In this paper, we propose a modified Levenberg–Marquardt (LM) method with a nonmonotone technique for solving nonlinear equations. Under the $ \mathrm{H\ddot{o}lderian} $ continuity and the $ \mathrm{H\ddot{o}lderian} $ local error bounds conditions, which are weaker than the local error bounds and the Lipschitz continuity, the global convergence and local convergence of the algorithm are proved. Numerical experiments also show that the algorithm is effective.
Citation: Yuya Zheng, Yueting Yang, Mingyuan Cao. The modified Levenberg–Marquardt method with nonmonotone technique[J]. AIMS Mathematics, 2026, 11(1): 2527-2546. doi: 10.3934/math.2026102
In this paper, we propose a modified Levenberg–Marquardt (LM) method with a nonmonotone technique for solving nonlinear equations. Under the $ \mathrm{H\ddot{o}lderian} $ continuity and the $ \mathrm{H\ddot{o}lderian} $ local error bounds conditions, which are weaker than the local error bounds and the Lipschitz continuity, the global convergence and local convergence of the algorithm are proved. Numerical experiments also show that the algorithm is effective.
| [1] |
Y. L. Shang, D. Q. Qu, J. X. Li, R. X. Zhang, A new parameter-free continuously differentiable filled function algorithm for solving nonlinear equations and data fitting problems, J. Comput. Appl. Math., 454 (2025), 116198. https://doi.org/10.1016/j.cam.2024.116198 doi: 10.1016/j.cam.2024.116198
|
| [2] |
M. C. Huang, Y. N. Zhang, S. Li, Mobile localization based on online solution of linear matrix-vector equations using inverse-free acceleration-layer Zhang neurodynamics, Expert Syst. Appl., 278 (2025), 127361. https://doi.org/10.1016/j.eswa.2025.127361 doi: 10.1016/j.eswa.2025.127361
|
| [3] |
M. Liu, Y. F. Hu, J. C. Li, L. Jin, Characteristics-capturing neural dynamics for solving time-dependent nonlinear equations with periodic noise, IEEE Trans. Cognit. Dev. Syst., 16 (2024), 984–992. https://doi.org/10.1109/TCDS.2023.3316776 doi: 10.1109/TCDS.2023.3316776
|
| [4] |
T. Y. Song, Z. X. Liu, An efficient inertial subspace minimization CG algorithm with convergence rate analysis for constrained nonlinear monotone equations, J. Comput. Appl. Math., 446 (2024), 115873. https://doi.org/10.1016/j.cam.2024.115873 doi: 10.1016/j.cam.2024.115873
|
| [5] |
M. Yuan, L. Du, F. Jiang, J. C. Bai, G. R. Chen, Reweighted alternating direction method of multipliers for DNN weight pruning, Neural Networks, 179 (2024), 106534. https://doi.org/10.1016/j.neunet.2024.106534 doi: 10.1016/j.neunet.2024.106534
|
| [6] |
K. Z. Zheng, S. Li, Y. N. Zhang, Low-computational-complexity zeroing neural network model for solving systems of dynamic nonlinear equations, IEEE Trans. Autom. Control, 69 (2024), 4368–4379. https://doi.org/10.1109/TAC.2023.3319132 doi: 10.1109/TAC.2023.3319132
|
| [7] | J. Nocedal, S. J. Wright, Numerical optimization, 2nd Ed., New York: Springer, 2006. https://doi.org/10.1007/978-0-387-40065-5 |
| [8] |
D. W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters, J. Soc. Ind. Appl. Math., 11 (1963), 431–441. https://doi.org/10.1137/0111030 doi: 10.1137/0111030
|
| [9] |
K. Levenberg, A method for the solution of certain non-linear problems in least squares, Quart. Appl. Math., 2 (1944), 164–168. https://doi.org/10.1090/qam/10666 doi: 10.1090/qam/10666
|
| [10] | N. Yamashita, M. Fukushima, On the rate of convergence of the Levenberg-Marquardt method, in Topics in Numerical Analysis, Vienna: Springer, 2001,239–249. https://doi.org/10.1007/978-3-7091-6217-0_18 |
| [11] | J. Y. Fan, A modified Levenberg-Marquardt algorithm for singular system of nonlinear equations, J. Comput. Math., 21 (2003), 625–636. |
| [12] |
J. Y. Fan, Y. X. Yuan, On the quadratic convergence of the Levenberg-Marquardt method without nonsingularity assumption, Computing, 74 (2005), 23–39. https://doi.org/10.1007/s00607-004-0083-1 doi: 10.1007/s00607-004-0083-1
|
| [13] |
K. Amini, F. Rostami, A modified two steps Levenberg–Marquardt method for nonlinear equations, Int. J. Comput. Appl. Math., 288 (2015), 341–350. https://doi.org/10.1016/j.cam.2015.04.040 doi: 10.1016/j.cam.2015.04.040
|
| [14] |
K. Amini, F. Rostami, G. Caristi, An efficient Levenberg–Marquardt method with a new LM parameter for systems of nonlinear equations, Optimization, 67 (2018), 637–650. https://doi.org/10.1080/02331934.2018.1435655 doi: 10.1080/02331934.2018.1435655
|
| [15] |
H. Y. Wang, J. Y. Fan, Convergence rate of the Levenberg–Marquardt method under $\mathrm{H\ddot{o}lderian}$ local error bound, Optim. Methods. Softw., 35 (2020), 767–786. https://doi.org/10.1080/10556788.2019.1694927 doi: 10.1080/10556788.2019.1694927
|
| [16] |
L. Chen, Y. F. Ma, A modified Levenberg–Marquardt method for solving system of nonlinear equations, J. Appl. Math. Comput., 69 (2023), 2019–2040. https://doi.org/10.1007/s12190-022-01823-x doi: 10.1007/s12190-022-01823-x
|
| [17] |
M. L. Zeng, G. H. Zhou, Improved convergence results of an efficient Levenberg–Marquardt method for nonlinear equations, J. Appl. Math. Comput., 68 (2022), 3655–3671. https://doi.org/10.1007/s12190-021-01599-6 doi: 10.1007/s12190-021-01599-6
|
| [18] | M. J. D. Powell, Convergence properties of a class of minimization algorithms, in Nonlinear Programming 2, 1975, 1–27. https://doi.org/10.1016/B978-0-12-468650-2.50005-5 |
| [19] |
R. Behling, A. Iusem, The effect of calmness on the solution set of systems of nonlinear equations, Math. Program., 137 (2013), 155–165. https://doi.org/10.1007/s10107-011-0486-7 doi: 10.1007/s10107-011-0486-7
|
| [20] |
R. B. Schnabel, P. D. Frank, Tensor methods for nonlinear equations, SIAM J. Numer. Anal., 21 (1984), 815–843. https://doi.org/10.1137/0721054 doi: 10.1137/0721054
|
| [21] |
J. J. Moré, B. S. Garbow, K. E. Hillstrom, Testing unconstrained optimization software, ACM Trans. Math. Softw., 7 (1981), 17–41. https://doi.org/10.1145/355934.355936 doi: 10.1145/355934.355936
|