑆 + 1 (resp. #𝑆). The function 𝑓 (𝑥, 𝑦)

is defined as 𝑓 (𝑥, 𝑦) = Tr𝑝3/𝑝 (𝑥2 + 𝑦2). Here, we aim to discuss the weight distributions of C (𝑝)
𝑓

and

C∗(𝑝)
𝑓

, and to analyze their dual codes. Let 𝜉2 = F𝑝 × F𝑝3 × F𝑝3 for short. Set

𝑁′
𝑎,𝑏,𝑐 = #

{
(𝑥, 𝑦) ∈ 𝑆 | 𝑎 + Tr𝑝3/𝑝 (𝑏𝑥 + 𝑐𝑦) = 0

}
for any (𝑎, 𝑏, 𝑐) ∈ 𝜉2. (9)

For any (𝑎, 𝑏, 𝑐) ∈ 𝜉2, the weight of the codeword c𝑎,𝑏,𝑐 in C (𝑝)
𝑓

is given by

wt(c𝑎,𝑏,𝑐) = #𝑆 − 𝑁′
𝑎,𝑏,𝑐 + 𝛿′(𝑏), (10)

where 𝛿′(𝑥) is a function from F𝑝3 to {0, 1} defined as:

𝛿′(𝑥) =
{

0 if Tr𝑝3/𝑝 (𝑥) = 0,

1 if Tr𝑝3/𝑝 (𝑥) ≠ 0.
(11)

Next, we will study the weight distributions of C (𝑝)
𝑓

and C∗(𝑝)
𝑓

, and analyze their dual codes. To this
end, we will prove some auxiliary results below, which will help us calculate the weight distributions
of the aforementioned codes.

Lemma 4.1. Let (𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 , and define 𝜔3 = Tr𝑝3/𝑝 (𝑏2 + 𝑐2).

(i) Let 𝑅1 =
{
(𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 | 𝜔3 = 0, Tr𝑝3/𝑝 (𝑏) = 0

}
; then #𝑅1 = 𝑝4 − 𝑝3 + 𝑝2.

(ii) Let 𝑅2 =

{
(𝑏, 𝑐) ∈ F∗

𝑝3 × F∗𝑝3 | 𝜔3 = 0, Tr𝑝3/𝑝 (𝑏) = 0
}
; then #𝑅2 = 𝑝4 − 𝑝3 + 𝑝2 − 1.
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(iii) Let 𝑅3 =
{
(𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 | 𝜔3 = 0, Tr𝑝3/𝑝 (𝑏) ≠ 0

}
; then #𝑅3 = 𝑝5 − 𝑝4.

(iv) Let 𝑅4 =
{
(𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 | 𝜔3 ≠ 0, Tr𝑝3/𝑝 (𝑏) = 0

}
; then #𝑅4 = 𝑝5 − 𝑝4 + 𝑝3 − 𝑝2.

(v) Let 𝑅5 =
{
(𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 | 𝜔3 ≠ 0, Tr𝑝3/𝑝 (𝑏) ≠ 0

}
; then #𝑅5 = 𝑝6 − 2𝑝5 + 𝑝4.

(vi) Let 𝑅6 =
{
(𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 | 𝜔3 = 0

}
; then #𝑅6 = 𝑝5 − 𝑝3 + 𝑝2.

(vii) Let 𝑅7 =
{
(𝑏, 𝑐) ∈ F𝑝3 × F𝑝3 | Tr𝑝3/𝑝 (𝑏) = 0

}
; then #𝑅7 = 𝑝5.

Proof. The conclusion of (𝑣𝑖𝑖) follows directly from the definition. Additionally, the cardinalities #𝑅2
to #𝑅5 can be derived using set theory based on the following relationships: 𝑅2 = (𝑅6 ∩ 𝑅7) \ {(0, 0)},
𝑅3 = 𝑅6 \ 𝑅7, 𝑅4 = 𝑅7 \ 𝑅6, and 𝑅5 = (𝑅6 ∪ 𝑅7)𝑐. Thus, we only need to prove (𝑖) and (𝑣𝑖).

By utilizing the orthogonal property of the canonical additive character, together with 𝜒′ = 𝜒◦Tr𝑝3/𝑝
and Lemma 2.2, we have:

(𝑖)

#𝑅1 =
1
𝑝2

∑︁
𝜅∈F𝑝

∑︁
𝜇∈F𝑝

∑︁
𝑏∈F

𝑝3

𝜒

(
Tr𝑝3/𝑝

(
𝜅𝑏2 + 𝜇𝑏

)) ∑︁
𝑐∈F

𝑝3

𝜒

(
Tr𝑝3/𝑝

(
𝜅𝑐2

))
=

1
𝑝2

∑︁
𝜅∈F𝑝

∑︁
𝜇∈F𝑝

∑︁
𝑏∈F

𝑝3

𝜒′(𝜇𝑏)𝜒′(𝜅𝑏2)
∑︁
𝑐∈F

𝑝3

𝜒′(𝜅𝑐2)

= 𝑝4 + 1
𝑝

∑︁
𝜅∈F∗𝑝

𝜂′(𝜅)2𝐺 (𝜒′, 𝜂′)2

= 𝑝4 − 𝑝3 + 𝑝2.

(𝑣𝑖)

#𝑅6 =
1
𝑝

∑︁
(𝑏,𝑐)∈F2

𝑝3

∑︁
𝜅∈F𝑝

𝜒

(
𝜅 Tr𝑝3/𝑝 (𝑏2 + 𝑐2)

)
= 𝑝5 + 1

𝑝

∑︁
𝜅∈F∗𝑝

∑︁
(𝑏,𝑐)∈F2

𝑝3

𝜒

(
𝜅 Tr𝑝3/𝑝 (𝑏2) + 𝜅 Tr𝑝3/𝑝 (𝑐2)

)
= 𝑝5 + 1

𝑝

∑︁
𝜅∈F∗𝑝

∑︁
𝑏∈F

𝑝3

𝜒′
(
𝜅𝑏2

) ∑︁
𝑐∈F

𝑝3

𝜒′
(
𝜅𝑐2

)
= 𝑝5 + 1

𝑝

∑︁
𝜅∈F∗𝑝

𝜂′(𝜅)2𝐺 (𝜒′, 𝜂′)2

= 𝑝5 − 𝑝3 + 𝑝2.

□

Define a character sum

Γ
𝑎,𝑏,𝑐

3 =
∑︁
𝜅∈F∗𝑝

𝜒(𝜅𝑎)
∑︁
𝜇∈F∗𝑝

∑︁
(𝑥,𝑦)∈F2

𝑝3

𝜒

(
𝜇Tr𝑝3/𝑝 (𝑦2) + 𝜇Tr𝑝3/𝑝 (𝑥2)

)
𝜒(𝜅𝑏𝑥 + 𝜅𝑐𝑦), (12)
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where (𝑎, 𝑏, 𝑐) ∈ 𝜉2 for any such triple. Using the orthogonal property of the canonical additive
character, along with 𝜒′ = 𝜒 ◦ Tr𝑝3/𝑝 and Lemma 2.2, we have

Γ
𝑎,𝑏,𝑐

3 =
∑︁
𝜅∈F∗𝑝

𝜒(𝜅𝑎)
∑︁
𝜇∈F∗𝑝

∑︁
(𝑥,𝑦)∈F2

𝑝3

𝜒

(
𝜇 Tr𝑝3/𝑝 (𝑦2) + 𝜇 Tr𝑝3/𝑝 (𝑥2)

)
𝜒

(
𝜅𝑏𝑥 + 𝜅𝑐𝑦

)
=

∑︁
(𝜅,𝜇)∈F∗𝑝2

𝜒(𝜅𝑎)
∑︁
𝑥∈F

𝑝3

𝜒′
(
𝜇𝑥2 + 𝜅𝑏𝑥

) ∑︁
𝑦∈F

𝑝3

𝜒′
(
𝜇𝑦2 + 𝜅𝑐𝑦

)
=

∑︁
(𝜅,𝜇)∈F∗𝑝2

𝜒(𝜅𝑎) 𝜂′(𝜇)2𝜒′
(
−𝜅2(𝑏2 + 𝑐2)

4𝜇

)
𝐺 (𝜒′, 𝜂′)2

=
∑︁

(𝜅,𝜇)∈F∗𝑝2

𝜒

(
𝜅𝑎 − Tr𝑝3/𝑝

( 𝜅2(𝑏2 + 𝑐2)
4𝜇

))
𝜂′(𝜇)2 𝐺 (𝜒′, 𝜂′)2

= 𝐺 (𝜒′, 𝜂′)2
∑︁

(𝜅,𝜇)∈F∗𝑝2

𝜒

(
𝜅𝑎 − Tr𝑝3/𝑝

( 𝜅2(𝑏2 + 𝑐2)
4𝜇

))

=


−𝑝3(𝑝 − 1)2 if 𝑎 = 0, 𝜔3 = 0,
𝑝3(𝑝 − 1) if 𝑎 = 0, 𝜔3 ≠ 0, or 𝑎 ≠ 0, 𝜔3 = 0,

−𝑝3 if 𝑎 ≠ 0, 𝜔3 ≠ 0,

where 𝜔3 is as defined in Lemma 4.1.

Theorem 4.2. The subfield code C (𝑝)
𝑓

defined in Eq (3) is a linear code over F𝑝 with parameters
[𝑝5 − 𝑝3 + 𝑝2 + 1, 7, 𝑝5 − 𝑝4 − 𝑝3 + 𝑝2], and its weight distribution is presented in Table 3. Its dual
code C (𝑝)⊥

𝑓
is also a linear code over F𝑝 with parameters [𝑝5 − 𝑝3 + 𝑝2 + 1, 𝑝5 − 𝑝3 + 𝑝2 − 6, 3].

Table 3. The Weight distribution of C (𝑝)
𝑓

.

Weight Multiplicity

0 1
𝑝5 − 𝑝3 + 𝑝2 𝑝 − 1

𝑝5 − 𝑝4 − 𝑝3 + 2𝑝2 𝑝6 − 2𝑝5 + 2𝑝4 − 2𝑝3 + 𝑝2

𝑝5 − 𝑝4 − 𝑝3 + 2𝑝2 + 1 𝑝7 − 3𝑝6 + 3𝑝5 − 𝑝4

𝑝5 − 𝑝4 𝑝4 − 𝑝3 + 𝑝2 − 1
𝑝5 − 𝑝4 + 1 𝑝5 − 𝑝4

𝑝5 − 𝑝4 − 𝑝3 + 𝑝2 2𝑝5 − 3𝑝4 + 3𝑝3 − 2𝑝2 − 𝑝 + 1
𝑝5 − 𝑝4 − 𝑝3 + 𝑝2 + 1 2𝑝6 − 4𝑝5 + 2𝑝4

Proof. We begin by determining the length of the code. To compute #𝑆, note that #𝑆 = #𝑅6, so we can
directly conclude that the length of C (𝑝)

𝑓
is 𝑝5 − 𝑝3 + 𝑝2 + 1.

Following the same computational approach as in Eqs (4) and (5), analogous calculations apply to
Eqs (9) and (10). As a consequence, the weight of the codeword c𝑎,𝑏,𝑐 in C (𝑝)

𝑓
is derived as follows
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(detailed steps are omitted):

wt(c𝑎,𝑏,𝑐) =


0 if 𝑎 = 𝑏 = 𝑐 = 0,

𝑝5 − 𝑝3 + 𝑝2 if 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,

𝛿′(𝑏) + 𝑝4(𝑝 − 1) + 1
𝑝2

[
(𝑝 − 1) (𝑝3 − 𝑝4) − Γ

𝑎,𝑏,𝑐

3

]
if 𝑏, 𝑐 not all 0,

=



0 if 𝑎 = 𝑏 = 𝑐 = 0,

𝑝5 − 𝑝3 + 𝑝2 if 𝑎 ≠ 0, 𝑏 = 𝑐 = 0,

𝑝5 − 𝑝4 − 𝑝3 + 2𝑝2 if 𝑎 ≠ 0, (𝑏, 𝑐) ∈ 𝑅4,

𝑝5 − 𝑝4 − 𝑝3 + 2𝑝2 + 1 if 𝑎 ≠ 0, (𝑏, 𝑐) ∈ 𝑅5,

𝑝5 − 𝑝4 if 𝑎 = 0, (𝑏, 𝑐) ∈ 𝑅2,

𝑝5 − 𝑝4 + 1 if 𝑎 = 0, (𝑏, 𝑐) ∈ 𝑅3,

𝑝5 − 𝑝4 − 𝑝3 + 𝑝2 if 𝑎 = 0, (𝑏, 𝑐) ∈ 𝑅4
or 𝑎 ≠ 0, (𝑏, 𝑐) ∈ 𝑅2,

𝑝5 − 𝑝4 − 𝑝3 + 𝑝2 + 1 if 𝑎 = 0, (𝑏, 𝑐) ∈ 𝑅5
or 𝑎 ≠ 0, (𝑏, 𝑐) ∈ 𝑅3,

where 𝑅𝑖 (𝑖 = 2, . . . , 5) are defined in Lemma 4.1. Thus, C (𝑝)
𝑓

is a linear code with parameters [𝑝5 −
𝑝3 + 𝑝2 + 1, 7, 𝑝5 − 𝑝4 − 𝑝3 + 𝑝2], and applying Lemma 4.1 immediately gives the frequency of each
weight.

Finally, it is easy to see that the dual code C (𝑝)⊥
𝑓

has length 𝑝5 − 𝑝3 + 𝑝2 + 1 and dimension
𝑝5 − 𝑝3 + 𝑝2 − 6. Using the first four power moments, we find that 𝐴⊥

1 = 𝐴⊥
2 = 0, and 𝐴⊥

3 > 0. This
completes the proof. □

Example 4.3. The examples provided below demonstrate that the subfield code C (𝑝)
𝑓

possesses ex-
cellent parameters. For comparison, the best-known parameters are retrieved from the code tables
available at [14].
For 𝑝 = 3, C (3)

𝑓
is a ternary linear code with weight enumerator 1+304𝑧144+648𝑧145+360𝑧153+648𝑧154+

62𝑧162 + 162𝑧163 + 2𝑧225 [226, 7, 144] . Its dual is attains the best-known parameters [226, 219, 3].

Using the relationship between C (𝑝)
𝑓

and its punctured code C∗ (𝑝)
𝑓

, together with Theorem 4.2 and
the first four power moments, we immediately derive the following result. The minimum distance of
the dual code can be computed with the first four power moments, and the calculation is omitted here.

Theorem 4.4. The punctured code C∗ (𝑝)
𝑓

is a four-weight linear code over F𝑝 with parameters [𝑝5 −
𝑝3 + 𝑝2, 7, 𝑝5 − 𝑝4 − 𝑝3 + 𝑝2], and its weight distribution is presented in Table 4. Its dual is a linear
code over F𝑝 with parameters [𝑝5 − 𝑝3 + 𝑝2, 𝑝5 − 𝑝3 + 𝑝2 − 7, 3].
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Table 4. The Weight distribution of C∗ (𝑝)
𝑓

.

Weight Multiplicity

0 1
𝑝5 − 𝑝3 + 𝑝2 𝑝 − 1

𝑝5 − 𝑝4 − 𝑝3 + 2𝑝2 𝑝7 − 2𝑝6 + 𝑝5 + 𝑝4 − 2𝑝3 + 𝑝2

𝑝5 − 𝑝4 𝑝5 − 𝑝3 + 𝑝2 − 1
𝑝5 − 𝑝4 − 𝑝3 + 𝑝2 2𝑝6 − 2𝑝5 − 𝑝4 + 3𝑝3 − 2𝑝2 − 𝑝 + 1

Example 4.5. The examples provided below demonstrate that the punctured code C∗ (𝑝)
𝑓

possesses
excellent parameters. For comparison, the best-known parameters are retrieved from the Code Tables
available at [14].
For 𝑝 = 3, C∗ (𝑝)

𝑓
is a best-known [225, 7, 144] ternary linear code with weight enumerator 1+952𝑧144+

1008𝑧153 + 224𝑧162 + 2𝑧225. Its dual is a ternary linear code, and both share the best-known parameters
[225, 218, 3].

5. Constructing t-designs

Let 𝑡, 𝑛, 𝜅, 𝜆 be positive integers with 𝑡 ≤ 𝜅 ≤ 𝑛. An incidence structure D = (P,B) is called
a 𝑡-(𝑛, 𝜅, 𝜆) design or simply a 𝑡-design if it satisfies two core conditions: P is a set of 𝑛 elements
called points, B is a family of 𝜅-element subsets of P called blocks, and every 𝑡-element subset of P
is contained in exactly 𝜆 blocks from B. This design satisfies the combinatorial identity

(𝑛
𝑡

)
𝜆 =

(𝜅
𝑡

)
𝑏,

where 𝑏 = |B| and 𝑏 denote the total number of blocks. Key variants include the simple 𝑡-design (with
no repeated blocks in B) and the Steiner system, which is a 𝑡-design with 𝑡 ≥ 2 and 𝜆 = 1 and is
denoted 𝑆(𝑡, 𝜅, 𝑛). For an [𝑛, 𝑘, 𝑑] linear code 𝐶 over F𝑞, its coordinate set is P = {𝑝1, 𝑝2, . . . , 𝑝𝑛},
and the support set of a codeword 𝒄 ∈ 𝐶 is defined as supp(𝒄) = {𝑖 | 𝑐𝑖 ≠ 0, 𝑖 ∈ P}. Let 𝜅 be a code
weight with 𝐴𝜅 ≠ 0, where 𝐴𝜅 counts the number of weight-𝜅 codewords in 𝐶, and let B𝜅 be the family
of support sets from all weight-𝜅 codewords in 𝐶. If (P,B𝜅) forms a 𝑡-(𝑛, 𝜅, 𝜆) design, the code 𝐶 is
said to hold a 𝑡-(𝑛, 𝜅, 𝜆) support design (denoted D𝜅 (𝐶)), or equivalently, the support sets of weight-𝜅
codewords in 𝐶 form a 𝑡-design.

By Assmus and Mattson [15], the following theorem suffices for a linear code and its dual to form
simple t-designs.

Theorem 5.1 (Assmus–Mattson Theorem). Let C be an [𝑛, 𝑘, 𝑑] code over F𝑞, with 𝑑⊥ as the minimum
distance of C⊥. Let 𝑤 be the largest integer ≤ 𝑛 satisfying

𝑤 −
⌊
𝑤 + 𝑞 − 2
𝑞 − 1

⌋
< 𝑑,

and 𝑤⊥ defined analogously by replacing 𝑑 with 𝑑⊥. Let (𝐴𝑖)𝑛𝑖=0 and (𝐴⊥
𝑖
)𝑛
𝑖=0 be the weight distributions

of C and C⊥, respectively. For a positive integer 𝑡 < 𝑑, let 𝑠 be the number of 𝑖 ∈ [1, 𝑛−𝑡] with 𝐴⊥
𝑖
≠ 0.

If 𝑠 ≤ 𝑑 − 𝑡, then the following assertions hold:

• Weight-𝑖 codewords of C form a 𝑡-design if 𝐴𝑖 ≠ 0, and 𝑑 ≤ 𝑖 ≤ 𝑤;
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• Weight-𝑖 codewords of C⊥ form a 𝑡-design if 𝐴⊥
𝑖
≠ 0, and 𝑑⊥ ≤ 𝑖 ≤ min{𝑛 − 𝑡, 𝑤⊥}.

Theorem 5.2. Let 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥 · 𝑦) + N2𝑚/2(𝑥 + 𝑦) and 𝑚 ≥ 3. The codewords of Hamming
weight 22𝑚−2 − 2𝑚−1 or 22𝑚−2 in C∗(2)

𝑓
form a 2-design. Moreover, for all 𝜅 with 4 ≤ 𝜅 ≤ 22𝑚−1 − 2𝑚−1,

the Hamming weight-𝜅 codewords in C∗(2)⊥
𝑓

form this 2-design.

Proof. Through the integration of Theorem 3.5 and Theorem 5.1, we arrive at the conclusions for this
2-design. □

Theorem 5.3. Let 𝑓 (𝑥, 𝑦) = Tr2𝑚/2(𝑥𝑦) and 𝑚 ≥ 2. The Hamming weight 22𝑚−2 + 2𝑚−1 or 22𝑚−2

codewords in C∗(2)
𝑓

form a 2-design . Moreover, for all 𝜅 with 4 ≤ 𝜅 ≤ 22𝑚−1 + 2𝑚−1, the Hamming

weight-𝜅 codewords in C∗(2)⊥
𝑓

form this 2-design.

Proof. The combination of Theorem 3.12 and Theorem 5.1 gives the desired conclusions for this 2-
design. □

6. Conclusions

This paper extends the framework proposed in [9] for constructing three-dimensional linear codes
C 𝑓 over F𝑞𝑚 that are parameterized by functions. Specifically, we investigate the weight distributions
of the subfield code C (2)

𝑓
, the punctured code C∗(2)

𝑓
, and their dual codes for the case 𝑞 = 2. For 𝑞 = 𝑝

(where 𝑝 ≡ 3 (mod 4) and 𝑚 = 3), we conduct a similar analysis on the weight distributions of the
subfield code C (𝑝)

𝑓
, the punctured code C∗(𝑝)

𝑓
, and their dual codes. Codes with favorable parameters

are rare, and relevant examples are provided in Examples 3.4, 3.7, 3.11, 3.14, 4.3, and 4.5. Further-
more, through our careful comparison, many of the obtained codes either have new parameters or are
inequivalent to the known subfield codes (see Table 5). Lastly, two classes of 2-designs are derived
from several codes presented in this work.

Table 5. Some known subfield codes in the literature.

𝑞-Ary [𝑛, 𝑘, 𝑑 ] Codes Conditions Ref.

𝑞-ary [𝑞3 + 1, 5, 𝑞3 − 𝑞2 − 𝑞] 𝑞 is even and 𝑚 = 3 [9] Thm. 3
𝑝-ary [𝑝2 (𝑝2 − 1) + 2, 4, 𝑝2 (𝑝 + 1) (𝑝 − 2) + 1] 𝑚 = 2 [16] Thm. 3.3
𝑝-ary [𝑝𝑚 + 1, 2𝑚 + 1, 𝑝𝑚−1 (𝑝 − 1) − 𝑝

𝑚−1
2 ] 𝑚 > 1 is odd [17] Thm.16

𝑝-ary [𝑝2𝑚 + 1, 3𝑚 + 1, 𝑝2𝑚−1 (𝑝 − 1) − 𝑝𝑚−1 ] 𝑚 > 1 [8] Thm. 4.6
𝑝-ary [𝑝2𝑚 + 1, 3𝑚 + 1, (𝑝2𝑚−1 − 𝑝𝑚−1 ) (𝑝 − 1) ] 𝑚 > 1 [8] Thm.4.7
𝑝-ary [𝑝𝑚 + 1, 𝑚 + 1, (𝑝 − 1) 𝑝𝑚−1 ] 𝑚 > 1 [18] Thm. V.1
𝑝-ary [𝑝𝑚 + 1, 2𝑚, 𝑝𝑚−1 (𝑝 − 1) − 𝑝

𝑚−1
2 ] 𝑝 and 𝑚 are odd [18] Thm. VI.7

binary [2𝑚 + 1, 𝑚 + 1, 2] 𝑚 > 1 [18] Thm. VII.4
binary [2𝑚 + 2, 𝑚 + 2, 2] 𝑚 > 1 [17] Thm. 11
binary [2𝑚 + 2, 2𝑚 + 1, 2𝑚−1 − 2

𝑚−1
2 ] 𝑚 > 1 [17] Thm. 13

binary [2𝑚 + 2, 2𝑚 + 1, 2𝑚−1 − 2
𝑚+𝑑−2

2 ] 𝑣2 (𝑚) ≤ 𝑣2 (𝑖 − 𝑗 ) 𝑑 = gcd(𝑚, 𝑖 − 𝑗 ) [7] Thm. 10

binary [2𝑚 + 1, 2𝑚 + 1, 2𝑚−1 − 2
𝑚+2𝑑−2

2 ] 𝑣2 (𝑚) ≥ 𝑣2 (𝑖 − 𝑗 ) + 1 𝑑 = gcd(𝑚, 𝑖 − 𝑗 ) [7] Thm. 18
binary [22𝑚−1 + 1, 2𝑚, 22𝑚−2 ] 𝑚 > 1 is even [9] Thm. 7
binary [22𝑚−1 + 1, 2𝑚 + 1, 22𝑚−2 − 2

3𝑚−3
2 + 1] 𝑚 > 1 is odd [9] Thm. 9

binary [22𝑚−1 + 1, 2𝑚 + 1, 22𝑚−2 − 2
3𝑚−4

2 ] 𝑚 > 1 is even [9] Thm. 12
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