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technique; Hölderian local error bounds
Mathematics Subject Classification: 65K05, 90C30

1. Introduction

Consider the system of nonlinear equations

F(x) = 0, (1.1)

where F(x) : Rn → Rm is continuously differentiable. We assume that the solution set of (1.1) is
nonempty and defined as X∗. In all cases, ∥·∥ is defined as 2–norm. We take ∥F(x)∥ as the merit
function of (1.1).

The nonlinear equations have been used in various fields, such as differential equation problems,
robotic systems, transportation, neural network control problems, and so on [1–6]. One of the most
well-known methods for solving this problem is the Gauss–Newton method [7]. At every iteration, the
trial step should be computed as

dGN
k = −(JT

k Jk)−1JT
k Fk, (1.2)

where Fk = F(xk) and Jk = F′(xk), which is the Jacobian matrix J(x) of F(x) at xk. If the Jacobian
matrix J(x) of F(x) is Lipschitz continuous and nonsingular at the solution, the Gauss–Newton method
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has quadratic convergence. However, the Gauss–Newton method may not be well defined if the Jaco-
bian matrix is singular or near singular. Marquardt [8] explored the method proposed by Levenberg [9]
and introduced a positive parameter λk ≥ 0 to compute a trial step dk,

dk = −(JT
k Jk + λkI)−1JT

k Fk. (1.3)

The method was called the Levenberg–Marquardt (LM) method. Obviously, if Jk was nonsingular and
λk = 0, the LM trial step reduced to the Gauss–Newton trial step.

For the LM method, it is important to choose the parameter λk. Yamashita and Fukushima [10]
used the LM parameter λk = ∥Fk∥

2 to show that the LM method had quadratic convergence under the
local error bound condition and J(x) was Lipschitz continuous. Fan [11] introduced the parameter
λk = µk ∥Fk∥ with µk being updated in each iteration and proved the method had quadratic convergence
under the same conditions. Fan and Yuan [12] considered λk = ∥Fk∥

δ with δ ∈ [1, 2] and showed the
method had quadratic convergence. Amini and Rostami [13] found that if the sequence {xk} was far
away from the solution set and δ ≥ 1, then λk = ∥Fk∥

δ might be very large. This made the LM step
smaller and hindered the iteration from approaching the solution set quickly, so they introduced a new
LM parameter λk = µk ∥Fk∥

δk with δk as follows:

δk =

 1
∥Fk∥
, if ∥Fk∥ ≥ 1,

1 + 1
k , otherwise.

(1.4)

The above research adopted the trust-region framework. In their research, the trial step dk can be
regarded as the solution to the subproblem

min
d∈Rn
∥Fk + Jkd∥2

s.t. ∥d∥ ≤ ∆k := ∥dk∥.
(1.5)

We set the ratio as

rk =
Aredk

Predk
,

where Aredk denotes the actual reduction and is given by

Aredk = ∥Fk∥
2 − ∥F(xk + dk)∥2

and Predk denotes the predicted reduction and is given by

Predk = ∥Fk∥
2
− ∥Fk + Jkdk∥

2 . (1.6)

The ratio of rk is used to decide whether to accept the LM trial step dk and update the LM parameters.
Amini [14] proposed a new LM parameter λk =

µk∥Fk∥

1+∥Fk∥
and developed an algorithm with nonmono-

tone technique. The nonmonotone technique sets

∥Fl(k)∥ = max
0≤ j≤n(k)

{∥∥∥Fk− j

∥∥∥} , k = 0, 1, 2, . . . , (1.7)
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and let

Āredk = ∥Fl(k)∥
2 − ∥F(xk + dk)∥2, (1.8)

where n(k) = min{N0, k} and N0 was a given positive constant. It did not require the merit function to
be strictly reduced in each iteration, but ∥Fk+1∥ should have been smaller than the maximum value of
∥Fk∥ at the previous n(k) steps, which showed the sequence {∥Fl(k)∥} exhibited a decreasing trend. The
ratio between the actual and predicted reductions was defined as

r̂k =
Āredk

Predk
. (1.9)

Amini proved the algorithm had quadratic convergence under the local error bound condition, and J(x)
was Lipschitz continuous.

Some nonlinear equations may fail to satisfy a local error bound condition based on ∥F(x)∥, and J(x)
may not satisfy Lipschitz continuity. But they may satisfy the weaker conditions, that is, the Hölderian
local error bound and J(x) being Hölderian continuous. Recently, Wang and Fan [15] considered the
algorithm by using parameters λk = ηk∥Fk∥

α and λk = ηk∥JT
k Fk∥

α with α > 0. The convergence analysis
of the algorithm was discussed under the Hölderian local error bound of ∥Fk∥, and J(x) was Hölderian
continuous. Chen and Ma [16] proposed the parameter λk = θ∥Fk∥

δ + (1 − θ)∥JT
k Fk∥

δ, where θ ∈ [0, 1]
and δ ∈ [1, 2] and analyzed the convergence of this modified method under the Hölderian local error
bound of ∥Fk∥ and the Hölderian continuity of its Jacobian matrix. Zeng [17] considered the parameter
λk =

µk∥Fk∥

1+∥Fk∥
and analyzed the convergence of the algorithm under the two same key conditions. Under

such weaker conditions, the convergence of the LM algorithm is worth studying.
The paper is organized as follows: In Section 2, we introduce a new modified algorithm, and its

global convergence under the Hölderian continuity of the Jacobian matrix is presented. In Section
3, we verify the convergence rate of the modified algorithm under the Hölderian local error bound
condition and the Hölderian continuity of the Jacobian matrix. In Section 4, the numerical experiments
are implemented and show that the proposed algorithm is effective. Finally, we conclude the paper in
Section 5.

2. The new algorithm and its global convergence

In this section, we propose a modified LM algorithm with a nonmonotone technique, and prove its
global convergence under the Hölderian continuity condition.

A new LM parameter is introduced as follows:

λk =
µk∥Fk∥

δk

1 + ∥JT
k Fk∥

δk
, δk =

{ 1
∥Fk∥
, if ∥Fk∥ ≥ 1,

1 + 1
ln(k+e) , otherwise.

(2.1)

The selection of the parameter δk is inspired by (1.4). The strategy can adaptively adjust the parameter
λk. When k = 0, the initial point x0 may be far from the solution, and we may have ∥F0∥ ≥ 1. We
then take δ0 =

1
∥F0∥

, which is equivalent to the parameter in [13]. In previous iterations, the sequence

{xk} is far from the solution set of (1.1) and ∥Fk∥ and ∥JT
k Fk∥ may be very large, so it leads to ∥Fk∥

δk

1+∥JT
k Fk∥

δk

being approximately equal to 1
2 and λk being close to µk

2 . If the sequence {xk} is close to the solution
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set, ∥Fk∥ < 1 may be satisfied. We set δk = 1 + 1
ln(k+e) , and compared with the parameter δk =

1
k in [13],

the term 1
ln(k+e) decreases more slowly than 1

k . So, λk does not decrease quickly. This prevents dk from
growing quickly and prevents the iteration from deviating from the solution set. Meanwhile, ∥Jk

T Fk∥

becomes sufficiently small. As k increases, δk tends to 1. Then, λk is close to µk∥Fk∥.
The algorithm is described as follows.

Algorithm 1 The nonmonotone modified Levenberg–Marquardt method (NMLM)
Step 0: Input an initial point x0 ∈ R

n, the parameters N0 > 0, µ0 > m > 0, ε > 0,
0 < p0 ≤ p1 ≤ p2 < 1. Set k := 0.
Step 1: If ∥JT

k Fk∥ ≤ ε, stop. Otherwise, compute ∥Fl(k)∥ by (1.7);
Step 2: Compute λk by (2.1) and dk by (1.3);
Step 3: Compute Predk , Āredk, and r̂k by (1.6), (1.8), and (1.9), respectively;
Step 4: If r̂k < p0, set µk := 4µk, go to Step 2;

Otherwise, set xk+1 = xk + dk, go to Step 5;
Step 5: Choose µk+1 as

µk+1 =


4µk, if r̂k < p1,

µk, if r̂k ∈ [p1, p2],
max

{
µk
4 ,m

}
, otherwise.

Step 6: Calculate ∥Fk+1∥ and ∥JT
k+1Fk+1∥. Set k := k + 1 and go to Step 1.

Remark 2.1. In Algorithm 1, there is an inner loop from Step 2 to Step 4. If r̂k < p0, the trial step dk is
rejected and recalculated by increasing the parameter µk. The inner loop avoids repeated evaluations
of ∥Fk∥, ∥Jk∥, and ∥JT

k Fk∥ at the same iterate. By updating only the parameter λk and the trial step dk,
the strategy significantly reduces the computational cost. The efficiency and numerical performance
of the algorithm can be improved. The inner loop should be terminated in a finite number of steps. In
fact, if the inner loop runs indefinitely, for sufficiently large k, µk and λk may become very large, which
makes ∥dk∥ tend to 0. From (1.6) and (1.8), the inequality r̂k ≥ p0 will definitely occur. Then, the inner
loop is terminated. This strategy means that when the trust-region subproblem does not fit well, we
directly adjust the parameter µk to generate a new trial step, which reduces the computational cost.

Remark 2.2. In Step 5, based on the idea of trust region, the ratio r̂k reflects the degree of ap-
proximation of the trust-region subproblem to the original problem. If r̂k < p1, the approximation
is still insufficient, so we adjust λk by increasing µk. If r̂k ∈ [p1, p2], it indicates a relatively good
approximation, and thus µk is kept unchanged. If r̂k > p2, the trust-region subproblem provides a
good approximation of the original problem. At this time, we set µk+1 =

µk
4 . If µk+1 keeps being set to

µk
4 repeatedly, µk+1 may become very small, which makes ∥dk∥ too large. So, we choose a protective
measure µk+1 = max

{
µk
4 ,m

}
, where m is a positive constant.

Lemma 2.1. Suppose that the sequence {xk} is generated by Algorithm 1, then the predicted reduction
Predk satisfies

Predk ≥ ∥JT
k Fk∥min{∥dk∥,

∥JT
k Fk∥

∥JT
k Jk∥
} (2.2)

for all k ∈ N.

AIMS Mathematics Volume 11, Issue 1, 2527–2546.



2531

The proof is similar to the proof of Theorem 4 in [18].

Lemma 2.2. If the sequence {xk} is generated by Algorithm 1, then the sequence {∥Fl(k)∥} is convergent.

Proof. From Step 4, we know that r̂k ≥ p0 > 0 for all k. From Lemma 2.1,

Āredk ≥ p0Predk ≥ p0∥JT
k Fk∥min{∥dk∥,

∥JT
k Fk∥

∥JT
k Jk∥
} > 0. (2.3)

By (1.8), we obtain

∥Fl(k)∥ > ∥Fk+1∥ ∀k. (2.4)

For k ≥ N0, we have

∥Fl(k+1)∥ = max{∥Fk+1∥ , ∥Fk∥ , · · · ,
∥∥∥Fk−N0+1

∥∥∥} ≤ max{∥Fk+1∥ , ∥Fl(k)∥} = ∥Fl(k)∥.

Thus, the sequence {∥Fl(k)∥} is monotonically decreasing. By the definition of Fl(k) and (2.4), there
exists k0 ≥ N0 such that for all k ≥ k0,

∥Fl(k+1)∥ < ∥Fl(k)∥.

That is, the sequence {∥Fl(k)∥} is strictly decreasing for all k ≥ k0.
Since the sequence {∥Fl(k)∥} is bounded below, the sequence {∥Fl(k)∥} is convergent. □

Before discussing the global convergence of Algorithm 1, we need to establish the following as-
sumptions.

Assumption 2.1. (a) J(x) is Hölderian continuous of order ν ∈ (0, 1], i.e., there exists a positive
constant ch such that

∥J(x) − J(y)∥ ≤ ch∥x − y∥ν,∀x, y ∈ Rn. (2.5)

(b) J(x) is bounded, i.e., there exists a positive constant cJ such that

∥J(x)∥ ≤ cJ,∀x ∈ Rn. (2.6)

By (2.5) and (2.6), it holds that

∥F(y) − F(x) − J(x)(y − x)∥ ≤
ch

1 + ν
∥y − x∥1+ν, (2.7)

∥F(y) − F(x)∥ ≤ cJ∥y − x∥. (2.8)

It is not difficult to find that if ν = 1, the Hölderian continuous condition becomes the Lipschitz
continuity condition.
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Theorem 2.1. Under the conditions in Assumption 2.1, the sequence {xk} generated by Algorithm 1
satisfies

lim inf
k→∞

∥JT
k Fk∥ = 0. (2.9)

Proof. Suppose that (2.9) does not hold. There exists a positive ε0 such that∥∥∥JT
k Fk

∥∥∥ ≥ ε0, ∀k. (2.10)

From Step 4, we may obtain

r̂k ≥ p0, ∀k. (2.11)

By (1.9) and Lemma 2.1,

∥Fl(k)∥
2 − ∥Fk+1∥

2
≥ p0

∥∥∥JT
k Fk

∥∥∥ min

∥dk∥ ,

∥∥∥JT
k Fk

∥∥∥∥∥∥JT
k Jk

∥∥∥
 .

And according to Assumption 2.1(b) and (2.10),

∥Fl(k)∥
2 − ∥Fk+1∥

2
≥ p0ε0 min

{
∥dk∥ ,

ε0

c2
J

}
. (2.12)

By substituting k with l(k) − 1, we obtain

∥Fl(l(k)−1)∥
2 −

∥∥∥Fl(k)

∥∥∥2
≥ p0ε0 min

{∥∥∥dl(k)−1

∥∥∥ , ε0

cJ
2

}
. (2.13)

According to Lemma 2.2,

lim
k→∞

(∥Fl(l(k)−1)∥
2 − ∥Fl(k)∥

2) = 0.

Combined with (2.13),

lim
k→∞
∥dl(k)−1∥ = 0. (2.14)

And by (2.8), we have

lim
k→∞
∥Fl(k)∥ = lim

k→∞
∥Fl(k)−1∥. (2.15)

Let l̂(k) = l(k + N0 + 2). For any given j ≥ 1, replace l(k) with l̂(k) − j + 1 in (2.13), thus

∥Fl(l̂(k)− j)∥
2 −

∥∥∥Fl̂(k)− j+1

∥∥∥2
≥ p0ε0 min

{∥∥∥dl̂(k)− j

∥∥∥ , ε0

cJ
2

}
. (2.16)

According to Lemma 2.2, ∥F(xl(k))∥ is convergent, and any of its subsequences are also convergent. It
implies that

lim
k→∞
∥Fl̂(k)− j+1∥ = lim

k→∞
∥Fll̂(k)− j

∥.
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By (2.16),

lim
k→∞
∥dl̂(k)− j∥ = 0. (2.17)

From (2.8), it can be inferred that

lim
k→∞
∥Fl̂(k)− j∥ = lim

k→∞
∥Fl̂(k)∥.

Since ∥Fl̂(k)∥ is a subsequence of ∥Fl(k)∥, we have

lim
k→∞
∥Fl̂(k)− j∥ = lim

k→∞
∥Fl̂(k)∥ = lim

k→∞
∥Fl(k)∥. (2.18)

Moreover,

xl̂(k) − xk+1 =

l̂(k)−k−1∑
j=1

dl̂(k)− j, ∀k.

By (2.17), considering that l̂(k) − j − 1 ≤ N0 + 1,

lim
k→∞
∥xk+1 − xl̂(k)∥ = 0.

And according to (2.8) and (2.18) such that

lim
k→∞
∥Fk+1∥ = lim

k→∞
∥Fl̂(k)∥ = lim

k→∞
∥Fl(k)∥, (2.19)

hence, by (2.12),

lim
k→∞
∥dk∥ = 0. (2.20)

Therefore, it follows from (1.3), (2.1), (2.8), and (2.10) that

µk → ∞, as k → ∞. (2.21)

On the other hand, by (2.7), we have∣∣∣∣∥F(xk + dk)∥ − ∥Fk + Jkdk∥

∣∣∣∣ ≤ ch

1 + ν
∥dk∥

1+ν. (2.22)

If ∥F(xk + dk)∥ ≥ ∥Fk + Jkdk∥ and by (2.22), we have

∥F(xk + dk)∥ + ∥Fk + Jkdk∥ = ∥Fk + Jkdk∥ + (∥F(xk + dk)∥ − ∥Fk + Jkdk∥) + ∥Fk + Jkdk∥

= 2∥Fk + Jkdk∥ + ∥F(xk + dk)∥ − ∥Fk + Jkdk∥

≤ 2∥Fk + Jkdk∥ +
ch

1 + ν
∥dk∥

1+ν. (2.23)

Similarly, if ∥F(xk + dk)∥ ≤ ∥Fk + Jkdk∥, we obtain∣∣∣∥F(xk + dk)∥ + ∥Fk + Jkdk∥
∣∣∣ ≤ 2∥F(xk + dk)∥ +

ch

1 + ν
∥dk∥

1+ν. (2.24)
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According to (2.22), (2.23), and (2.24),∣∣∣∣∥F(xk + dk)∥2 − ∥Fk + Jkdk∥
2
∣∣∣∣ = ∣∣∣∣∥F(xk + dk)∥ − ∥Fk + Jkdk∥

∣∣∣∣(∥F(xk + dk)∥ + ∥Fk + Jkdk∥)

≤

{ ch
1+ν∥dk∥

1+ν(2∥Fk + Jkdk∥ +
ch

1+ν∥dk∥
1+ν), if ∥F(xk + dk)∥ ≥ ∥Fk + Jkdk∥,

ch
1+ν∥dk∥

1+ν(2∥F(xk + dk)∥ + ch
1+ν∥dk∥

1+ν), otherwise,

=
2ch

1 + ν
∥dk∥

1+νmin{∥Fk + Jkdk∥, ∥F(xk + dk)∥} +
ch

2

(1 + ν)2 ∥dk∥
2+2ν

≤
2ch

1 + ν
∥dk∥

1+ν∥Fk + Jkdk∥ +
ch

2

(1 + ν)2 ∥dk∥
2+2ν. (2.25)

Hence, according to Assumption 2.1, (2.25), and (2.5), we have

|rk − 1| =
∣∣∣∣∣Aredk − Predk

Predk

∣∣∣∣∣
=

∣∣∣∣∣∣ (∥Fk∥
2 − ∥F(xk + dk)∥2) − (∥Fk∥

2 − ∥Fk + Jkdk∥
2)

Predk

∣∣∣∣∣∣
=

∣∣∣∣∣∣∥Fk + Jkdk∥
2 − ∥F(xk + dk)∥2

Predk

∣∣∣∣∣∣
≤

2ch
1+ν∥dk∥

1+ν∥Fk + Jkdk∥ +
ch

2

1+ν∥dk∥
2+2ν

∥Jk
T Fk∥min{∥dk∥,

∥Jk
T Fk∥

∥Jk
T Jk∥
}

→ 0. (2.26)

By (1.7), (1.8), and (2.19),

Āredk

Predk
=
∥Fl(k)∥

2 − ∥F(xk + dk)∥2

Predk
≥
∥Fk∥

2 − ∥F(xk + dk)∥2

Predk
= rk → 1. (2.27)

This implies that Step 5 in Algorithm 1 always executes µk+1 = max{µk
4 ,m}, so there exists a positive

number u > m such that µk < u for sufficiently large k, which contradicts (2.21), and the proof is
complete. □

Theorem 2.2. Suppose that the sequence {xk} generated by Algorithm 1 satisfies Assumption 2.1, and
for sufficiently large k, δk = 1 + 1

ln(k+e) . Then,

lim
k→∞
∥Fk∥ = 0. (2.28)

Proof. By Lemma 2.2, the sequence {∥Fl(k)∥} is convergent. Then, there exists a constant L∗ such that

lim
k→∞
∥Fl(k)∥ = L∗ ≥ 0.

Assume that L∗ , 0, and let L = L∗/2. There exists a constant K0 for all k ≥ K0 such that

∥Fl(k)∥ ≥ L > 0. (2.29)

AIMS Mathematics Volume 11, Issue 1, 2527–2546.



2535

By Theorem 2.1, there exists a subsequence {kt} that satisfies kt ≥ K0 such that

lim
t→∞
∥JT

kt
Fkt∥ = 0. (2.30)

According to (2.13), for kt ≥ K0, we obtain

∥Fl(l(kt)−1)∥
2 −

∥∥∥Fl(kt)

∥∥∥2
≥ p0ε0 min

{∥∥∥dl(kt)−1

∥∥∥ , ε0

cJ
2

}
.

Then,

lim
t→∞
∥dl(kt)−1∥ = 0. (2.31)

By (2.8), we have

lim
t→∞
∥F(xl(kt))∥ = lim

t→∞
∥F(xl(kt)−1)∥ = L∗. (2.32)

Additionally,

Āredk = ∥Fl(k)∥
2 − ∥F(xk + dk)∥2 > 0. (2.33)

And let

S =
∞∑

k=K0

Āredk.

Since S is convergent, we obtain

lim
k→∞

Āredk = 0.

So,

lim
t→∞

Āredkt = 0. (2.34)

On the other hand, it follows from (2.27) and (2.34) that

Predkt → 0. (2.35)

According to equation (1.5), for kt ≥ K0, δk ∈ (1, 2], we have

λkt =
µkt∥Fk∥

δkt

1 + ∥JT
kt

Fkt∥
δkt
→ µkt∥Fkt∥. (2.36)

For kt ≥ K0, we have

∥Fkt∥ ≥ ∥Fl(kt)∥ − ∥Fkt − Fl(kt)∥ >
L
2
.

According to the above reasoning, there exists a constant η such that Predkt ≥ η. This leads to a
contradiction, which means lim

k→∞
∥Fl(k)∥ = 0. According to (1.7), (2.28) holds. The proof is complete.

□
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3. Local convergence of the new algorithm

In this section, we perform the convergence analysis of the algorithm under the Hölderian local
error bound conditions of F(x) and the Hölderian continuity of the Jacobian matrix.

We assume that the sequence {xk} generated by Algorithm 1 converges to the solution set X∗ and lies
in some neighborhood of x∗ ∈ X∗. We denote the distance between x and X∗ as dist(x, X∗) := ∥x̄ − x∥,
where x̄ ∈ X∗ and is the point closest to x.

Assumption 3.1. F(x) provides a Hölderian local error bound of order γ ∈ (0, 1] in some neighbor-
hood of x∗ ∈ X∗, i.e., there exist constants c > 0 and 0 < b < 1 such that

cdist(x, X∗) ≤ ∥F(x)∥γ, ∀x ∈ N(x∗, b), (3.1)

where N(x∗, b) = {x ∈ Rn | ∥x − x∗∥ ≤ b}.

Assumption 3.2. (a) J(x) is Hölderian continuous of order ν ∈ (0, 1], i.e., there exists a positive
constant ch such that

∥J(x) − J(y)∥ ≤ ch∥x − y∥ν,∀x ∈ N(x∗, b). (3.2)

(b) J(x) is bounded, i.e., there exists a positive constant cJ such that

∥J(x)∥ ≤ cJ,∀x ∈ N(x∗, b). (3.3)

By (3.2) and (3.3), we have

∥F(y) − F(x) − J(x)(y − x)∥ ≤
ch

1 + ν
∥y − x∥1+ν,∀x ∈ N(x∗,

b
2

), (3.4)

∥F(y) − F(x)∥ ≤ cJ∥y − x∥,∀x ∈ N(x∗,
b
2

). (3.5)

In the following, we describe the relationship between ∥dk∥ and dist(xk, X∗), then we give the bound-
edness of the parameter. Without loss of generality, we assume that xk lies in N(x∗, b

4 ).

Lemma 3.1. Under Assumption 3.1 and Assumption 3.2, for all sufficiently large k, we have

∥dk∥ ≤ O(∥x̄k − xk∥
min{1,1+ν− 1

2γ }). (3.6)

Proof. Since xk ∈ N(x∗, b
4 ), we have

∥x̄k − x∗∥ ≤ ∥x̄k − xk∥ + ∥xk − x∗∥ ≤ 2∥xk − x∗∥ ≤
b
2
. (3.7)
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Then, x̄k ∈ N(x∗, b
2 ). According to (3.1), Step 5 in Algorithm 1, (3.3), and (3.5), we obtain

λk =
µk∥Fk∥

δk

1 +
∥∥∥JT

k Fk

∥∥∥δk
≥

mc
δk
γ ∥x̄k − xk∥

δk
γ

1 + cδkJ ∥Fk∥
δk

≥
mc

δk
γ ∥x̄k − xk∥

δk
γ

1 + cδkJ c
δk
γ ∥x̄k − xk∥

δk
γ

.

By Theorem 2.2, as k increases, δk = 1 + 1
ln(k+e) tends to 1, which gives

λk →
mc

1
γ ∥x̄k − xk∥

1
γ

1 + cJc
1
γ ∥x̄k − xk∥

1
γ

. (3.8)

Define

φk(d) = ∥Fk + Jkd∥2 + λk∥d∥2. (3.9)

Obviously, dk is the minimizer of φk(d). By (3.4) and (3.8), we have

∥dk∥
2
≤
φk(dk)
λk

≤
φk(x̄k − xk)
λk

=
∥Fk + Jk(x̄k − xk)∥2 + λk∥x̄k − xk∥

2

λk

≤
c2

h

λk(1 + ν)2 ∥x̄k − xk∥
2+2ν + ∥x̄k − xk∥

2

≤
ch

2

m(1 + ν)2

(
1

c
1
γ

∥x̄k − xk∥
2+2ν− 1

γ + (1 + cJ)∥x̄k − xk∥
2+2ν

)
+ ∥x̄k − xk∥

2

≤
ch

2(1 + c
1
γ + c

1
γ cJ)

mc
1
γ (1 + ν)2

∥x̄k − xk∥
2+2ν− 1

γ + ∥x̄k − xk∥
2

= O(∥x̄k − xk∥
2min{1,1+ν− 1

2γ }). (3.10)

The proof is complete. □

Lemma 3.2. Under Assumption 3.1 and Assumption 3.2, if ν > max
{

1
γ
− 1, 2

2γ(1+ν)−1 − 1, ν(1+γ)2ν(1+γ)−1 − 1
}
,

which for all large k, there exists a constant µ̃ > 0 such that

µk ≤ µ̃. (3.11)

Proof. Clearly, dk is also the solution of (1.5). Next, we discuss the following two cases.
Case 1: ∥x̄k − xk∥ ≤ ∥dk∥. According to (3.1), (3.4), (3.6), and ν > 1

γ
− 1,

∥Fk∥ − ∥Fk + Jkdk∥ ≥ ∥Fk∥ − ∥Fk + Jk (x̄k − xk)∥
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≥ c
1
γ ∥x̄k − xk∥

1
γ −

ch

1 + ν
∥x̄k − xk∥

1+ν

≥

(
c

1
γ −

ch

1 + ν

)
∥x̄k − xk∥

1
γ

≥ c1∥dk∥
max { 1

γ ,
2

2γ(1+ν)−1 }, (3.12)

where c1 > 0.
Case 2: ∥x̄k − xk∥ ≥ ∥dk∥. We have

∥Fk∥ − ∥Fk + Jkdk∥≥ ∥Fk∥ −

∥∥∥∥∥Fk +
∥dk∥

∥x̄k − xk∥
Jk (x̄k − xk)

∥∥∥∥∥
≥ ∥Fk∥ −

∥∥∥∥∥∥
(
1 −

∥dk∥

∥x̄k − xk∥

)
Fk +

∥dk∥

∥x̄k − xk∥
(Fk + Jk (x̄k − xk))

∥∥∥∥∥∥
≥
∥dk∥

∥x̄k − xk∥
(∥Fk∥ − ∥Fk + Jk (x̄k − xk)∥)

≥

(
c

1
γ −

ch

1 + ν

)
∥dk∥ ∥x̄k − xk∥

1
γ−1

≥ c2∥dk∥
max

{
1
γ ,

ν(1+γ)
2ν(1+γ)−1

}
, (3.13)

where c2 > 0.
According to (3.12) and (3.13),

Predk = ∥Fk∥
2
− ∥Fk + Jkdk∥

2

= (∥Fk∥ + ∥Fk + Jkdk∥) (∥Fk∥ − ∥Fk + Jkdk∥)

≥ ∥Fk∥ (∥Fk∥ − ∥Fk + Jkdk∥)

≥ c3 ∥Fk∥ ∥dk∥
max

{
1
γ ,

2
2γ(1+ν)−1 ,

ν(1+γ)
2ν(1+γ)−1

}
, (3.14)

where c3 = min{c1, c2}.
By (2.25) and (3.14), we have

|rk − 1| =
∣∣∣∣∣Aredk − Predk

Predk

∣∣∣∣∣
=

∣∣∣∣∣∣ (∥Fk∥
2 − ∥F(xk + dk)∥2) − (∥Fk∥

2 − ∥Fk + Jkdk∥
2)

∥Fk∥
2
− ∥Fk + Jkdk∥

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣∥Fk + Jkdk∥
2 − ∥F(xk + dk)∥2

∥Fk∥
2
− ∥Fk + Jkdk∥

2

∣∣∣∣∣∣
≤

2ch
1+ν∥dk∥

1+ν∥Fk + Jkdk∥ +
ch

2

1+ν∥dk∥
2+2ν

c5 ∥Fk∥ ∥dk∥
max

{
1
γ ,

2
2γ(1+ν)−1 ,

ν(1+γ)
2ν(1+γ)−1

} → 0.

By (1.7) and (1.8),

Āredk

Predk
=
∥Fl(k)∥

2 − ∥F(xk + dk)∥2

Predk
≥
∥Fk∥

2 − ∥F(xk + dk)∥2

Predk
= rk → 1. (3.15)

According to Algorithm 1, we know that there exists a positive constant µ̄ > m such that µk ≤ µ̄ for
all large k. The proof is complete. □
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Next, we deduce the convergence rate of Algorithm 1 using the singular value decomposition (SVD)
and matrix perturbation theory. According to the conclusions given in [19], without loss of generality,
it is assumed that rank(J(x̄)) = r for all x̄ ∈ N(x∗, b)

⋂
X∗. Suppose the SVD of J(x̄k) is

J(x̄k) = ŪkΣ̄kV̄T
k = (Ūk,1, Ūk,2)

(
Σ̄k,1

0

) (
V̄T

k,1
V̄T

k,2

)
= Ūk,1Σ̄k,1V̄T

k,1,

where Σ̄1 = diag (σ̄1, σ̄2, . . . , σ̄r) with σ̄1 ≥ σ̄2 ≥ . . . ≥ σ̄r > 0 and Ūk, V̄k are two orthogonal matrices.
Correspondingly, we consider the SVD of Jk by

Jk = UkΣkVT
k = (Uk,1,Uk,2)

(
Σk,1

Σk,2

) (
VT

k,1
VT

k,2

)
= Uk,1Σk,1VT

k,1 + Uk,2Σk,2VT
k,2,

where Σk,1 = diag
(
σk,1, σk,2, . . . , σk,r

)
with σk,1 ≥ σk,2 ≥ . . . ≥ σk,r > 0 and Σk,2 =

diag
(
σk,r+1, σk,r+2, . . . , σk,n

)
with σk,r+1 ≥ σk,r+2 ≥ . . . ≥ σk,n ≥ 0.

In the following, if the context is clear, we suppress the subscript k in Uk,i,Σk,i, and Vk,i, and we
write

Jk = U1Σ1VT
1 + U2Σ2VT

2 . (3.16)

Lemma 3.3. Under the conditions of Assumption 3.1 and Assumption 3.2, for all sufficiently large k,
we have
(a)

∥∥∥U1UT
1 Fk

∥∥∥ ≤ O (∥x̄k − xk∥) ;
(b)

∥∥∥U2UT
2 Fk

∥∥∥ ≤ O
(
∥xk − x̄k∥

1+ν
)
;

(c)∥Fk + Jkdk∥ ≤ O(∥x̄k − xk∥
min{2,1+ν}).

Proof. The proof of (a) and (b) is similar to the proof of Lemma 3.4 in [15], so we omit it here and
only prove (c).

According to the definition of dk and (3.16), we may obtain

dk = −V1

(
Σ2

1 + λkI
)−1
ΣT

1 UT
1 Fk − V2

(
Σ2

2 + λkI
)−1
ΣT

2 UT
2 Fk, (3.17)

and

Fk + Jkdk = Fk − U1Σ1

(
Σ2

1 + λkI
)−1
ΣT

1 UT
1 Fk − U2Σ2

(
Σ2

2 + λkI
)−1
ΣT

2 UT
2 Fk

= λkU1

(
Σ2

1 + λkI
)−1

UT
1 Fk + λkU2

(
Σ2

2 + λkI
)−1
ΣT

2 UT
2 Fk. (3.18)

Without loss of generality, the sequence {xk} converges to X∗, and we assume that ch ∥x̄k − xk∥ ≤
σ̄k

2

2
and ∥∥∥∥(Σ2

1 + λkI
)−1∥∥∥∥ ≤ ∥∥∥Σ−2

1

∥∥∥ ≤ 1
(σ̄k − ch ∥xk − x̄∥)2 <

4
σ̄k

2 ,
∥∥∥∥(Σ2

2 + λkI
)−1∥∥∥∥ ≤ 1

λk
. (3.19)

For sufficiently large k, there is δk = 1 + 1
ln(k+e) , δk ∈ (1, 2]. By (3.5), (3.11), and F(x̄k) = 0, we may

obtain

λk =
µk∥Fk∥

δk

1 +
∥∥∥JT

k Fk

∥∥∥δk ≤ µk∥Fk∥
δk ≤ µ̃cδkJ ∥x̄k − xk∥

δk . (3.20)
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According (3.18), (3.19), (3.20), and Lemma 3.3, we may obtain

∥Fk + Jkdk∥ ≤
4
σ̄k
λk

∥∥∥U1UT
1 Fk

∥∥∥ + ∥∥∥U2UT
2 Fk

∥∥∥
≤

4µ̄max{cJ, c2
J}

σ̄k
∥x̄k − xk∥O(∥x̄k − xk∥) + O(∥x̄k − xk∥

1+ν)

= O(∥x̄k − xk∥
min{2,1+ν}). (3.21)

That completes the proof. □

Theorem 3.1. Under Lemma 3.1, Assumption 3.1, and Assumption 3.2, if ν ≥ 1
2γ and ν >

max
{

1
γ
− 1, 2

2γ(1+ν)−1 − 1, ν(1+γ)2ν(1+γ)−1 − 1
}

, the sequence xk generated by Algorithm 1 converges to the
solution of (1.1) with order γ(1 + ν).

Proof. According to (3.1),

c∥x̄k+1 − xk+1∥ ≤ ∥F (xk + dk)∥γ .

From (3.4), (3.21), and (3.6), we have

∥F (xk + dk)∥ ≤ ∥F (xk + dk) − (Fk + Jkdk)∥ + ∥Fk + Jkdk∥

≤
ch

1 + ν
∥dk∥

1+ν + ∥Fk + Jkdk∥

≤ O
(
∥x̄k − xk∥

min{1+ν,(1+ν)(1+ν− 1
2γ )}

)
+ O

(
∥x̄k − xk∥

min{2,1+ν}
)

≤ O
(
∥x̄k − xk∥

min{2,1+ν,(1+ν)(1+ν− 1
2γ )}

)
.

Thus,

c
1
γ ∥x̄k+1 − xk+1∥

1
γ ≤ O

(
∥x̄k − xk∥

min{2,1+ν,(1+ν)(1+ν− 1
2γ )}

)
. (3.22)

Consider ν ∈ (0, 1], γ ∈ (0, 1], and ν > 1
2γ . We have

2 − (1 + ν) = 1 − ν > 0

and

(1 + ν) −
(
(1 + ν)(1 + ν −

1
2γ

)
)
= (1 + ν)(

1
2γ
− ν) < 0.

Therefore,

∥x̄k+1 − xk+1∥ ≤ O(∥x̄k − xk∥
γ(1+ν)). (3.23)

This means that when ν > 1
γ
− 1, the sequence xk converges to the solution of (1.1) with the rate of

γ(1 + ν) > 1.
Since ∥x̄k − xk∥ ≤ ∥x̄k+1 − xk∥ ≤ ∥x̄k+1 − xk+1∥ + ∥dk∥ and (3.23) holds, there exists a constant C such

that

∥x̄k − xk∥ ≤ C ∥dk∥
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for all sufficiently large k. It is clear that

∥dk+1∥ ≤ O(∥dk∥
γ(1+ν)). (3.24)

Therefore, when ν > 1
γ
− 1, Algorithm 1 is convergent with order γ(1 + ν) > 1. The proof is complete.

□

Remark 3.1. The parameter γ ∈ (0, 1] is denoted as the order of the Hölderian local error
bound of F(x), and the parameter ν ∈ (0, 1] is denoted as the order of the Hölderian continu-
ity of the Jacobian matrix J(x). Under the condition of Theorem 3.1, when ν ≥ 1

2γ and ν >

max
{

1
γ
− 1, 2

2γ(1+ν)−1 − 1, ν(1+γ)2ν(1+γ)−1 − 1
}
, the algorithm converges with order γ(1 + ν). In particular, the

convergence rates can be described as follows:

∥dk+1∥ ≤


O

(
∥dk∥

1+ν
)
, if γ = 1,

O
(
∥dk∥

2γ
)
, if ν = 1,

O
(
∥dk∥

2
)
, if ν = 1 and γ = 1.

It is easy to see that if γ = 1, the sequence {xk} converges superlinearly with order 1+ν. If γ ∈ [ 1
2 , 1)

and ν = 1, the convergence rate is 2γ. If ν = 1 and γ = 1, the convergence rate is quadratic.

4. Numerical experiments

In this section, we test the nonmonotone modified Levenberg–Marquardt method (NMLM) with
some numerical experiments. All tests are performed on a computer with an Intel Core i5-8250U CPU
with 12.0 GB RAM and MATLAB R2023b (64-bit). We compare the NMLM algorithm with the mod-
ified Levenberg–Marquardt algorithm for nonlinear equations (MLM, Algorithm 2.2) in [11], the new
Levenberg–Marquardt method (NLM, Algorithm 2.1) in [14], and the modified efficient Levenberg–
Marquardt method (MELM, Algorithm 1) in [17].

We choose some standard singular test equations that were created by Frank et al. in [20],

F̂(x) = F(x) − J(x∗)A(AT A)−1AT (x − x∗),

where the function F(x) is the standard nonsingular function in [21]. Here, x∗ is the solution of
∥F(x)∥ = 0, A ∈ Rn×k and has full column rank with 1 ≤ k ≤ n. It is not difficult to see that the
Jacobian matrix of F̂(x) at x∗ is

Ĵ(x∗) = J(x∗)(I − A(AT A)−1AT ),

and its rank is n − k. It is obvious that A = [1, 1, · · · , 1]T ∈ Rn×1 such that rank(Ĵ(x∗)) = n − 1. For the
convenience of numerical comparison, we adopt the same test problems as in [11, 14, 17].

The values for p0, p1, p2, and µ0 are taken as the same empirical values as the compared algorithms.
We set the parameters p0 = 10−4, p1 = 0.25, p2 = 0.75, µ0 = 1, and m = 10−8 for the test. The
termination condition is

∥∥∥JT
k Fk

∥∥∥ ≤ 10−6 and k ≥ 1000, where 1000 is set as the maximum tolerance for
iteration, and k ≥ 1000 indicates the algorithm failed.

The results of the numerical experiments are listed in Tables 1 and 2. In the two tables, the first
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column shows the names of the test functions. The second column lists the five initial points −10x0,
−x0, x0, 10x0, and 100x0, where x0 is the standard initial point recommended in the literature [20]
and [21]. For brevity, the five initial points are written as -10, -1, 1, 10, and 100. The third column
lists the dimension of the function. The other columns list the numerical results of the NMLM, MLM,
NLM, and MELM algorithms. Specially, the meanings of NF, NJ, NT, Iter, and CPU are as follows:
NF: the number of function evaluations
NJ: the number of Jacobian evaluations
NT: NT = NF + NJ∗n
Iter: the number of iterations
CPU: CPU time
-: Indicates that the number of iterations is more than 1000 and the algorithm fails.

Table 1. Numerical experiments for singular problems with standard values n.
NMLM MLM NLM MELM

Function x0 n NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU

Rosenbrock -10 2 18 18 54 17 0.031 167 167 501 166 0.063 16 16 48 15 0 16 16 48 15 0.016
-1 2 16 16 48 15 0 154 154 462 153 0.016 17 17 51 16 0 76 76 228 75 0.063
1 2 17 17 51 16 0 176 176 528 175 0.031 18 18 54 17 0 79 79 237 78 0
10 2 19 19 57 18 0 107 107 321 106 0 19 19 57 18 0 19 19 57 18 0

100 2 22 22 66 21 0 38 38 114 37 0 22 22 66 21 0.016 22 22 66 21 0
Powell singular -10 4 21 21 105 20 0 21 21 105 20 0 21 21 105 20 0 21 21 105 20 0

-1 4 17 17 85 16 0 17 17 85 16 0 17 17 85 16 0 17 17 85 16 0
1 4 17 17 85 16 0 17 17 85 16 0 17 17 85 16 0 17 17 85 16 0
10 4 21 21 105 20 0.063 21 21 105 20 0 21 21 105 20 0 21 21 105 20 0

100 4 24 24 120 23 0 24 24 120 23 0 24 24 120 23 0 24 24 120 23 0
Wood function -10 4 20 20 100 19 0 21 21 105 20 0 20 20 100 19 0 20 20 100 19 0

-1 4 17 17 85 16 0 17 17 85 16 0 17 17 85 16 0 17 17 85 16 0
1 4 18 18 90 17 0 18 18 90 17 0 18 18 90 17 0 18 18 90 17 0
10 4 20 20 100 19 0 20 20 100 19 0 20 20 100 19 0 20 20 100 19 0

100 4 24 24 120 23 0 22 22 110 21 0 24 24 120 23 0.016 24 24 120 23 0
Variable dimensioned -10 10 18 18 198 17 0 18 18 198 17 0 18 18 198 17 0 18 18 198 17 0.016

-1 10 16 16 176 15 0 16 16 176 15 0 16 16 176 15 0 16 16 176 15 0
1 10 15 15 165 14 0 15 15 165 14 0.016 15 15 165 14 0.047 15 15 165 14 0
10 10 17 17 187 16 0 17 17 187 16 0 17 17 187 16 0.031 17 17 187 16 0

100 10 21 21 231 20 0 21 21 231 20 0 21 21 231 20 0 21 21 231 20 0
Brown almost linear -10 10 23 23 253 22 0 23 23 253 22 0 23 23 253 22 0 23 23 253 22 0

-1 10 9 9 99 8 0 11 11 121 10 0.016 10 10 110 9 0 10 10 110 9 0
1 10 9 9 99 8 0 10 10 110 9 0 9 9 99 8 0 9 9 99 8 0
10 10 24 24 264 23 0 24 24 264 23 0 24 24 264 23 0 24 24 264 23 0.031

100 10 76 45 526 44 0.125 - - - - - - - - - - - - - - -
Discrete boundary value -10 10 13 13 143 12 0.141 14 14 154 13 0 16 16 176 15 0 13 13 143 12 0

-1 10 39 25 289 24 0.047 12 12 132 11 0 14 14 154 13 0 13 13 143 12 0
1 10 47 28 327 27 0 12 12 132 11 0 16 16 176 15 0 14 14 154 13 0
10 10 10 10 110 9 0 12 12 132 11 0 11 11 121 10 0 12 12 132 11 0

100 10 12 12 132 11 0 13 13 143 12 0 13 13 143 12 0.016 - - - - -

We compare the numerical results for the low-dimensional problems in Table 1. For example, the
third line lists the numerical results of the Rosenbrock problem with the initial point −x0 and two
dimensions. The indexes NF, NJ, NT, Iter, and CPU of NMLM are 16, 16, 48, 15, and 0, respectively.
That of MLM are 154, 154, 462, 153, and 0.016. That of NLM are 17, 17, 51, 16, and 0. That
of MELM are 76, 76, 228, 75, and 0.063. For the Rosenbrock problem, the Brown almost linear
problem and the discrete boundary value problem, the NMLM algorithm wins in terms of NF, NJ,
NT, and Iter, compared with the MLM, NLM, and MELM algorithms. For the Brown function with
100x0, the NMLM algorithm runs successfully, and its indexes NF, NJ, NT, Iter, and CPU of NMLM
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are 76, 45, 526, 44, and 0.125. The other algorithms terminate at k = 1000 and fail. For the other
problems, the NMLM algorithm performs a similar number of iterations to the other algorithms.

We also compare the numerical experiments on 30 problems with n = 500 in Table 2. The
MLM algorithm fails to run in the Broyden banded problem. For the discrete boundary problem, the
extended Rosenbrock problem, and the Broyden banded problem, the NMLM algorithm wins in terms
of NF, NJ, NT, and Iter. For the other problems, the numerical results of the NMLM algorithm are
similar to those of the other algorithms. Moreover, NMLM can successfully solve some problems in
which the other algorithms fail. These results demonstrate the effectiveness of the proposed algorithm.

Table 2. Numerical experiments for singular problems of n = 500.
NMLM MLM NLM MELM

Function x0 n NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU

Variable dimensioned -10 500 32 32 16032 31 2.172 32 32 16032 31 3.094 37 37 18537 36 4.203 32 32 16032 31 2.797
-1 30 30 15030 29 1.922 30 30 15030 29 1.891 30 30 15030 29 2.750 30 30 15030 29 2.422
1 29 29 14529 28 1.859 29 29 14529 28 2.125 29 29 14529 28 2.984 29 29 14529 28 2.406

10 31 31 15531 30 1.938 31 31 15531 30 2.422 31 31 15531 30 4.203 31 31 15531 30 2.516
100 43 35 17543 34 3.266 35 35 17535 34 2.406 42 42 21042 41 5.469 35 35 17535 34 2.859

Discrete boundary -10 500 9 9 4509 8 0.375 10 10 5010 9 0.672 10 10 5010 9 0.828 10 10 5010 9 0.781
-1 5 5 2505 4 0.188 7 7 3507 6 0.422 7 7 3507 6 0.453 7 7 3507 6 0.313
1 5 5 2505 4 0.188 7 7 3507 6 0.375 7 7 3507 6 0.516 7 7 3507 6 0.469

10 15 15 7515 14 2.828 12 12 6012 11 2.094 11 11 5511 10 2.828 11 11 5511 10 2.031
100 17 17 8517 16 2.813 24 24 12024 23 4.141 18 18 9018 17 4.406 26 26 13026 25 4.891

Extended Rosenbrock -10 500 20 20 10020 19 0.906 24 24 12024 23 1.734 18 18 9018 17 3.094 18 18 9018 17 1.125
-1 19 19 9519 18 0.953 208 208 104208 207 20.656 20 20 10020 19 1.516 141 141 70641 140 8.984
1 20 20 10020 19 0.938 220 220 110220 219 20.906 20 20 10020 19 1.719 55 55 27555 54 3.234

10 21 21 10521 20 1.063 57 57 28557 56 3.375 21 21 10521 20 3.328 21 21 10521 20 1.359
100 24 24 12024 23 1.188 33 33 16533 32 2.109 24 24 12024 23 3.734 24 24 12024 23 1.594

Extended Powell singular -10 500 15 15 7515 14 0.625 16 16 8016 15 1.031 15 15 7515 14 2.531 15 15 7515 14 0.875
-1 12 12 6012 11 0.516 13 13 6513 12 1.563 12 12 6012 11 0.844 12 12 6012 11 0.750
1 12 12 6012 11 0.563 13 13 6513 12 1.484 12 12 6012 11 0.984 12 12 6012 11 0.750

10 15 15 7515 14 0.672 16 16 8016 15 0.875 15 15 7515 14 2.359 15 15 7515 14 0.906
100 19 19 9519 18 1.031 19 19 9519 18 1.203 19 19 9519 18 3.719 19 19 9519 18 1.109

Trigonometric -10 500 11 11 5511 10 0.906 11 11 5511 10 1.203 11 11 5511 10 3.656 11 11 5511 10 1.219
-1 9 9 189 8 0 9 9 189 8 0 9 9 189 8 0 9 9 189 8 0
1 8 8 4008 7 0.563 8 8 4008 7 1.594 8 8 4008 7 1.234 8 8 4008 7 0.844

10 336 197 98836 196 22.203 19 19 9519 18 2.094 149 149 74649 148 57.516 22 22 11022 21 2.953
100 194 110 55194 109 27.203 35 35 17535 34 4.234 48 48 24048 47 16.359 40 40 20040 39 7.453

Broyden banded function -10 500 18 18 9018 17 0.750 18 18 9018 17 21.484 18 18 9018 17 45.094 18 18 9018 17 15.750
-1 18 15 7518 14 0.734 - - - - - 34 34 17034 33 81.781 970 970 485970 969 1214.750
1 9 9 4509 8 0.281 9 9 4509 8 12.047 9 9 4509 8 20.734 9 9 4509 8 7.422

10 14 14 7014 13 0.500 13 13 6513 12 12.031 14 14 7014 13 36.453 14 14 7014 13 17.000
100 20 20 10020 19 1.500 20 20 10020 19 25.547 20 20 10020 19 54.922 20 20 10020 19 25.578

Based on Table 1 and Table 2, Figure 1 shows the performance curves in terms of NF, NJ, Iter, and
CPU. Its vertical axis represents the proportion of problems solved , which is denoted as P(τ), and
the horizontal axis represents the performance ratio τ. When τ = 1, a larger value of P(τ) indicates
that the algorithm wins a higher proportion of the test problems. Based on Figure 1(a), we observe
that the NMLM algorithm wins on 83.33% of the problems at τ = 1, achieving the minimal NF. From
Figure 1(b), (c), and (d), we note that the NMLM algorithm requires the fewest NJ in 85% of the test
problems, 70% using the fewest Iter, and 73.33% using the least CPU. The numerical results show that
the NMLM algorithm achieves better performance, requiring less time and fewer computations.
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(a) Performance profiles for the number of function evalu-
ations.
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(b) Performance profiles for the number of Jacobian evalu-
ations.
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(c) Performance profiles for the number of iterations.
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(d) Performance profiles for the CPU time.

Figure 1. Performance profiles of the numerical results.

5. Conclusions

In this paper, a modified LM method with new LM parameters λk =
µk∥Fk∥

δk

1+∥JT
k Fk∥

δk
is proposed, and

a nonmonotone technique is applied. Under the Hölderian continuity and the Hölderian local error
bounds conditions, we prove the global convergence of the algorithm and show that it converges with
order of γ(1 + ν) > 1. We perform numerical experiments on 60 problems and compare the NMLM
algorithm with the NLM, MELM, and MLM algorithms. The numerical results demonstrate that our
algorithm is competitive.
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