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Abstract: This paper presents the development of an analytical methodology for computing
fractional-order conditional moments in nonlinear drift constant elasticity of variance (NLD-CEV)
processes, where regime transitions are governed by continuous-time finite-state irreducible Markov
chains. Through the implementation of a hybrid systems framework, we establish closed-form
solutions for conditional moments spanning arbitrary fractional orders across multiple regime states,
significantly advancing the analytical tractability of NLD-CEV processes under stochastic regime
conditions. The theoretical foundation of our approach relies on the construction and resolution of
an intricate system of coupled partial differential equations, derived through the application of the
Feynman–Kac formula in the context of switching diffusions. Our analysis extends to a detailed
examination of asymptotic behaviors exhibited by fractional-order conditional moments within a
two-state regime-switching framework, particularly emphasizing the interplay between the Markov
chain intensity matrix’s symmetry properties and various parametric configurations in determining the
process’ evolution. To illustrate the practical relevance of our approach, Monte Carlo simulations for
the process with regime-switching are applied to validate the accuracy and computational efficiency
of the analytical formulas. Furthermore, to demonstrate significant improvements over traditional
methods, we apply our findings for the valuation of financial derivatives within a dynamic nonlinear
mean-reverting regime-switching process. This work offers substantial contributions to financial
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modeling and derivative pricing by providing a robust tool for practitioners and researchers who are
dealing with complex stochastic environments.

Keywords: nonlinear drift CEV process; regime switching; Markov chain; Markovian switching;
hybrid system; VIX futures
Mathematics Subject Classification: 91G20, 91G80

1. Introduction

In financial modeling, accurately capturing the stochastic behavior of asset prices is crucial
for assessing risk, pricing derivatives, and guiding investment strategies. Standard models, such
as the Black–Scholes model, while revolutionary, assume constant volatility and linear dynamics,
limiting their ability to address real-world complexities, especially under volatile or turbulent market
conditions [8, 17]. To better address these dynamics, researchers have turned to stochastic processes
with flexible variance structures and regime-switching mechanisms, which allow models to adapt for
shifting economic conditions and unexpected market events [23].

Among these advances, models incorporating a constant elasticity of variance (CEV) have gained
prominence for their ability to capture changing volatility patterns that depend on the asset price
itself [12, 13, 23]. The CEV model introduces a degree of elasticity that makes the volatility
proportional to the level of the underlying asset, capturing the empirically observed the leverage effect
seen in financial markets. However, while the CEV model has made critical improvements, it remains
limited in handling nonlinear dynamics and varying market conditions over time [1].

The nonlinear drift constant elasticity of variance (NLD-CEV) process builds on the flexibility of
the CEV model, integrating a nonlinear drift component and regime-switching capability to adapt
dynamically across market environments [27]. This process is particularly suited for capturing the
asymmetries and conditional heteroscedasticity that are characteristic of asset returns, where market
regimes fluctuate according to changing economic conditions [1, 2, 10]. The NLD-CEV process
incorporates continuous-time finite-state Markov chains, allowing the process’ parameters to transition
between different states. This regime-switching mechanism enables the model to adjust dynamically,
accounting for sudden changes in volatility or drift, which are common in markets influenced by
external shocks or cyclical shifts [5, 40].

The application of regime-switching models has become instrumental in derivative pricing across
diverse market frameworks. A significant advancement came from Buffington and Elliott [6],
who enhanced the Black–Scholes framework by incorporating regime-dependent variables, including
interest rates, drift, and volatility. Their work yielded the characteristic function for occupation times
and adapted the Barone–Adesi–Whaley approximation, thus facilitating a more accurate valuation of
both European and American options. A notable computational breakthrough emerged through Zhu,
Badran, and Lu [40], who developed an elegant analytical solution for European option pricing within
a two-state regime-switching economy. Their innovation transformed a computationally intensive
double integral into a more manageable single integral of elementary functions, substantially enhancing
both computational efficiency and precision, in line with broader purely numerical advances in
the solution of option pricing partial differential equations (PDEs) [26]. The application domain
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expanded further when Li [24] developed a regime-switching framework addressing optimal volatility
index (VIX) futures trading. This approach utilized the Cox–Ingersoll–Ross (CIR) process coupled
with a finite-state Markov chain to capture the market dynamics, enabling traders to optimize their
entry and exit strategies through solutions derived from variational inequalities. These developments
were subsequently enriched by Lin and He [25], who investigated European option pricing through
a fractional Black–Scholes model incorporating regime switching. Their methodology captured the
essential characteristics of asset returns through a sophisticated two-step solution procedure for the
coupled fractional PDE system, culminating in an exact pricing formula based on Fourier cosine series
expansion that demonstrated both rapid convergence and practical applicability. For comprehensive
coverage of additional models and recent developments in regime-switching applications, the readers
may consult [18, 21, 32].

The proposed framework is motivated by the limitations of previous models, such as the
extended CIR (ECIR) process [22], which, while incorporating mean-reversion and regime-switching
dynamics, relies primarily on linear drift components and lacks the elasticity offered by the NLD-CEV
approach. In the ECIR process, the model captures conditional moments through a system of PDEs
under Markov switching, enabling applications in VIX futures pricing. However, the ECIR’s linearity
may limit its application in scenarios requiring greater adaptability to changing market volatility.
The NLD-CEV process addresses this gap by introducing a nonlinear drift term, which allows for
more robust modeling of asymmetrical market responses and variance elasticity. Compared with
existing regime-switching NLD-CEV-type models, which typically allow regime dependence only in a
limited subset of model parameters, the proposed framework further generalizes the model by allowing
full regime dependence across its key structural components. This full regime dependence leads to a
coupled hybrid PDE system for fractional-order conditional moments, for which explicit closed-form
solutions are derived in this paper.

In this paper, we develop an analytical framework to calculate fractional-order conditional moments
for the NLD-CEV process with regime switching. Using a hybrid system approach, we derive
closed-form solutions for these moments, enhancing both the analytical tractability and computational
efficiency of the model. Our approach is grounded in the Feynman–Kac formula, adapted for regime-
switching diffusion processes, leading to a recursive system of PDEs for the fractional moments. We
also explore the model’s asymptotic properties in a two-state regime-switching scenario, assessing how
variations in the Markov chain intensity matrix and parameter configurations affect the conditional
moments and overall behavior of the process. This analysis demonstrates the ability of the NLD-
CEV process to handle a wide range of market scenarios, extending its applicability beyond that of
traditional models.

To validate the efficacy of our approach, we conduct Monte Carlo (MC) simulations, comparing
the performance of our closed-form solutions with traditional computational methods. The results
illustrate not only the accuracy but also the computational efficiency of our analytical formulas in
capturing the conditional moments. Moreover, we apply the NLD-CEV process for the valuation
of financial derivatives, such as options, highlighting its practical relevance and superiority over
traditional models in capturing market complexities. Our findings present a valuable contribution to
the fields of financial modeling and derivative pricing, equipping researchers and practitioners with a
powerful tool for navigating stochastic environments characterized by nonlinear dynamics and regime-
switching behavior.
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The paper is organized as follows. In Section 2, we define the NLD-CEV process with regime
switching, setting up the necessary assumptions that support our model. Section 3 delves into the
hybrid system of PDEs derived from the Feynman–Kac formula for switching diffusions, laying the
analytical foundation for computing fractional-order conditional moments under a regime-switching
structure. Moreover, we present the main analytical results, including explicit closed-form formulas
for conditional moments, and examine the influence of different parameter configurations and Markov
chain states. Section 4 provides a method for stochastic differential equations (SDEs) with regime
switching and validates our theoretical findings through MC simulations, comparing the efficiency
and accuracy of formulas against conventional numerical methods. Finally, Section 5 discusses the
practical applications of the NLD-CEV process in financial contexts, particularly in pricing derivatives
such as VIX futures, illustrating the model’s adaptability to real-world problems. Section 6 concludes
the paper with a summary of our findings and potential directions for future research.

2. The m-state regime-switching NLD-CEV process

The CEV diffusion process, first introduced by Cox [12] in 1975, is viewed as an extension of
the Ornstein–Uhlenbeck (OU) process, particularly for applications in finance. Since its inception,
the CEV model has been explored and expanded across various fields. In recent studies, Araneda
et al. [3] investigated the sub-fractional CEV model, while Cao et al. [7] examined variance swap
pricing under a hybrid CEV–stochastic volatility process, demonstrating the model’s adaptability to
contemporary financial challenges.

2.1. The nonlinear drift constant elasticity of variance process

The first generalized version of Cox’s CEV process was proposed by Marsh and Rosenfeld [27],
who incorporated time-dependent parameters and a nonlinear drift term, resulting in what we now call
the NLD-CEV process, as described in [33]. The NLD-CEV process can be formulated as

dRt = κ(t)
(
θ(t)R−(1−β)

t − Rt

)
dt + σ(t)Rβ/2

t dWQ
t , β ∈ [0, 2) ∪ (2,∞), (2.1)

where θ(t), κ(t), and σ(t) are time-dependent parameters over t ∈ [0,T ] with the initial value R0 > 0,
and WQ

t is a standard Wiener process under the probability space (Ω,F ,Q) with filtration (Ft)t≥0 and a
risk-neutral probability measure Q. Here, the diffusion term σ(t)Rβ/2

t aligns with the structure in Cox’s
original CEV model, but the drift term κ(t)

(
θ(t)R−(1−β)

t − Rt
)

introduces nonlinearity, distinguishing
it from the traditional formulation. We restrict our attention to β ≥ 0 in (2.1). For β < 0, the
diffusion-induced random fluctuations become excessively strong near the zero boundary, substantially
increasing the risk that Rt crosses zero and reaches negative values. Such behavior contradicts the
intrinsic non-negativity required for many financial quantities, such as asset prices or interest rates,
and is therefore excluded from the present analysis.

Varying the parameter β produces several well-known processes within the NLD-CEV process.
When β = 1, the model becomes the ECIR process; for β = 0, it aligns with the OU process; for β→ 2,
it approximates the lognormal process studied by Merton; and when β = 3, it corresponds to the inverse
Feller (IF) or 3/2 stochastic volatility model (SVM).

Evidence suggests that nonlinearity in the drift component of the NLD-CEV process is particularly
well-suited for modeling the behavior of financial derivatives, especially those influenced by
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interest rate dynamics [39]. For instance, the empirical findings of Chan et al. [9] demonstrate that
models with β > 2 more effectively capture short-term rate movements compared with models where
β < 2. The NLD-CEV process is divided into two cases, each characterized by a distinct range of
values for β. In the first case, where 0 ≤ β < 2, we set β = 2α−1

α
, and the process becomes

dRt = κ(t)
(
θ(t)R

α−1
α

t − Rt

)
dt + σ(t)R

2α−1
2α

t dWQ
t , α ≥

1
2
. (2.2)

To guarantee the existence of a unique pathwise strong solution for (2.2), the two following existence
and uniqueness conditions are required.

Assumption 1. The parameters κ(t), θ(t), and σ(t) in the NLD-CEV process (2.1) are strictly positive
and smooth functions depending on the temporal variable t ∈ [0,T ]. Moreover, κ(t)/σ2(t) is locally
bounded on [0,T ].

Assumption 2. The process Rt in (2.1) contains the inequality 2κ(t)θ(t) ≥ σ(t)2.

Under Assumptions 1 and 2, the drift and diffusion coefficients of (2.2) satisfy standard local
Lipschitz continuity and appropriate growth conditions on the admissible state domain. In particular,
the imposed regularity and positivity of the model parameters ensure that the coefficients are well-
defined and locally bounded, while the structural condition in Assumption 2 prevents the degeneracy
of the diffusion term. As a result, the SDE (2.2) admits a unique strong (pathwise unique) solution up
to the given time horizon; see [11].

In the second case, where β > 2, we set β = 2α+1
α

, resulting in

dRt = κ(t)
(
θ(t)R

α+1
α

t − Rt

)
dt + σ(t)R

2α+1
2α

t dWQ
t , α > 0. (2.3)

It is noteworthy that as β → 2, both cases of the NLD-CEV process converge, with α → ∞ in each
scenario, linking the model back to a lognormal process. To guarantee the existence of a unique
pathwise strong solution for (2.3), the following existence and uniqueness conditions are required.

Assumption 3. The parameters −κ(t), θ(t), and −σ(t) in the NLD-CEV process (2.1) are strictly
positive and smooth functions depending on the temporal variable t ∈ [0,T ]. Moreover, κ(t)/σ2(t)
is locally bounded on [0,T ].

2.2. The NLD-CEV process with regime switching

Since the NLD-CEV process has limitations in its ability to account for broader economic factors as
mentioned in the Introduction, we present a regime-switching version of this model where the constant
parameters are allowed to transition between different states following a Markov chain Xt ∈ Mm

dRt = κXt

(
θXtR

−(1−β)
t − Rt

)
dt + σXtR

β
2
t dWQ

t , (2.4)

where Mm := {1, 2, . . . ,m} denotes the state space. When the situation is believed to be in state i,
the continuous-time irreducible m-state Markov chain with the generator Q = (qi j)m×m, which is
independent of WQ

t , is defined as

P
(
Xt+δ = j | Xt = i

)
=

qi jδ + o(δ) if i , j,

1 + qi jδ + o(δ) if i = j,
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where δ > 0 and o(δ) satisfies limδ→0
o(δ)
δ

= 0. If i , j, the transition rate from i to j satisfies qi j ≥ 0
and qii = −

∑
i, j qi j. The dynamic behavior of the financial market regime is captured through this

Markov chain, which plays a fundamental role in governing the index dynamics. While our analysis
focuses on a two-state Markov chain configuration to model regime transitions, the framework can
be readily generalized to accommodate any finite number of states. Following the work of Sutthimat,
Mekchay and Rujivan [33], the regime-switching model (2.4) can be characterized into two distinct,
depending on the parameter β.

In the case of β ∈ [0, 2), we set β = 2α−1
α

. For α ≥ 1
2 , the regime-switching NLD-CEV process can

be written as
dRt = κXt

(
θXtR

α−1
α

t − Rt

)
dt + σXtR

2α−1
2α

t dWQ
t . (2.5)

In the case of β ∈ (2,∞), we set β = 2α+1
α

. For α > 0, the regime-switching NLD-CEV process can be
written as

dRt = κXt

(
θXtR

α+1
α

t − Rt

)
dt + σXtR

2α+1
2α

t dWQ
t . (2.6)

This paper proposes an analytical formula for fractional-order conditional moments of the m-state
regime-switching NLD-CEV process. Specifically, we consider fractional moments of the form

U〈n〉α,i (τ,R) := EQ
[
R

n
α

T | Rt = R, Xt = i
]
, 0 ≤ t ≤ T, (2.7)

for τ = T − t denotes the time to maturity, n ∈ Z, R > 0, and the ith state is in the state space Mm.
The availability of these analytical formulas provides significant value to practitioners in financial
markets who require high-precision derivative pricing calculations, particularly when utilizing the m-
state regime-switching NLD-CEV process to model volatility or interest rate dynamics. A notable
contribution came from Ahn and Gao [1], who determined the conditional νth moments of the 3/2-SVM
in 1999. This model, which aligns with Eq (2.1) when β = 3 or Eq (2.3) when α = 1, enabled them
to analyze their model’s distribution using term-structure data. This formulation is also recognized as
the IF process, though their derivation relies on integral expressions involving Kummer’s and Gamma
functions that lack closed-form solutions. Subsequently, Zhou [39] investigated the conditional
moments of the process (2.1) with β ∈ [0, 2) in 2003, aiming to implement parameter estimation
via the generalized method of moments (GMM). Given the absence of closed-form expressions
for the required moments, Zhou developed approximations for the first and second moments via a
diffusion process using Itô’s lemma. In their 2011 work on the hybrid Heston model, Grzelak and
Oosterlee [19] approximated the conditional half-moment of the CIR process (corresponding to the
process in (2.2) with α = 1 under constant parameters) via first-order Taylor expansion. Later,
Rujivan and Zhu [30] derived the first and second conditional moments in 2014 to establish a closed-
form solution for discretely sampled variance swaps within the Heston model framework, specifically
utilizing the ECIR process.

In the context of conditional expectation, a key question arises: Can we compute the conditional
expectation directly from the transition probability density function (PDF)? We begin by introducing
the ECIR process

dVt = κ(t)(θ(t) − Vt)dt + σ(t)
√

Vt dWQ
t , (2.8)

where the parameter functions; θ(t) > 0, κ(t) > 0, and σ(t) > 0 are continuous on [0,T ]. The
transition PDF of the ECIR process is related to Laguerre polynomials L(η)

k (x) (see also [28]), the
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gamma function Γ(x), and a time-varying dimension d(t) := 4κ(t)θ(t)
σ2(t) . Recently, Rujivan et al. [31]

presented the transition PDF, fVt , for the ECIR process (2.8), as follows:

fVt(v, t | v0) := P (Vt = v | V0 = v0) ,

for v, v0 > 0, and t ∈ (0,T ], which can be expressed as

fVt(v, t|v0) =
e−

v
2τ(t,0) v

d(t)
2 −1

(2τ(t, 0))
d(t)

2

∞∑
k=0

k!

Γ
(d(t)

2 + k
) ĉk(t, v0) L

(
d(t)

2 −1
)

k

( v
2τ(t, 0)

)
,

where

ĉ0(t, v0) = 1, ĉk(t, v0) =
1
k

k−1∑
j=0

ĉ j(t, v0)d̂k− j(t, v0), ∀k ∈ N,

d̂1(t, v0) = −
1

2τ(t, 0)
v0e−

∫ t
0 κ(u)du +

1
2

∫ t

0
d(1)(s)

(
1 −

τ(t, s)
τ(t, 0)

)
ds,

d̂ j(t, v0) =
1
2

∫ t

0
d(1)(s)

(
1 −

τ(t, s)
τ(t, 0)

) j
ds, ∀ j ∈ N \ {1},

and τ(t, s) = 1
4

∫ t

s
σ2(ζ)e−

∫ t
ζ
κ(u)dudζ. In particular, if d(s) = d ≥ 2 for all s ∈ [0, t], then

ĉk(t, v0) =

(
−

e−
∫ t

0 κ(u)du

2τ(t, 0)

)k vk
0

k!
, ∀k ∈ N ∪ {0}.

Applying Itô’s lemma, along with the transformation Vt = R2−β
t in (2.1), yields an ECIR process

as follows
dVt = A(t) (B(t) − Vt) dt + C(t)

√
Vt dWt, (2.9)

where A(t) = (2 − β)κ(t), B(t) = θ(t) +
(1−β)σ2(t)

2κ(t) , and C(t) = (2 − β)σ(t). When the parameters β = 2α−1
α

and β = 2α+1
α

are substituted in (2.9), they yield the processes (2.2) and (2.3), respectively. This implies
that we can directly transform the ECIR process’s transition PDF to obtain the transition PDF for
the NLD-CEV process (see also [1]).

However, deriving conditional expectations (such as conditional moments) directly from the
transition PDF are difficult, and this becomes even more complicated for the conditional moments of
the m-state regime-switching NLD-CEV process. To overcome this issue, the Feynman–Kac formula
for switching diffusions, which is well-suited for SDEs with regime switching, is utilized.

3. Conditional moments: A hybrid system of PDEs

The results in this section follow a structured progression from general regime-switching dynamics
to special and illustrative cases. We first establish the hybrid coupled PDE systems associated with the
m-state regime-switching NLD–CEV models (2.5) and (2.6) via the switching diffusion Feynman–Kac
approach; see Theorems 1 and 2. These PDE characterizations lead to the general m-state finite-
sum moment representations (3.3) and (3.5), where the coefficient vectors satisfy the recursive matrix
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differential equations driven by the Markov generator. To obtain explicit and computable formulas, the
general construction is then specialized to the two-state case under β ∈ [0, 2) and β ∈ (2,∞), resulting in
Theorems 3 and 6, respectively. Theorems 4 and 7 further consider parameter-homogeneous settings,
under which the regime-switching structure becomes degenerate and the resulting moment formulas
reduce to those of a non-switching NLD-CEV process. In addition, Theorems 5 and 8 focus on
the first-order fractional moments, providing explicit closed-form expressions that serve as building
blocks for long-term moment behavior. Taking the limit τ → ∞ of these conditional moments yields
the corresponding unconditional moments, which are summarized in Theorems 9 and 10, derived,
respectively, from Theorems 5 and 8.

To facilitate the construction of the hybrid PDE systems and ensure the well-posedness of the
underlying regime-switching diffusions, we first state the technical assumptions required for the NLD–
CEV dynamics. These assumptions guarantee the existence of a unique pathwise strong solution and
allow the application of the switching-diffusion Feynman–Kac formula. Specifically, Assumptions 4
and 5 are imposed on model (2.5), while Assumption 6 applies to model (2.6).

Assumption 4. For any Xt ∈ Mm, the parameters κXt , θXt , and σXt in the NLD-CEV process (2.5) are
strictly positive and smooth functions depending on the temporal variable t ∈ [0,T ]. Moreover, κXt/σ

2
Xt

is locally bounded on [0,T ].

Assumption 5. For any Xt ∈ Mm, the process Rt in (2.5) contains the inequality 2κXtθXt ≥ σ
2
Xt

.

Assumption 6. For any Xt ∈ Mm, the parameters −κXt , θXt , and −σXt in the NLD-CEV process (2.6)
are strictly positive and smooth functions depending on the temporal variable t ∈ [0,T ]. Moreover,
κXt/σ

2
Xt

is locally bounded on [0,T ].

In real markets, volatility may evolve through multiple levels rather than a single low-high pattern.
Our theoretical derivations, however, do not rely on a two-regime restriction: Throughout, the regime
process is allowed to be a finite-state continuous-time Markov chain with an arbitrary number of
states m ≥ 2. In particular, the hybrid (coupled) system of PDEs is formulated in full generality in
Theorem 1 (Subsection 3.1) for β ∈ [0, 2) and in Theorem 2 (Subsection 3.2) for β ∈ (2,∞); moving
from m = 2 to any m simply replaces the 2 × 2 generator with an m × m generator and yields an
m-dimensional coupled system of the same structure.

For numerical illustrations, we specialize to the two-state cases in Subsections 3.3 and 3.4. This
choice is motivated by clarity and parsimony: The two-state specification is the simplest nontrivial
regime-switching model that captures basic low-high volatility behavior and keeps the parameter
dimension manageable, allowing us to highlight the analytic tractability and computational efficiency
of the proposed closed-form pricing formulas. We emphasize that this two-state implementation is
used as a transparent baseline example; the same methodology and theoretical results extend directly
to multi-state regime specifications.

3.1. Hybrid system of PDEs when β ∈ [0, 2)

A hybrid system of PDEs is established from the Feynman–Kac formula for switching diffusions
related to the fractional-order conditional moments in (2.7) and the m-state regime-switching NLD-
CEV process in (2.5), as presented in the following theorem.
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Theorem 1. Suppose that Rt follows the system of SDEs (2.5) on [0,T ] and Assumptions 4 and 5 hold.
The function U〈n〉α,i := U〈n〉α,i (τ,R) defined in (2.7), for i ∈ Mm and τ = T − t ≥ 0, are the solutions of the
following hybrid system of PDEs:

∂U〈n〉α,i
∂τ
− κi

(
θiR

α−1
α − R

)∂U〈n〉α,i
∂R

−
σ2

i R
2α−1
α

2

∂2U〈n〉α,i
∂R2 −

∑
j∈Mm

j,i

qi j

(
U〈n〉α, j − U〈n〉α,i

)
= 0, (3.1)

for (τ,R) ∈ [0,T ] × (0,∞) subject to the initial condition U〈n〉α,i (0,R) = R
n
α .

Proof. The SDE Rt defined in (2.5) falls within the category of switching diffusion processes studied
by Baran et al. [4]. Its corresponding infinitesimal generator, L, is given by

−
∂U〈n〉α,i
∂t

= LU〈n〉α,i = κi

(
θiR

α−1
α − R

)∂U〈n〉α,i
∂R

+
σ2

i R
2α−1
α

2

∂2U〈n〉α,i
∂R2 +

∑
j∈Mm

j,i

qi j

(
U〈n〉α, j − U〈n〉α,i

)
, (3.2)

and since τ = T − t, (3.2) becomes (3.1) as required; see more details in [4, Theorem 6]. �

Compared with the single-regime NLD-CEV process, the inclusion of a finite-state Markov chain
introduces additional analytical difficulties. In particular, regime-switching couples the fractional-order
conditional moments across different regimes through the transition intensities qi j, leading to a system
of hybrid PDEs rather than a single equation. This coupling substantially increases the analytical
complexity and prevents a direct extension of the standard moment-based techniques developed for
non-switching models.

The solution to (3.1) provides closed-form expressions for the fractional-order conditional moments
of the process Rt. Specifically, these moments can be derived by expressing EQ

[
R

n
α

T | Rt = R, Xt = i
]

as a sum of the terms involving the rational power of R weighted by the coefficients A〈k〉α, j(τ), which
are determined through a recursive system. This formulation allows us to compute the conditional
moments iteratively, capturing the impact of regime-switching dynamics through matrix operations
involving P〈`〉α and D〈`〉α . By solving for the coefficients A〈`〉α, j(τ) at each step, the fractional-order
conditional moments of Rt can be expressed as follows:

EQ
[
R

n
α

T | Rt = R, Xt = i
]

=

m∑
j=1

(
1{ j}(i)

n∑
k=0

A〈k〉α, j(τ)R
k
α

)
, (3.3)

where τ = T − t ≥ 0 and 1 is the indicator function. The coefficients A〈n〉α, j(τ) for j = 1, 2, . . . ,m are the
solutions of

u〈n〉α (τ) = P〈n〉α u〈n〉α (τ).

For ` = n − 1, n − 2, . . . , 0, A〈`〉α, j(τ) for j = 1, 2, . . . ,m, can be solved backward iteratively through the
following system:

u〈`〉α (τ) = P〈`〉α u〈`〉α (τ) + D〈`〉α u〈`+1〉
α (τ),
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where u〈ı〉α (τ) =
[
A〈ı〉α,1(τ), A〈ı〉α,2(τ), . . . , A〈ı〉α,m(τ)

]>, u〈ı〉α (τ) =
[ d

dτA〈ı〉α,1(τ), d
dτA〈ı〉α,2(τ), . . . , d

dτA〈ı〉α,m(τ)
]>, for 0 ≤

ı ≤ n,

P〈`〉α =


−

(
κ1

`
α

+
∑m
ı=2 q1,ı

)
q1,2 . . . q1,m−1 q1,m

q2,1 −
(
κ2

`
α

+
∑m
ı=1,ı,2q2,ı

)
. . . q2,m−1 q2,m

...
...

. . .
...

...

qm,1 qm,2 . . . qm,m−1 −
(
κm

`
α

+
∑m−1
ı=1 qm,ı

)
 ,

and D〈`〉α = diag
{
γ〈`〉α,1, γ

〈`〉
α,2, . . . , γ

〈`〉
α,m

}
when γ〈`〉α,i =

(
`+1
α

) (
κiθi + 1

2σ
2
i

(
`+1
α
− 1

))
; see a rigorous proof for

the two-state regime-switching NLD-CEV process in Section 3.3.
For clarity, we briefly summarize the structure and interpretation of the recursive system above

before specializing to the two-state case. The recursive coefficient system admits a clear structural
interpretation. At the highest order k = n, the coefficients satisfy a homogeneous linear system
governed by the mean-reversion parameters and the Markov transition intensities. Lower-order
coefficients are then obtained sequentially by solving linear inhomogeneous systems, where the source
terms depend explicitly on the coefficients of higher order. This backward recursive structure reflects
the polynomial expansion of the conditional moments and guarantees closure of the moment system
in a finite number of steps. Moreover, the regime-switching effects are propagated across different
moment orders through the coupling matrices P〈`〉α and D〈`〉α , providing a transparent mechanism for
incorporating regime dynamics into the moment’s evolution.

3.2. Hybrid system of PDEs when β ∈ (2,∞)

A hybrid system of PDEs is established from the Feynman–Kac formula for switching diffusions
related to the fractional-order conditional moments in (2.7) and the m-state regime-switching NLD-
CEV process in (2.6), as presented in the following theorem.

Theorem 2. Suppose that Rt follows the system of SDEs (2.6) on [0,T ] and that Assumption 6 holds.
The function U〈n〉α,i := U〈n〉α,i (τ,R) defined in (2.7), for i ∈ Mm and τ = T − t ≥ 0, are the solutions of the
following hybrid system of PDEs:

∂U〈n〉α,i
∂τ
− κi

(
θiR

α+1
α − R

)∂U〈n〉α,i
∂R

−
σ2

i R
2α+1
α

2

∂2U〈n〉α,i
∂R2 −

∑
j∈Mm

j,i

qi j

(
U〈n〉α, j − U〈n〉α,i

)
= 0, (3.4)

for (τ,R) ∈ [0,T ] × (0,∞) subject to the initial condition U〈n〉α,i (0,R) = R
n
α .

Proof. See Theorem 6 in Baran et al. [4] and Theorem 1. �

As described previously in Section 3.1, solving for the coefficients A〈`〉α, j(τ) at each step, the
fractional-order conditional moments of Rt, which is the solution of the system of PDEs in (3.4),
can be expressed as follows:

EQ
[
R

n
α

T | Rt = R, Xt = i
]

=

m∑
j=1

(
1{ j}(i)

|n|∑
k=0

A〈k〉α, j(τ)R−
k
α

)
, (3.5)
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where τ = T − t ≥ 0 and 1 is the indicator function. The coefficients A〈n〉α, j(τ) for j = 1, 2, . . . ,m are the
solutions of

u〈|n|〉α (τ) = P〈|n|〉α u〈|n|〉α (τ),

and A〈`〉α, j(τ) for j = 1, 2, . . . ,m, can be solved iteratively via the following system:

u〈`〉α (τ) = P〈`〉α u〈`〉α (τ) + D〈`〉α u〈`+1〉
α (τ), 0 ≤ ` < |n|,

where

P〈`〉α =


κ1

`
α
−

∑m
ı=2 q1,ı q1,2 . . . q1,m−1 q1,m

q2,1 κ2
`
α
−

∑m
ı=1,ı,2q2,ı . . . q2,m−1 q2,m

...
...

. . .
...

...

qm,1 qm,2 . . . qm,m−1 κm
`
α
−

∑m−1
ı=1 qm,ı

 ,
and D〈`〉α = diag

{
γ〈`〉α,1, γ

〈`〉
α,2, . . . , γ

〈`〉
α,m

}
when γ〈`〉α,i =

(
`+1
α

) (
−κiθi + 1

2σ
2
i

(
`+1
α

+ 1
))

; see a rigorous proof for
the two-state regime-switching NLD-CEV process in Section 3.4.

A key feature of the proposed analytical formulas (3.3) and (3.5) is the explicit role of the m-
state regime-switching intensities qi j, which couple the fractional-order conditional moments across
different regimes via terms of the form qi j

(
U〈n〉α, j − U〈n〉α,i

)
for i , j in the hybrid PDE systems (3.1)

and (3.4). When the transition intensities are relatively small, the regime-switching time scale
is slow compared with the diffusion dynamics, leading to weak coupling between regimes and
conditional moments that evolve close to their single-regime counterparts. In contrast, when the
transition intensities are relatively large, the regime-switching time scale becomes short, resulting in
strong coupling across regimes and conditional moments that tend to exhibit an averaged behavior
influenced by the stationary distribution of the underlying Markov chain. This qualitative dependence
of conditional moments on the relative magnitude of regime-switching intensities enables the proposed
analytical formulation to accommodate a wide range of market conditions, from persistent regimes to
environments characterized by frequent regime changes.

3.3. The two-state regime-switching NLD-CEV process when β ∈ [0, 2)

This section focuses on deriving an explicit formula for the fractional-order conditional moments
of the two-state regime-switching NLD-CEV process under the parameter range β ∈ [0, 2). Building
on the hybrid system approach introduced earlier, the conditional moments are derived by applying a
system of PDEs tailored to the NLD-CEV dynamics under regime-switching. The following theorem
establishes the formal solution to this system, offering insight into the behavior of conditional moments
within a two-state switching process. Before proceeding with the theorem, and following statements
in Section 3.1, let A〈k〉α (τ) := A〈k〉α,1(τ) and B〈k〉α (τ) := A〈k〉α,2(τ).

Theorem 3. Suppose that Rt follows the system of SDEs (2.5) on [0,T ] with the initial conditions
Rt = R and Xt = i, i ∈ {1, 2}. The conditional n

α
-moment for n ∈ Z+

0 is

U〈n〉α,i (τ,R) = EQ
[
R

n
α

T | Rt = R, Xt = i
]

= 1{1}(i)
n∑

k=0

A〈k〉α (τ)R
k
α + 1{2}(i)

n∑
k=0

B〈k〉α (τ)R
k
α , (3.6)
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where τ = T − t ≥ 0, 1 is the indicator function, and A〈k〉α and B〈k〉α for k = 0, 1, . . . , n can be solved by
the system of recursive matrix differential equations

u〈n〉α (τ) = P〈n〉α u〈n〉α (τ), (3.7)

u〈`〉α (τ) = P〈`〉α u〈`〉α (τ) + D〈`〉α u〈`+1〉
α (τ), (3.8)

with the initial conditions u〈n〉α (0) = [1, 1]> and u〈`〉α (0) = [0, 0]> for ` = 0, 1, . . . , n − 1, where

u〈k〉α (τ) =

[ d
dτA〈k〉α (τ)
d
dτB〈k〉α (τ)

]
, P〈k〉α =

[
−κ1

k
α
− q12 q12

q21 −κ2
k
α
− q21

]
, u〈k〉α (τ) =

[
A〈k〉α (τ)
B〈k〉α (τ)

]
,

D〈`〉α = diag
{
γ〈`〉α,1, γ

〈`〉
α,2

}
, γ〈`〉α,i =

(
` + 1
α

) (
κiθi +

1
2
σ2

i

(
` + 1
α
− 1

))
.

Proof. By the result of Yao et al. [37], the conditional moments in (3.6) satisfy the PDE

∂U〈n〉α,i
∂τ
− κi

(
θiR−(1−β) − R

) ∂U〈n〉α,i
∂R

−
1
2
σ2

i Rβ
∂2U〈n〉α,i
∂R2 −

∑
j,i

qi j

(
U〈n〉α, j − U〈n〉α,i

)
= 0, (3.9)

with β = 2α−1
α

where (τ,R) ∈ [0,T ] × R+ subject to the initial condition at τ = 0

U〈n〉α,i (0,R) = R
n
α for i = 1, 2.

The proof is divided into two cases depending on the state Xt = i for i = 1, 2. For i = 1, we obtain
the initial conditions A〈n〉α (0) = 1 by comparing the coefficients of (3.6). Next, we compute Eq (3.9) by
substituting its partial derivatives with respect to (3.6), which are

∂U〈n〉α,i
∂τ

=

n∑
k=0

d
dτ

A〈k〉α (τ)R
k
α ,

∂U〈n〉α,i
∂R

=

n∑
k=1

k
α

A〈k〉α (τ)R
k
α−1 and

∂2U〈n〉α,i
∂R2 =

n∑
k=1

k
α

(
k
α
− 1

)
A〈k〉α (τ)R

k
α−2,

to obtain the simplified form(
d
dτ

A〈n〉α (τ) + κ1
n
α

A〈n〉α (τ) − q12

(
B〈n〉α (τ) − A〈n〉α (τ)

))
R

n
α

+

n−1∑
`=0

(
d
dτ

A〈`〉α (τ) − κ1θ1

(
` + 1
α

)
A〈`+1〉
α (τ) + κ1

`

α
A〈`〉α (τ) −

1
2
σ2

1

(
` + 1
α

) (
` + 1
α
− 1

)
A〈`+1〉
α (τ)

− q12

(
B〈`〉α (τ) − A〈`〉α (τ)

) )
R

`
α = 0, (3.10)

with the initial conditions A〈`〉α (0) = 0 for all ` = 0, 1, . . . , n − 1. Consequently, we obtain the case of
the state i = 2 by directly following the previous case(

d
dτ

B〈n〉α (τ) + κ2
n
α

B〈n〉α (τ) − q21

(
A〈n〉α (τ) − B〈n〉α (τ)

))
R

n
α

+

n−1∑
`=0

(
d
dτ

B〈`〉α (τ) − κ2θ2

(
` + 1
α

)
B〈`+1〉
α (τ) + κ2

`

α
B〈`〉α (τ) −

1
2
σ2

2

(
` + 1
α

) (
` + 1
α
− 1

)
B〈`+1〉
α (τ)
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− q21

(
A〈`〉α (τ) − B〈`〉α (τ)

) )
R

`
α = 0, (3.11)

where B〈n〉α (0) = 1 and B〈`〉α (0) = 0 for all ` = 0, 1, . . . , n− 1. As (3.10) and (3.11) are equivalent to (3.7)
and (3.8), the proof is complete. �

The following theorem addresses the case where the parameters of the both states are similar,
allowing for a simplified analysis of the regime-switching NLD-CEV process. This condition
enables the derivation of more tractable expressions for the conditional moments, as the similarities
in the parameters reduce the complexity of the resulting system of equations. By focusing on
this specific scenario, the theorem provides insights into the process’ behavior under near-identical
regime conditions.

Theorem 4. Suppose that Rt follows the system of SDEs (2.5) such that κ1 = κ2 = κ, θ1 = θ2 = θ, and
σ1 = σ2 = σ on [0,T ] with the initial conditions Rt = R and Xt = i, i ∈ {1, 2}. The conditional n

α
-

moment for n ∈ Z+
0 is defined by

EQ
[
R

n
α

T | Rt = R, Xt = i
]

=

n∑
k=0

 e−
nκτ
α

(n − k)!

(
αe

κτ
α − α

κ

)n−k
 n−k∏

j=1

γ〈n− j〉
α


 R

k
α , (3.12)

where the product’s term equals 1 when k = n.

Proof. We use the eigenvalue method to solve the system of ordinary differential equations (ODEs)
with constant coefficients. The eigenvalues and eigenvectors of P〈k〉α are, respectively, λ〈k〉1 = −κ k

α

and λ〈k〉2 = −q12 − q21 − κ
k
α
, corresponding to v1 = [1, 1]> and v2 = [q12,−q21]> for k = 0, 1, . . . , n. Let

S = [v1, v2] and Λ
〈k〉
α = diag

{
λ〈k〉1 , λ〈k〉2

}
. From [36], the solution of the homogeneous problem (3.7) can

be solved as follows:

u〈n〉α (τ) = eτP〈n〉α u〈n〉α (0) = S eτΛ
〈n〉
α S −1u〈n〉α (0) =

[
e−

κnτ
α , e−

κnτ
α

]>
. (3.13)

The solution to the nonhomogeneous problem (3.8) is a combination of the solution to the
homogeneous Eq (3.7), u〈`〉α,c, and a particular solution, u〈`〉α,p

u〈`〉α (τ) = u〈`〉α,c(τ) + u〈`〉α,p(τ). (3.14)

Since the solution of the homogeneous part with respect to u〈`〉α,c(0) = [0, 0]> for ` = 0, 1, . . . , n − 1, we
use the same idea as (3.13) to obtain u〈`〉α,c(τ) = [0, 0]>. In this part of the solution, we assume that

u〈`〉α,p(τ) = Φ〈`〉α (τ)f(τ), (3.15)

where Φ
〈`〉
α (τ) = S eτΛ

〈`〉
α and f(τ) is the unknown parameter function. From (3.8),

d
dτ

u〈`〉α,p(τ) =
d
dτ

Φ〈`〉α (τ)f(τ) + Φ〈`〉α (τ)
d
dτ

f(τ)

= P〈`〉α Φ〈`〉α (τ)f(τ) + Φ〈`〉α (τ)
d
dτ

f(τ)
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= P〈`〉α u〈`〉α,p(τ) + Φ〈`〉α (τ)
d
dτ

f(τ),

which implies that

P〈`〉α u〈`〉α (τ) + D〈`〉α u〈`+1〉
α (τ) = P〈`〉α u〈`〉α,p(τ) + Φ〈`〉α (τ)

d
dτ

f(τ).

The unknown parameter function f(τ) can then be written in the definite integral form as

f(τ) =

∫ τ

0

(
Φ〈`〉α (ξ)

)−1
D〈`〉α u〈`+1〉

α (ξ)dξ. (3.16)

We conclude from (3.14)–(3.16) that the solution of the nonhomogeneous problem (3.8) is
represented by

u〈`〉α (τ) = Φ〈`〉α (τ)
∫ τ

0

(
Φ〈`〉α (ξ)

)−1
D〈`〉α u〈`+1〉

α (ξ)dξ. (3.17)

The following benefit formulas are provided to solve (3.17) based on the specific index ` for each case:

Φ〈`〉α (τ)
[
x
0

]
= S eτΛ

〈`〉
α

[
x
0

]
=

[
xe−τκ

`
α

xe−τκ
`
α

]
and

(
Φ〈`〉α (τ)

)−1
[
y
y

]
= e−τΛ

〈`〉
α S −1

[
y
y

]
=

[
yeτκ

`
α

0

]
,

where x and y are arbitrary functions, which yield inductively to capture

u〈`〉α (τ) =

 n−∏̀
j=1

D〈n− j〉
α

 e−τκ
`
α

[
Jn−`(τ)
Jn−`(τ)

]
, (3.18)

for all ` = 0, 1, . . . , n − 1, where

Jk(τ) =

∫ τ

0
e−

κξk
α

∫ ξk

0
e−

κξk−1
α · · ·

∫ ξ3

0
e−

κξ2
α

∫ ξ2

0
e−

κξ1
α dξ1dξ2 . . . dξk−1dξk. (3.19)

The definite repeated integrals (3.19) are rewritten by substituting F(ξi) =

∫
e−

κξi
α dξi to obtain

Jk(τ) =

∫ F(τ)

F(0)

∫ F(ξk)

F(0)
· · ·

∫ F(ξ3)

F(0)

∫ F(ξ2)

F(0)
1 dF(ξ1) dF(ξ2) . . . dF(ξk−1) dF(ξk)

=
1
k!

(F(τ) − F(0))k

=
1
k!

(
−αe−

κτ
α + α

κ

)k

, (3.20)

where we use [20, Proposition 2.3] in the second equality. Since both components of the solution (3.18)
are the same, we have

A〈`〉α (τ) = B〈`〉α (τ) =
e
−nκτ
α

(n − `)!

(
αe

κτ
α − α

κ

)n−`
 n−∏̀

j=1

γ〈n− j〉
α

 , (3.21)

for all ` = 0, 1, . . . , n − 1. When ` = n, Eq (3.21) with the product term set equal to 1 is equivalent
to (3.13). By (3.6) and (3.21), the proof is complete. �
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It is worth noting that formula (3.12) corresponds directly to [33, (17)], highlighting the consistency
between these results. The following theorem also illustrates that Theorem 3 can be effectively applied
to calculate the conditional 1

α
-moment, providing a practical method for evaluating fractional-order

moments within the NLD-CEV process under specific conditions.

Theorem 5. Suppose that Rt follows the system of SDEs (2.5) on [0,T ] with the initial conditions Rt =

R and Xt = i, i ∈ {1, 2}. The conditional 1
α
-moment is defined by

EQ
[
R

1
α

T | Rt = R, Xt = i
]

= 1{1}(i)
(
A〈0〉α (τ) + A〈1〉α (τ)R

1
α

)
+ 1{2}(i)

(
B〈0〉α (τ) + B〈1〉α (τ)R

1
α

)
,

where τ = T − t ≥ 0, 1 is the indicator function, and A〈k〉α and B〈k〉α for k = 0, 1 can be calculated by
the following

A〈1〉α (τ) = m11eτλ
〈1〉
1 + m12eτλ

〈1〉
2 , B〈1〉α (τ) = m21eτλ

〈1〉
1 + m22eτλ

〈1〉
2 ,

A〈0〉α (τ) =
n11

(
eτλ

〈1〉
1 − 1

)
λ〈1〉1

+
n12

(
eτλ

〈1〉
2 − 1

)
λ〈1〉2

+
n21q12

(
eτλ

〈1〉
1 − e−τ(q12+q21))

λ〈1〉1 + q12 + q21

+
n22q12

(
eτλ

〈1〉
2 − e−τ(q12+q21))

λ〈1〉2 + q12 + q21

,

B〈0〉α (τ) =
n11

(
eτλ

〈1〉
1 − 1

)
λ〈1〉1

+
n12

(
eτλ

〈1〉
2 − 1

)
λ〈1〉2

−
n21q21

(
eτλ

〈1〉
1 − e−τ(q12+q21))

λ〈1〉1 + q12 + q21

−
n22q21

(
eτλ

〈1〉
2 − e−τ(q12+q21))

λ〈1〉2 + q12 + q21

,

and where

λ〈1〉1 =
1

2α

(
− κ1 − κ2 − αq12 − αq21 +

√(
κ1 + κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 + ακ1q21 + ακ2q12

))
,

λ〈1〉2 =
1

2α

(
− κ1 − κ2 − αq12 − αq21 −

√(
κ1 + κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 + ακ1q21 + ακ2q12

))
,

m11 =

( κ2
α

+ λ〈1〉2
)(
λ〈1〉1 + κ2

α
+ q21

)
q21

(
λ〈1〉2 − λ

〈1〉
1

) , m12 =

( κ2
α

+ λ〈1〉1
)(
λ〈1〉2 + κ2

α
+ q21

)
q21

(
λ〈1〉1 − λ

〈1〉
2

) , m21 =

κ2
α

+ λ〈1〉2

λ〈1〉2 − λ
〈1〉
1

,

m22 =

κ2
α

+ λ〈1〉1

λ〈1〉1 − λ
〈1〉
2

, n11 =
γ〈0〉α,1m11q21 + γ〈0〉α,2m21q12

q12 + q21
, n12 =

γ〈0〉α,1m12q21 + γ〈0〉α,2m22q12

q12 + q21
,

n21 =
γ〈0〉α,1m11 − γ

〈0〉
α,2m21

q12 + q21
, n22 =

γ〈0〉α,1m12 − γ
〈0〉
α,2m22

q12 + q21
, γ〈0〉α,i =

1
α

(
κiθi +

1
2
σ2

i

(
1
α
− 1

))
.

Proof. We first consider the system of recursive ODEs in Theorem 3 when n = 1,

u〈1〉α (τ) = P〈1〉α u〈1〉α (τ), (3.22)

u〈0〉α (τ) = P〈0〉α u〈0〉α (τ) + D〈0〉α u〈1〉α (τ), (3.23)

with the initial conditions u〈1〉α (0) = [1, 1]> and u〈0〉α (0) = [0, 0]>. We note the following eigenvalues
and eigenvectors of the diagonalizable matrix P〈1〉α

λ〈1〉1 =
1
2

(
tr
(
P〈1〉α

)
+

√
tr2

(
P〈1〉α

)
− 4det

(
P〈1〉α

) )
corresponding to v〈1〉1 =

[
λ〈1〉1 +

κ2

α
+ q21, q21

]>
,

λ〈1〉2 =
1
2

(
tr
(
P〈1〉α

)
−

√
tr2

(
P〈1〉α

)
− 4det

(
P〈1〉α

) )
corresponding to v〈1〉2 =

[
λ〈1〉2 +

κ2

α
+ q21, q21

]>
,
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where tr
(
P〈1〉α

)
= − κ1

α
−
κ2
α
−q12−q21 and det

(
P〈1〉α

)
=

(
κ1
α

+q12

)(
κ2
α

+q21

)
−q12q21. Consequently, we have λ〈1〉1

and λ〈1〉2 defined by the theorem statement. Let S 1 = [v〈1〉1 , v〈1〉2 ] and Λ
〈1〉
α = diag

{
λ〈1〉1 , λ〈1〉2

}
. The solution

of the homogeneous problem (3.22) can be found by applying the eigenvalues and eigenvectors above

u〈1〉α (τ) = S 1eτΛ
〈1〉
α S −1

1 u〈1〉α (0) =

[
m11eτλ

〈1〉
1 + m12eτλ

〈1〉
2 ,m21eτλ

〈1〉
1 + m22eτλ

〈1〉
2

]>
, (3.24)

where m11,m12,m21, and m22 are defined in the theorem statement. To investigate the non-homogeneous
problem (3.23), we also note the simple eigenvalues and eigenvectors of the diagonalizable matrix P〈0〉α ,
i.e., λ〈0〉1 = 0 and λ〈0〉2 = −q12 − q21, corresponding to v〈0〉1 = [1, 1]> and v〈0〉2 = [q12,−q21]>, respectively.
Let S 0 = [v〈0〉1 , v〈0〉2 ] and Λ

〈0〉
α = diag

{
λ〈0〉1 , λ〈0〉2

}
. We obtain the solution of (3.23) by using (3.17)

and (3.24) as follows:

u〈0〉α (τ) = S 0eτΛ
〈0〉
α

∫ τ

0
e−ξΛ

〈0〉
α S −1

0 D〈0〉α u〈1〉α (ξ)dξ

=


n11

(
eτλ
〈1〉
1 −1

)
λ〈1〉1

+
n12

(
eτλ
〈1〉
2 −1

)
λ〈1〉2

+
n21q12

(
eτλ
〈1〉
1 −e−τ(q12+q21)

)
λ〈1〉1 +q12+q21

+
n22q12

(
eτλ
〈1〉
2 −e−τ(q12+q21)

)
λ〈1〉2 +q12+q21

n11

(
eτλ
〈1〉
1 −1

)
λ〈1〉1

+
n12

(
eτλ
〈1〉
2 −1

)
λ〈1〉2

−
n21q21

(
eτλ
〈1〉
1 −e−τ(q12+q21)

)
λ〈1〉1 +q12+q21

−
n22q21

(
eτλ
〈1〉
2 −e−τ(q12+q21)

)
λ〈1〉2 +q12+q21

 ,
where n11, n12, n21, and n22 are defined in the theorem statement. �

3.4. The two-state regime-switching NLD-CEV process when β ∈ (2,∞)

This subsection follows a similar structure to the previous one, with proofs that align closely with
those provided earlier. Due to their similarity, detailed proofs are omitted here, focusing instead on the
main results and their applications. Before proceeding with the theorem, and following Section 3.2,
let A〈k〉α (τ) := A〈k〉α,1(τ) and B〈k〉α (τ) := A〈k〉α,2(τ).

Theorem 6. Suppose that Rt follows the system of SDEs (2.6) on [0,T ] with the initial conditions
Rt = R and Xt = i, i ∈ {1, 2}. The conditional n

α
-moment for n ∈ Z−0 is defined by

EQ
[
R

n
α

T | Rt = R, Xt = i
]

= 1{1}(i)
|n|∑

k=0

A〈k〉α (τ)R−
k
α + 1{2}(i)

|n|∑
k=0

B〈k〉α (τ)R−
k
α ,

where τ = T − t ≥ 0, 1 is the indicator function, and A〈k〉α and B〈k〉α for k = 0, 1, . . . , |n| can be solved by
the following system of recursive matrix differential equation:

u〈|n|〉α (τ) = P〈|n|〉α u〈|n|〉α (τ), (3.25)

u〈`〉α (τ) = P〈`〉α u〈`〉α (τ) + D〈`〉α u〈`+1〉
α (τ), (3.26)

with the initial conditions u〈|n|〉α (0) = [1, 1]> and u〈`〉α (0) = [0, 0]> for ` = 0, 1, . . . , |n| − 1, where

u〈k〉α (τ) =

[ d
dτA〈k〉α (τ)
d
dτB〈k〉α (τ)

]
, P〈k〉α =

[
κ1

k
α
− q12 q12

q21 κ2
k
α
− q21

]
, u〈k〉α (τ) =

[
A〈k〉α (τ)
B〈k〉α (τ),

]
,

D〈`〉α = diag
{
γ〈`〉α,1, γ

〈`〉
α,2

}
, γ〈`〉α,i =

(
` + 1
α

) (
−κiθi +

1
2
σ2

i

(
` + 1
α

+ 1
))
.
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Proof. Let m := |n| ∈ Z+
0 so that n = −m, and set U〈−m〉

α,i (τ,R) := EQ
[
R−m/α

T | Rt = R, Xt = i
]
. Exactly

as in Theorem 3 (using the regime-switching Feynman–Kac representation of Yao et al. [37]), U〈−m〉
α,i

satisfies the coupled backward PDE associated with the generator of the model (2.6), with the initial
condition U〈−m〉

α,i (0,R) = R−m/α. We use the same expansion as in Theorem 3, but on the negative
power basis,

U〈−m〉
α,1 (τ,R) =

m∑
k=0

A〈k〉α (τ)R−
k
α , U〈−m〉

α,2 (τ,R) =

m∑
k=0

B〈k〉α (τ)R−
k
α .

Matching R−m/α at τ = 0 gives A〈m〉α (0) = B〈m〉α (0) = 1 and A〈`〉α (0) = B〈`〉α (0) = 0 for ` = 0, . . . ,m − 1.
The only algebraic change relative to Theorem 3 is that

∂R
(
R−k/α) = −

k
α

R−k/α−1, ∂RR
(
R−k/α) =

k
α

( k
α

+ 1
)
R−k/α−2,

so the contribution of diffusion involves
( k
α

)( k
α

+ 1
)
, and the drift term from the model (2.6) produces a

coupling from level ` + 1 to ` with the coefficient

γ〈`〉α,i =

(
` + 1
α

) (
−κiθi +

1
2
σ2

i

(
` + 1
α

+ 1
))
.

Substituting the expansion into the coupled PDE and collecting the coefficients of the linearly
independent powers {R−k/α}mk=0 yields the ODE system (3.25) and (3.26) in vector form with u〈k〉α =

[A〈k〉α , B〈k〉α ]>, P〈k〉α , and D〈`〉α exactly as stated. �

The next theorem addresses the scenario where the parameters are treated as constant
functions, simplifying the model’s structure and allowing for direct analytical solutions under these
fixed conditions.

Theorem 7. Suppose that Rt follows the system of SDEs (2.6) such that κ1 = κ2 = κ, θ1 = θ2 = θ

and σ1 = σ2 = σ on [0,T ] with the initial conditions Rt = R and Xt = i, i ∈ {1, 2}. The conditional n
α
-

moment for n ∈ Z−0 is defined by

EQ
[
R

n
α

T | Rt = R, Xt = i
]

=

|n|∑
k=0

 e
|n|κτ
α

(|n| − k)!

(
α − αe−

κτ
α

κ

)|n|−k
|n|−k∏

j=1

γ〈|n|− j〉
α


 R−

k
α ,

where the product’s term equals 1 when k = |n|.

Proof. The proof follows the same reduction as in Theorem 4, now starting from the negative-
moment ODE chain (3.25) and (3.26) (i.e., Theorem 6) under the parameter restrictions κ1 = κ2 = κ,
θ1 = θ2 = θ, and σ1 = σ2 = σ. In this case

P〈k〉α =

[
κ k
α
− q12 q12

q21 κ k
α
− q21

]
, D〈`〉α = γ〈`〉α I2,

where γ〈`〉α is the common value of γ〈`〉α,1 = γ〈`〉α,2. Again span{[1, 1]>} is invariant because P〈k〉α [1, 1]> =

κ k
α
[1, 1]>, and the forcing preserves this subspace since D〈`〉α is a scalar multiple of I2. Hence, u〈k〉α (τ) =

dk(τ)[1, 1]>, and A〈k〉α (τ) = B〈k〉α (τ) = dk(τ), so the moment is independent of i.
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Let m := |n|. The scalar chain becomes

d′m(τ) = κ
m
α

dm(τ), dm(0) = 1,

and for ` = 0, 1, . . . ,m − 1, we have

d′`(τ) = κ
`

α
d`(τ) + γ〈`〉α d`+1(τ), d`(0) = 0.

Define the following for k = 0, 1, . . . ,m:

dk(τ) :=
e

mκτ
α

(m − k)!

(
α − αe−

κτ
α

κ

)m−k
m−k∏

j=1

γ〈m− j〉
α

 ,
with the empty product equal to 1 when k = m. Then dm(τ) = e

mκτ
α solves the top equation.

For k < m, one checks by differentiation that d′k(τ) = κ k
α
dk(τ) + γ〈k〉α dk+1(τ), while dk(0) = 0 for k < m

because
(
1 − e−

κτ
α

)m−k
vanishes at τ = 0. Substituting A〈k〉α = B〈k〉α = dk into the expansion in Theorem 6

yields the stated closed form. �

The following Theorem is to illustrate the use of Theorem 6 in the case of the conditional − 1
α
-

moment.

Theorem 8. Suppose that Rt follows the system of SDEs (2.6) on [0,T ] with the initial conditions
Rt = R and Xt = i, i ∈ {1, 2}. The conditional − 1

α
-moment is defined by

EQ
[
R−

1
α

T | Rt = R, Xt = i
]

= 1{1}(i)
(
A〈0〉α (τ) + A〈1〉α (τ)R−

1
α

)
+ 1{2}(i)

(
B〈0〉α (τ) + B〈1〉α (τ)R−

1
α

)
, (3.27)

where τ = T − t ≥ 0, 1 is the indicator function, and A〈k〉α and B〈k〉α for k = 0, 1 can be calculated by
the following:

A〈1〉α (τ) = m11eτλ
〈1〉
1 + m12eτλ

〈1〉
2 , B〈1〉α (τ) = m21eτλ

〈1〉
1 + m22eτλ

〈1〉
2 ,

A〈0〉α (τ) =
n11

(
eτλ

〈1〉
1 − 1

)
λ〈1〉1

+
n12

(
eτλ

〈1〉
2 − 1

)
λ〈1〉2

+
n21q12

(
eτλ

〈1〉
1 − e−τ(q12+q21))

λ〈1〉1 + q12 + q21

+
n22q12

(
eτλ

〈1〉
2 − e−τ(q12+q21))

λ〈1〉2 + q12 + q21

,

B〈0〉α (τ) =
n11

(
eτλ

〈1〉
1 − 1

)
λ〈1〉1

+
n12

(
eτλ

〈1〉
2 − 1

)
λ〈1〉2

−
n21q21

(
eτλ

〈1〉
1 − e−τ(q12+q21))

λ〈1〉1 + q12 + q21

−
n22q21

(
eτλ

〈1〉
2 − e−τ(q12+q21))

λ〈1〉2 + q12 + q21

,

and where

λ〈1〉1 =
1

2α

(
κ1 + κ2 − αq12 − αq21 +

√(
− κ1 − κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 − ακ1q21 − ακ2q12

))
,

λ〈1〉2 =
1

2α

(
κ1 + κ2 − αq12 − αq21 −

√(
− κ1 − κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 − ακ1q21 − ακ2q12

))
,

m11 =

(
−

κ2
α

+ λ〈1〉2
)(
λ〈1〉1 −

κ2
α

+ q21
)

q21
(
λ〈1〉2 − λ

〈1〉
1

) , m12 =

(
−

κ2
α

+ λ〈1〉1
)(
λ〈1〉2 −

κ2
α

+ q21
)

q21
(
λ〈1〉1 − λ

〈1〉
2

) , m21 =

κ2
α
− λ〈1〉2

λ〈1〉1 − λ
〈1〉
2

,
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m22 =

κ2
α
− λ〈1〉1

λ〈1〉2 − λ
〈1〉
1

, n11 =
γ〈0〉α,1m11q21 + γ〈0〉α,2m21q12

q12 + q21
, n12 =

γ〈0〉α,1m12q21 + γ〈0〉α,2m22q12

q12 + q21
,

n21 =
γ〈0〉α,1m11 − γ

〈0〉
α,2m21

q12 + q21
, n22 =

γ〈0〉α,1m12 − γ
〈0〉
α,2m22

q12 + q21
, γ〈0〉α,i =

1
α

(
−κiθi +

1
2
σ2

i

(
1
α

+ 1
))
.

Proof. This is the |n| = 1 specialization of the negative-moment recursion in Theorem 6. Let u〈1〉α (τ) =

[A〈1〉α (τ), B〈1〉α (τ)]> and u〈0〉α (τ) = [A〈0〉α (τ), B〈0〉α (τ)]>. They satisfy

d
dτ

u〈1〉α (τ) = P〈1〉α u〈1〉α (τ),
d
dτ

u〈0〉α (τ) = P〈0〉α u〈0〉α (τ) + D〈0〉α u〈1〉α (τ),

with the initial conditions u〈1〉α (0) = [1, 1]> and u〈0〉α (0) = [0, 0]>, where now P〈k〉α is the matrix
in Theorem 8 (coming from Model (2.6)) and D〈0〉α = diag{γ〈0〉α,1, γ

〈0〉
α,2}.

The constant matrix P〈1〉α is diagonalizable with eigenvalues λ〈1〉1 , λ〈1〉2 given in the theorem
statement. Hence,

u〈1〉α (τ) = eτP〈1〉α u〈1〉α (0) =

m11eτλ
〈1〉
1 + m12eτλ

〈1〉
2

m21eτλ
〈1〉
1 + m22eτλ

〈1〉
2

 ,
with mi j as stated. For u〈0〉α , the variation-of-constants formula yields

u〈0〉α (τ) =

∫ τ

0
e(τ−ξ)P〈0〉α D〈0〉α u〈1〉α (ξ) dξ.

Here, P〈0〉α =
[ −q12 q12

q21 −q21

]
is the same as in Theorem 5, so it has the eigenpairs (0, [1, 1]>) and (−(q12 +

q21), [q12,−q21]>). Decomposing the forcing term D〈0〉α u〈1〉α (ξ) =
[
γ〈0〉α,1A〈1〉α (ξ), γ〈0〉α,2B〈1〉α (ξ)

]> on this basis
gives the scalar coefficients

a(ξ) =
γ〈0〉α,1A〈1〉α (ξ) q21 + γ〈0〉α,2B〈1〉α (ξ) q12

q12 + q21
, b(ξ) =

γ〈0〉α,1A〈1〉α (ξ) − γ〈0〉α,2B〈1〉α (ξ)

q12 + q21
,

so that a(ξ) = n11eξλ
〈1〉
1 + n12eξλ

〈1〉
2 and b(ξ) = n21eξλ

〈1〉
1 + n22eξλ

〈1〉
2 , with ni j as stated. Evaluating the

resulting elementary integrals∫ τ

0
eξλ dξ =

eτλ − 1
λ

,

∫ τ

0
e−(q12+q21)(τ−ξ)eξλ dξ =

eτλ − e−τ(q12+q21)

λ + q12 + q21

yields the closed forms for A〈0〉α (τ) and B〈0〉α (τ) in the theorem statement. Substituting these coefficients
into the |n| = 1 expansion in Theorem 6 gives (8). �

3.5. Unconditional moments

On the basis of the conditions established in Sections 3.3 and 3.4, this section introduces
two principal theorems for unconditional moments. The formulas for the unconditional moments
corresponding to results of Theorems 5 and 8 are obtained by taking τ → ∞. Notably, the resulting
formulas no longer depend on the initial value R or the initial state Xt, which are simplified into two-
term summations as demonstrated below.
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Theorem 9. Keeping the notation in Theorem 5, we have

lim
τ→∞

U〈1〉α,i (τ,R) = lim
T→∞

EQ
[
R

1
α

T | Rt = R, Xt = i
]

=
−n11

λ〈1〉1

+
−n12

λ〈1〉2

,

where i is in the state spaceM2 = {1, 2}, and

λ〈1〉1 =
1

2α

(
− κ1 − κ2 − αq12 − αq21 +

√(
κ1 + κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 + ακ1q21 + ακ2q12

))
,

λ〈1〉2 =
1

2α

(
− κ1 − κ2 − αq12 − αq21 −

√(
κ1 + κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 + ακ1q21 + ακ2q12

))
,

n11 =
γ〈0〉α,1m11q21 + γ〈0〉α,2m21q12

q12 + q21
, n12 =

γ〈0〉α,1m12q21 + γ〈0〉α,2m22q12

q12 + q21
,

m11 =

( κ2
α

+ λ〈1〉2
)(
λ〈1〉1 + κ2

α
+ q21

)
q21

(
λ〈1〉2 − λ

〈1〉
1

) , m12 =

( κ2
α

+ λ〈1〉1
)(
λ〈1〉2 + κ2

α
+ q21

)
q21

(
λ〈1〉1 − λ

〈1〉
2

) ,

m21 =

κ2
α

+ λ〈1〉2

λ〈1〉2 − λ
〈1〉
1

, m22 =

κ2
α

+ λ〈1〉1

λ〈1〉1 − λ
〈1〉
2

, γ〈0〉α,i =
1
α

(
κiθi +

1
2
σ2

i

(
1
α
− 1

))
.

Proof. We have to only verify that the eigenvalues λ〈1〉1 and λ〈1〉2 are negative. To demonstrate that λ〈1〉1
is always negative under the given conditions, we simplify the expressions by defining

A := κ1 + κ2 + αq12 + αq21 and B := κ1κ2 + ακ1q21 + ακ2q12.

Given that all parameters κ1, κ2, α, q12, and q21 are positive real numbers, it follows that A > 0
and B > 0. The discriminant in the expression for λ〈1〉1 becomes ∆ := A2 − 4B. Substituting these
definitions back into the expression for λ〈1〉1 , we have λ〈1〉1 = 1

2α

(
− A +

√
∆
)
.

Since B > 0, it implies that ∆ = A2 − 4B < A2, which leads to
√

∆ < A. This inequality indicates
that the numerator −A +

√
∆ is negative because −A +

√
∆ < −A + A = 0. Therefore, λ〈1〉1 is negative.

Similarly, the case of λ〈1〉2 is not difficult to verify, and the proof is omitted. Since the eigenvalues λ〈1〉1
and λ〈1〉2 are negative, taking τ→ ∞ yields A〈1〉α (τ)→ 0, B〈1〉α (τ)→ 0, and we have

lim
T→∞

EQ
[
R

1
α

T | Rt = R, Xt = i
]

= 1{1}(i)A〈0〉α (τ) + 1{2}(i)B〈0〉α (τ),

where A〈0〉α (τ)→ −n11

λ〈1〉1
+ −n12

λ〈1〉2
and B〈0〉α (τ)→ −n11

λ〈1〉1
+ −n12

λ〈1〉2
, which converges to the same value. Since both

expressions are equal, the indicator function, which differentiates between the two cases, is not needed
in this context. Therefore, this completes the proof as required. �

In the context of the NLD-CEV process (2.2), by applying the given assumptions that κ1 = κ2 =

κ, θ1 = θ2 = θ, and σ1 = σ2 = σ, we have simplified the complex expression to a form that is
independent of the transition rates q12 and q21. The final result depends only on the parameters κ, θ, σ,
and α, providing a more tractable expression for further analysis.

Corollary 1. According to Theorem 9 and the system (2.5) with κ1 = κ2 = κ, θ1 = θ2 = θ, and σ1 =

σ2 = σ, we have

lim
τ→∞

U〈1〉α,i (τ,R) = θ +
σ2

2κ

(
1
α
− 1

)
,
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Proof. Under the assumptions that κ1 = κ2 = κ, θ1 = θ2 = θ, and σ1 = σ2 = σ, our aim is to simplify
the expression presented in Theorem 9 to eliminate the terms q12 and q21, expressing the result solely
in terms of κ, θ, σ, and α. First, we simplify the eigenvalues λ〈1〉1 and λ〈1〉2 . Given the parameters, the
eigenvalues become

λ〈1〉1 =
1

2α

(
−2κ − α(q12 + q21) +

√
∆
)

and λ〈1〉2 =
1

2α

(
−2κ − α(q12 + q21) −

√
∆
)
,

where ∆ := (2κ + α(q12 + q21))2
− 4

(
κ2 + ακ(q12 + q21)

)
denotes the discriminant. Simplifying the

discriminant ∆, we find √
∆ = α(q12 + q21).

Substituting back into the expressions for the eigenvalues, we have

λ〈1〉1 =
−κ

α
, λ〈1〉2 =

−κ

α
− (q12 + q21), and λ〈1〉1 − λ

〈1〉
2 = q12 + q21.

We proceed to simplify the coefficients mi j, and we have

κ

α
+ λ〈1〉2 = −(q12 + q21) and λ〈1〉1 +

κ

α
+ q21 = q21.

Therefore, the coefficient m11 simplifies to

m11 =

( κ2
α

+ λ〈1〉2
)(
λ〈1〉1 + κ2

α
+ q21

)
q21

(
λ〈1〉2 − λ

〈1〉
1

) =
−(q12 + q21)q21

−q21(q12 + q21)
= 1.

Similarly, we find that m12 = 0, m21 = 1, and m22 = 0. We then simplify n11 and n12. Under the
assumptions, we have γ〈0〉α,1 = γ〈0〉α,2 =: γ〈0〉α and

n11 =
γ〈0〉α (m11q21 + m21q12)

q12 + q21
= γ〈0〉α and n12 = 0.

Substituting the simplified values into the original expression, we obtain

−n11

λ〈1〉1

+
−n12

λ〈1〉2

=
−γ〈0〉α
−κ/α

+ 0 = γ〈0〉α ·
α

κ
=

1
α

(
κθ +

1
2
σ2

(
1
α
− 1

))
·
α

κ
= θ +

σ2

2κ

(
1
α
− 1

)
. �

Building upon the previous part, this part is developed in a similar manner. The proofs are analogous
to those provided earlier and will be omitted where appropriate. They are straightforward counterparts
to Theorem 9 and Corollary 1, and the formulas are presented in the following results.

Theorem 10. Keeping the notation in Theorem 8, we have

lim
τ→∞

U〈−1〉
α,i (τ,R) = EQ

[
R−

1
α

T | Rt = R, Xt = i
]

=
−n11

λ〈1〉1

+
−n12

λ〈1〉2

, (3.28)

where i is in the state spaceM2 = {1, 2}, and

λ〈1〉1 =
1

2α

(
κ1 + κ2 − αq12 − αq21 +

√(
− κ1 − κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 − ακ1q21 − ακ2q12

))
,

AIMS Mathematics Volume 11, Issue 1, 2816–2851.



2837

λ〈1〉2 =
1

2α

(
κ1 + κ2 − αq12 − αq21 −

√(
− κ1 − κ2 + αq12 + αq21

)2
− 4

(
κ1κ2 − ακ1q21 − ακ2q12

))
,

n11 =
γ〈0〉α,1m11q21 + γ〈0〉α,2m21q12

q12 + q21
, n12 =

γ〈0〉α,1m12q21 + γ〈0〉α,2m22q12

q12 + q21
,

m11 =

(
−

κ2
α

+ λ〈1〉2
)(
λ〈1〉1 −

κ2
α

+ q21
)

q21
(
λ〈1〉2 − λ

〈1〉
1

) , m12 =

(
−

κ2
α

+ λ〈1〉1
)(
λ〈1〉2 −

κ2
α

+ q21
)

q21
(
λ〈1〉1 − λ

〈1〉
2

) ,

m21 =

κ2
α
− λ〈1〉2

λ〈1〉1 − λ
〈1〉
2

, m22 =

κ2
α
− λ〈1〉1

λ〈1〉2 − λ
〈1〉
1

, γ〈0〉α,i =
1
α

(
−κiθi +

1
2
σ2

i

(
1
α

+ 1
))
.

Proof. Since τ = T − t, the limits T → ∞ and τ → ∞ are equivalent. From Theorem 8, we have, for
each i ∈ {1, 2}, the representation

U〈−1〉
α,i (τ,R) = 1{1}(i)

(
A〈0〉α (τ) + A〈1〉α (τ)R−1/α

)
+ 1{2}(i)

(
B〈0〉α (τ) + B〈1〉α (τ)R−1/α

)
,

where A〈1〉α (τ) and B〈1〉α (τ) are linear combinations of eτλ
〈1〉
1 and eτλ

〈1〉
2 , and A〈0〉α (τ) and B〈0〉α (τ) are the sums

of terms of the forms
eτλ − 1
λ

and
eτλ − e−τ(q12+q21)

λ + q12 + q21
,

with λ ∈ {λ〈1〉1 , λ〈1〉2 } (see the explicit formulas in Theorem 8).
It therefore suffices to ensure that λ〈1〉1 < 0 and λ〈1〉2 < 0. These numbers are exactly the eigenvalues

of the constant matrix P〈1〉α in Theorem 8. If we take

A := α(q12 + q21) − (κ1 + κ2), B := κ1κ2 − ακ1q21 − ακ2q12,

the stated expressions can be rewritten as

λ〈1〉1 =
−A +

√
A2 − 4B

2α
, λ〈1〉2 =

−A −
√

A2 − 4B
2α

.

Under the parameters’ admissibility for the limiting (unconditional) negative moment, we have A > 0
and B > 0, so A2 − 4B < A2 and hence

√
A2 − 4B < A. This implies λ〈1〉1 < 0, while λ〈1〉2 < 0 is

immediate from the formula.
Consequently, as τ → ∞, we have eτλ

〈1〉
1 → 0 and eτλ

〈1〉
2 → 0, and

also e−τ(q12+q21) → 0. Therefore, A〈1〉α (τ) → 0 and B〈1〉α (τ) → 0. From the explicit forms of A〈0〉α (τ)
and B〈0〉α (τ) in Theorem 8, we obtain

lim
τ→∞

A〈0〉α (τ) =
−n11

λ〈1〉1

+
−n12

λ〈1〉2

, lim
τ→∞

B〈0〉α (τ) =
−n11

λ〈1〉1

+
−n12

λ〈1〉2

.

Hence, the limit is the same for both regimes, and

lim
τ→∞

U〈−1〉
α,i (τ,R) =

−n11

λ〈1〉1

+
−n12

λ〈1〉2

,

as claimed. �
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Corollary 2. According to Theorem 10 and the system (2.6) with κ1 = κ2 = κ, θ1 = θ2 = θ, and
σ1 = σ2 = σ, we have

lim
τ→∞

U〈−1〉
α,i (τ,R) = θ −

σ2

2κ

(
1
α

+ 1
)
.

Proof. Under κ1 = κ2 = κ, θ1 = θ2 = θ, and σ1 = σ2 = σ, the coefficients in Theorem 10 simplify and
the limit becomes independent of q12, q21. From Theorem 10, we have

lim
τ→∞

U〈−1〉
α,i (τ,R) =

−n11

λ〈1〉1

+
−n12

λ〈1〉2

.

We first simplify the eigenvalues. Substituting κ1 = κ2 = κ into the formulas in Theorem 10 gives

λ〈1〉1 =
1

2α

(
2κ − α(q12 + q21) +

√
∆
)
, λ〈1〉2 =

1
2α

(
2κ − α(q12 + q21) −

√
∆
)
,

where
∆ =

(
− 2κ + α(q12 + q21)

)2
− 4

(
κ2 − ακ(q12 + q21)

)
= α2(q12 + q21)2.

Hence
√

∆ = α(q12 + q21), and therefore

λ〈1〉1 =
κ

α
, λ〈1〉2 =

κ

α
− (q12 + q21), λ〈1〉2 − λ

〈1〉
1 = −(q12 + q21).

Next, under the same assumptions, we have γ〈0〉α,1 = γ〈0〉α,2 =: γ〈0〉α , where

γ〈0〉α =
1
α

(
−κθ +

1
2
σ2

(
1
α

+ 1
))
.

Using the explicit expressions of mi j in Theorem 10 and the eigenvalue simplifications above, one
obtains m11 = 1, m12 = 0, m21 = 1, and m22 = 0; consequently

n11 =
γ〈0〉α (m11q21 + m21q12)

q12 + q21
= γ〈0〉α , n12 = 0.

Substituting these into the limit formula yields

lim
τ→∞

U〈−1〉
α,i (τ,R) =

−γ〈0〉α
κ/α

=
−1
κ

(
−κθ +

1
2
σ2

(
1
α

+ 1
))

= θ −
σ2

2κ

(
1
α

+ 1
)
,

which proves the claim. �

Note that Corollaries 1 and 2 present results involving the parameters κ, θ, and σ for all values of
α in their constraints, except when α = 1 in Corollary 1. In this specific case, the NLD-CEV process
reduces to the CIR process, and the unconditional moment depends only on θ. This agrees with the
results proposed in [29, 34].
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4. Euler–Maruyama method for SDEs with regime switching

As detailed in Section 3, our theoretical approach yield explicit formulas for conditional moments
using the Euler–Maruyama (EM) method, as presented in Theorems 3 and 6. An important
consideration for market practitioners is the computational accuracy and efficiency of these newly
derived formulas. To evaluate this, we compare results received from the formulas with those from
the MC simulations. For implementing the hybrid system, we employ the EM method specifically
adapted for SDEs with regime switching, as developed by Yuan and Mao [38], to simulate approximate
solutions for SDEs with switching regimes. All simulations were performed using MATLAB R2021a
on a system equipped with an Intel(R), Core(TM), i5-10500, CPU@3.10GHz, 16GB RAM, and
Windows 11 Pro (64-bit).

4.1. Simulation algorithm

Let Xt represent a continuous-time, irreducible two-state Markov chain with the initial state Xt0 and
a step size h > 0. Denote Q as the generator matrix of Xt, where each transition rate from state i to
state j is defined by qi j ≥ 0 and qii = −

∑
i, j qi j. The probability of transitioning from state i at time t0

to state j at time t0 + h is given by

P
(
Xt0+h = j | Xt0 = i

)
=: Pi j(h) =

(
ehQ

)
i j
,

for i, j = 1, 2. To simulate a discrete Markov chain {Xk}k≥0, where Xtk := Xk = X(kh), proceed
as follows:

1. Compute the one-step transition probability matrix, P(h) = ehQ.
2. Set the initial state X0 = i0. Draw a uniformly distributed random number, ω ∼ U[0, 1], to

determine the next state according to

Xk =

1, if ω ≤ Pik1,

2, if Pik1 < ω ≤ Pik1 + Pik2,

and set Xk+1 = ik+1.
3. Repeat Step 2 for each k until k∗ is reached such that hk∗ equals the final time simulation, yielding

the simulated trajectories of the process with the discrete Markov chain {Xk}
k∗
k=0.

The EM method is then applied to the discrete Markov chain {Xk}
k∗
k=0 to simulate the processes in (2.5)

and (2.6) and the approximate conditional moments. Let R̂ be the time-discretized approximation of R,
with R̂k = R̂(tk), R̂0 = Rt0 , ξ0 = i0, and h = tk+1 − tk. The EM approximation for (2.4) is given by

R̂k+1 = R̂k + κXk

(
θXk R̂

−(1−β)
k − R̂k

)
h + σXk R̂

β
2
k

√
hZk, (4.1)

where Zk follows a standard normal distribution, as detailed in Algorithm 1.
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Algorithm 1 MC simulation algorithm for the two-state continuous-time Markov chain with
EM discretization.
Input: Matrix Q representing the infinitesimal generator, discretization step size h, terminal time

horizon T , initial regime state i0, initial process value Rt0 , model parameters: Mean-reversion
rate κXk , regime-dependent long-term means θXk , regime-dependent volatilities σXk , elasticity
parameter β

Output: Simulated trajectories of the regime process {Xk, k = 0, 1, . . . , k∗} and R̂k

1: Compute the transition probability matrix over the interval h via the matrix exponential P(h) = ehQ

2: Initialize t0 = 0 and k = 0
3: Initialize X0 = i0 and R̂0 = Rt0

4: while tk ≤ T do
5: Generate uniform random variate ω ∼ U[0, 1]
6: if ω ≤ Pik1 then
7: Xk+1 = 1
8: else
9: Xk+1 = 2

10: end if
11: Compute R̂k+1 = R̂k + κXk

(
θXk R̂

−(1−β)
k − R̂k

)
h + σXk R̂

β
2
k

√
h Zk

12: Update ik+1 = Xk+1, tk+1 = tk + h, k = k + 1
13: end while
14: return Simulated trajectories of the regime process {Xk, k = 0, 1, . . . , k∗} and R̂k

To simulate a sample path with 10,000 time steps, we configure the process in (2.5) by using the
parameters κ1 = 0.01, κ2 = 0.5, θ1 = 1, and θ2 = 0.5 and the volatilities σ1 = 0.09 and σ2 = 0.15.
For the process in (2.6), the parameters are set to κ1 = −0.01, κ2 = −0.5, θ1 = 1, and θ2 = 0.5, with
the volatilities σ1 = −0.09 and σ2 = −0.15. Both processes start from the initial conditions X0 = 1,
R0 = 1, α = 0.5, q11 = −0.6, q12 = 0.6, q21 = 0.3, and q22 = −0.3. In Figure 1(a),(b), red lines indicate
intervals where the processes are in State 1, while blue lines represent intervals in State 2. The figures
illustrate two scenarios: Over the time interval t ∈ [0, 30], the process in (2.5) switches states 17 times,
whereas the process in (2.6) switches 12 times.

As shown in Figure 2(a),(b), the results from MC simulations (depicted as colored circles) align
perfectly with the predictions of Theorem 3 (depicted as solid lines) for each initial value R0 = 0.8, 1.2
and the initial state X0 = 1, 2. Similarly, Figure 2(c),(d) illustrates that the MC simulation’s outcomes
completely match those derived from Theorem 6. However, a significant drawback of the MC
simulations is the substantial computational time required to approximate the values for each initial R0

and X0. In contrast, our closed-form formulas provide exact solutions for all initial values and states
with minimal computational effort, which we will explore further in the next section.
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(a) Regime-switching NLD-CEV process (2.5) (b) Regime-switching NLD-CEV process (2.6)

Figure 1. Sample paths of the two-state regime-switching NLD-CEV process using the EM
method for SDEs.

(a) The first conditional moments of the regime-
switching CIR process (β = 1) when n = 1 and
α = 1.

(b) The first conditional moments of the regime-
switching OU process (β = 0) when n = 2 and
α = 2.

(c) The first inverse moments of the regime-
switching IF
process (β = 3) when n = −1 and α = 1.

(d) The first inverse moments when β = 5
2 , n = −2,

and α = 2.

Figure 2. Conditional moments of the regime-switching NLD-CEV process.

AIMS Mathematics Volume 11, Issue 1, 2816–2851.



2842

4.2. Accuracy and efficiency

Although we have derived the exact solutions presented in Section 3, MC simulations are still
necessary to confirm the correctness of our results and to assure practitioners that our findings are
applicable to real-world problems. Additionally, it is important to assess the computational effort
involved. To evaluate the accuracy and efficiency of our results U〈n〉α,i (τ,R) proposed in Theorems 3
and 6, compared with the MC simulations U〈n,M〉α,i (τ,R), we define the absolute relative errors

E〈γ〉Uα,i
(τ,R) :=

∣∣∣∣∣∣∣U
〈n〉
α,i (τ,R) − U〈n,M〉α,i (τ,R)

U〈n〉α,i (τ,R)

∣∣∣∣∣∣∣ ,
for all (τ,R) ∈ [0,∞) × (0,∞) and i ∈ M2. As displayed in Figure 2, we demonstrate the results for
the CIR process in (2.5) with α = 1, and the IF process in (2.6) with α = 1.

Table 1 shows the comparison between our exact closed-form solutions for EQ
[
Rn/α

T | Rt = R, Xt = i
]

and the approximations obtained from MC simulations. The results indicate that as the number of
simulation paths increases, the MC simulations converge towards our exact values, with average
relative errors decreasing from the order of 10−3 to 10−4 or less. Moreover, our closed-form
formulas significantly outperform the MC simulations in terms of computational efficiency. While
the running time for the MC simulations escalates dramatically with more paths (ranging from
approximately 6 sec to over 266 sec), our exact solutions are computed in less than 0.01 seconds
consistently, regardless of the initial conditions or parameters. This highlights the superiority of our
method in providing exact and computationally efficient solutions compared with the approximate and
resource-intensive MC simulations.

Table 1. Comparison of the average relative errors between our results with MC simulations
for EQ

[
Rn/α

T | Rt = R, Xt = i
]
.

Number Theorem 3 with X0 = 1, α = 1, and n = 1 Theorem 3 with X0 = 2, α = 1, and n = 1
of paths Average relative error Average running time Average relative error Average running time

R = 0.8 R = 1.2 MC This work R = 0.8 R = 1.2 MC This work

5,000 1.456e-03 1.765e-03 6.243

0.00925

3.784e-03 9.716e-04 8.870

0.00451
10,000 1.326e-03 9.037e-04 18.389 2.184e-03 7.492e-04 26.268
20,000 1.307e-03 5.580e-04 47.355 1.124e-03 5.715e-04 65.713
40,000 4.262e-04 4.576e-04 118.399 4.017e-04 5.477e-04 147.773
80,000 2.476e-04 3.042e-04 266.572 1.971e-04 1.282e-04 297.013

Number Theorem 6 with X0 = 1, α = 1, and n = −1 Theorem 6 with X0 = 2, α = 1, and n = −1
of paths Average relative error Average running time Average relative error Average running time

R = 0.8 R = 1.2 MC This work R = 0.8 R = 1.2 MC This work

5,000 1.256e-03 1.465e-03 5.372

0.00861

2.279e-03 9.149e-04 7.154

0.00422
10,000 1.011e-03 8.173e-04 16.622 2.001e-03 6.866e-04 24.457
20,000 8.782e-04 5.473e-04 44.235 1.021e-03 4.738e-04 61.203
40,000 4.268e-04 4.375e-04 116.781 3.657e-04 5.249e-04 142.817
80,000 1.945e-04 1.657e-04 258.671 1.854e-04 1.057e-04 288.701
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5. Financial applications on the VIX

The VIX, a 30-day implied volatility measure derived from the Standard & Poor’s (S&P) 500 index
options, is essential for assessing market sentiment and managing volatility risk. Accurate pricing
of VIX derivatives depends on using a model that captures the complex nature of volatility. This study
presents a novel approach to VIX option pricing, introducing a closed-form formula based on the NLD-
CEV process with regime-switching. The NLD-CEV process offers several advantages over traditional
models, such as the CIR model, by incorporating mean reversion and enabling data-driven estimation
of the elasticity parameter β. This flexibility addresses a key limitation of commonly used models
like the square root process and 3/2-SVM, which assume fixed values of β at 1 and 3, respectively.
Empirical evidence suggests that β often falls outside this range, underscoring the need for a model
that allows for data-driven parameter estimation [16, 35].

In this section, the numerical illustrations focus on theoretical development and illustrative
numerical experiments rather than calibration to market data. Since VIX data are not available
within this project, we do not calibrate or estimate model parameters from VIX time series; hence,
the parameter choices used in the MC experiments are not presented as statistical estimates of VIX
dynamics. Instead, we use suitable parameter choices that satisfy the model’s assumptions and are
intended to demonstrate the implications of regime-switching dynamics and our closed-form formulas
in a transparent manner.

To support this simulation design, we follow the methodological discussion in the regime-switching
pricing literature. It is common practice to evaluate pricing models using parameters obtained for
the full sample; alternatively, Driffill et al. [14] considered a real-time pricing approach in which the
prices were computed using the best available estimates of the parameters at each point in time, based
on recursively estimating the model with a sequentially enlarged sample. Although such recursive
estimation is not implemented here, the main implication is that the results may depend on the choice
of the parameters that are allowed to switch across regimes, and different parameterizations (e.g.,
regime-switching in volatility only versus allowing multiple parameters to switch) can lead to different
pricing performance [14]. Motivated by this point, we complement the baseline parameter choices by
reporting a sensitivity analysis under alternative parameter settings and by illustrating how the results
change under different regime-switching parameterizations.

Leveraging the theoretical basis of the NLD-CEV process, this research develops a VIX futures
and options pricing formula with practical implications. The ability to derive a closed-form solution
for fractional-order conditional moments in the NLD-CEV process enables efficient and accurate
option price calculations. This methodology bridges the gap between advanced mathematical
modeling and practical financial applications, significantly enhancing option pricing techniques for
volatility derivatives.

5.1. Futures pricing strategy: Offsetting positions

The strategy of buying/selling futures contracts to close an existing short/long position before
expiration is commonly referred to as offsetting or closing out the position. In futures trading, entering
an opposite trade to neutralize the existing position is standard practice. For example, if we have a
long position in a futures contract (we have agreed to buy the underlying asset at a future date), and we
want to exit the position before expiration, we can go short to close long. This means the following:
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1. Selling an equivalent futures contract to offset our long position;
2. the short position cancels out the long position, effectively closing our obligation to buy the asset;
3. we can avoid the need to take physical delivery of the underlying asset upon expiration by closing

the position.

In practice, this strategy can avoid physical delivery and benefit to many traders speculating on
price movements who do not wish to handle the actual asset. Additionally, the strategy can be used
to lock in profits or limit losses because closing the position allows traders to realize gains or prevent
further losses.

In this section, we introduce two trading strategies based on our closed-form solutions: The short-to-
close long position and the long-to-close short position. These strategies leverage our analytical results
to optimize the timing of closing positions in a regime-switching market. The steps for implementing
these strategies are outlined as follows.

1. Determine the current price Rt of the underlying asset and identify the prevailing regime state Xt

in the market. This involves analyzing market indicators and utilizing regime-switching models
to accurately ascertain the state of the market.

2. On the basis of the market analysis, decide whether to open a long or short position on the asset.
This decision should be informed by expectations of future price movements and the identified
market regime.

3. Apply our closed-form solutions for the conditional expectations EQ
[
Rn/α

T

∣∣∣ Rt = R, Xt = i
]
, as

presented in Theorems 3 and 6, to determine the optimal time to close the position.

• For a long position: Implement the short-to-close strategy. Use the closed-form solution
to forecast the expected future price dynamics under different regimes. This enables
the identification of the optimal exit point to sell the asset and close the long position,
maximizing profit or minimizing loss.
• For a short position: Implement the long-to-close strategy. Use the closed-form solution to

predict the asset’s price trajectory. This assists in determining the optimal time to buy the
asset and close the short position, ensuring the most favorable financial outcome.

4. On the basis of the insights from the closed-form solutions, execute the trade to close the position
at the calculated optimal time. This ensures that the trading strategy is aligned with the analytical
predictions, enhancing the effectiveness of the approach.

By following these steps, traders can effectively apply our analytical results to real-world scenarios.
The use of exact closed-form formulas provides a significant advantage over numerical methods (see
also [24]), offering precise and computationally efficient solutions. This approach allows practitioners
to optimize their trading strategies in markets characterized by regime-switching behavior, ultimately
improving decision-making and financial performance.

To provide a concrete example of seeking the optimal time based on our results, we consider
Theorem 5 with α = 1 and n = 1, which corresponds to the conditional first moment of the CIR process.
We use the following parameters: R = 5, κ1 = 1, κ2 = 3, θ1 = 10, θ2 = 2, σ1 = 0.1, and σ2 = 0.2.
As displayed in Figure 3, the blue line represents the futures prices starting from Xt = 1, the black
line represents those starting from Xt = 2, and the red dashed line marks the initial price R = 5.
From Figure 3(a), using our formula, we conclude that when the current state is Xt = 1, the optimal
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strategy is to shorten the futures contract and close the position (short-to-close strategy) at time to
maturity τ = 1.214, resulting in a profit of 7.110 − 5 = 2.110 units per contract. Conversely, when the
current state is Xt = 2, the optimal strategy is to long the futures contract and close the position (long-
to-close strategy) at time to maturity τ = 0.491, resulting in a profit of 5 − 0.782 = 4.218 units per
contract. Similarly, the return can be analyzed and calculated (maximizing profit or minimizing loss)
in the same way, as shown in Figure 3(b).

Additionally, the transition rates for the generator matrix of Figure 3(a) are equal and symmetric
between the two states, and the stationary distribution is π = (0.5, 0.5). It implies that the system is
balanced and that both states occur equally often in the long run. In the case of Figure 3(b), the rate
from State 2 to State 1 (0.7) is higher than that from State 1 to State 2 (0.3), which means that State 2
is less stable and the system leaves State 2 more quickly. The stationary distribution is π = (0.7, 0.3).
It means that State 1 occurs more often (70% of the time) and State 2 occurs less often (30% of the
time). In summary, the system prefers State 1 due to the higher exit rate from State 2 and the likelihood
of being in State 1 increases, making it the dominant state. As see in Figure 3(b), it can be noted that
the black line is pulled back to the long-run term, which can be calculated by using Theorem 9.

(a) Given Q1: q11 = −0.3, q12 = 0.3, q21 = 0.3, q22 = −0.3. (b) Given Q2: q11 = −0.3, q12 = 0.3, q21 = 0.7, q22 = −0.7.

Figure 3. Future prices for the CIR process with the two-state regime-switching.

In the context of real-world implications, the differences between the generator matrices Q1 and Q2

have significant implications for modeling and applications across various fields. In Q1, the symmetric
transition rates (q12 = q21 = 0.3) indicate that both states occur equally often, modeling systems
where the conditions alternate regularly without a preference for either state. This symmetry suggests
a balanced system, such as an economy with regular cycles between growth and recession. In
contrast, Q2 exhibits asymmetric transition rates, with a higher rate of transitioning from State 2 to
State 1 (q21 = 0.7, q12 = 0.3), resulting in State 1 occurring more frequently. This asymmetry models
systems, where one state is more stable or dominant, reflecting scenarios like prolonged economic
expansions interrupted by brief recessions. Understanding these dynamics allows for more accurate
modeling of real-world systems, enabling better predictions and strategic planning. By adjusting the
transition rates in the generator matrix, we can simulate different scenarios and assess their impact on
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the system’s behavior, which is crucial for risk management and decision-making processes in finance,
economics, engineering, and healthcare.

It is important to emphasize that the trading strategies described above are developed under a
frictionless market assumption. In practical implementations, transaction costs, bid–ask spreads, and
other market frictions may directly affect both the execution and profitability of these timing-based
strategies. Since the closing time is identified from regime-dependent conditional expectation curves
derived in closed form, changes in the market regimes may induce frequent position adjustments or
re-optimization of exit timing. Such adjustments can accumulate substantial trading costs, which
may significantly reduce the net returns or even offset the theoretical gains implied by the analytical
results. Moreover, liquidity constraints and execution delays may further affect the feasibility and
effectiveness of implementing the proposed strategies in real-market conditions. Accordingly, the
numerical illustrations presented in this section should be interpreted as demonstrating the theoretical
potential of the approach rather than guaranteed performance in practice.

5.2. VIX options pricing

This section applies the derived closed-form formula to price VIX options within a two-state
regime-switching NLD-CEV process. The focus is on European call options on the VIX index, a
critical tool in volatility trading and risk management. Consider a European call option with the
maturity date T and the strike price K. The fair value of this option at any time t ∈ [0,T ] is defined by

CT (t,R,K, i) = e−r∗τEQ
[
max(RT − K, 0) | Rt = R, Xt = i

]
, (5.1)

where r∗ is the risk-free rate, τ = T−t denotes the time to maturity, Rt represents the VIX level at time t,
and Xt indicates the regime state at time t. To efficiently compute the expectation in (5.1), the Laguerre
expansion method by Dufresne [15] is used. This approach expresses the European call option price
as an infinite series,

CT (t,R,K, i) = e−r∗τKbe−K
∞∑
j=0

c j(t,R,T, i) La
j(K), (5.2)

where a, b ∈ R satisfy a > 2 max(b, 0) − 1, and La
j(·) represents the generalized Laguerre

polynomial [15] of order j with the parameter a > −1. The coefficients c j are given in terms of
the conditional moments of RT

c j(t,R,T, i) =

j∑
n=0

(−1)n EQ
[
R

γn
α

T | Rt = r, Xt = i
]

γn
α

(γn
α
− 1

)
Γ(n + a + 1)

, (5.3)

for j ∈ N0, where γn
α

= a − b + n + 2. Implementing this option pricing formula involves several steps.
First, suitable values for a and b are chosen to satisfy a > 2 max(b, 0) − 1 and to ensure that γn

α
∈ N

for all n ∈ [0, j]. This choice of parameters guarantees the convergence of the Laguerre series and
facilitates calculation of the coefficients. Next, the closed-form formula for the NLD-CEV process
expectation is used to obtain the moments EQ

[
Rγn/α

T | Rt = R, Xt = i
]
. These moments are subsequently

applied to calculate the coefficients c j in (5.3). Finally, the option price is computed using a truncated
version of the series in (5.2).
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This method offers practical advantages for VIX option pricing, notably computational efficiency
and analytical tractability through closed-form expressions. Within the NLD-CEV modeling
perspective, the resulting pricing formulas provide a flexible mechanism to capture the key qualitative
features of VIX dynamics under suitable parameter choices. While the present study focuses on
theoretical development and illustrative numerical experiments rather than calibration to market data,
the results suggest that the approach can serve as a useful building block for volatility pricing and
hedging. Further empirical calibration and validation using historical VIX and VIX market data would
be a natural next step to assess the pricing performance and practical risk management impact. Overall,
this work contributes tractable option pricing methodology that connects rigorous stochastic modeling
with applications in quantitative finance.

6. Conclusions

In this study, we presented an analytical framework for the fractional-order conditional moments of
the NLD-CEV process with regime-switching dynamics. By integrating a nonlinear drift component
and accommodating elasticity in the variance, our approach offers a versatile modeling tool for financial
markets, especially in pricing derivatives like VIX futures, where volatility and market shifts play
critical roles. The hybrid system approach adopted here allows for exact closed-form solutions, which
significantly enhances computational efficiency compared with traditional MC simulations.

Our numerical results underscore the computational advantages of the closed-form formulas derived
in this study. In particular, we observe substantial reductions in the computational time, with an
accuracy that aligns closely with the MC simulation’s outcomes. This computational efficiency is
invaluable in practical applications where rapid pricing and risk assessment are essential. Furthermore,
our results demonstrate that the NLD-CEV process captures nuanced dynamics by adjusting to changes
in the economic conditions through regime-switching, thereby providing more accurate reflections of
market realities than many traditional models.

The applications explored here, specifically for VIX futures and options pricing, highlight the
practical utility of our model in financial engineering. The model’s adaptability to shifts in market
sentiment and volatility makes it well-suited for environments characterized by sudden economic
changes. By incorporating regime-switching elements, the NLD-CEV process not only enhances
accuracy in volatility modeling but also addresses some limitations inherent in simpler processes
by capturing nonlinear responses to market shocks. More broadly, the proposed framework may be
applicable beyond volatility markets, including interest rate modeling and credit risk or credit derivative
pricing, where regime-switching dynamics are commonly used to capture structural changes, policy
shifts, or distress events.

While the present analysis focuses on a two-state Markov chain for analytical clarity, the proposed
framework is not inherently restricted to this setting. In principle, the hybrid PDE system may be
extended to an arbitrary finite number of regimes (m > 2), resulting in a system of m coupled equations
that captures more complex market environments, albeit with increased analytical and computational
complexity. Moreover, although an irreducible Markov chain is assumed to ensure well-defined regime
dynamics, the methodology may be adapted to non-irreducible or partially absorbing chains under
appropriate modeling considerations, which are particularly relevant in applications such as credit risk
or distress modeling.
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Future research could extend this work by exploring multi-regime settings and incorporating
additional stochastic elements to further refine the model’s adaptability to market complexities. In
addition, it is important to note that Assumptions 1–6 are imposed primarily to ensure the existence
and uniqueness of the solution and to facilitate analytical tractability. While these assumptions enable
closed-form derivations, they may be restrictive in practical settings where the model parameters
exhibit abrupt changes rather than smooth temporal variation. An interesting direction for future
research is to relax these assumptions by considering weaker specifications, such as piecewise constant
or regime-wise parameter dynamics, which would require additional conditions to preserve the well-
posedness. Empirical validation using a broader dataset of financial instruments could provide insights
into optimizing the model’s parameters for specific financial contexts. In particular, calibrating the
proposed model to real VIX derivative transaction data and conducting comparative pricing analysis
against established benchmark models would offer a more comprehensive assessment of its real-world
pricing accuracy and practical performance. This research contributes a significant step toward more
efficient and accurate pricing methodologies, bridging advanced stochastic modeling techniques with
concrete financial applications.
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