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1. Introduction

Consider the system of nonlinear equations
F(x) =0, (1.1)

where F(x) : R” — R™ is continuously differentiable. We assume that the solution set of (1.1) is
nonempty and defined as X*. In all cases, ||-|| is defined as 2—norm. We take ||[F(x)|| as the merit
function of (1.1).

The nonlinear equations have been used in various fields, such as differential equation problems,
robotic systems, transportation, neural network control problems, and so on [1-6]. One of the most
well-known methods for solving this problem is the Gauss—Newton method [7]. At every iteration, the
trial step should be computed as

iV = —(JL 1)L Fy, (1.2)

where F;, = F(x;) and J;, = F’(x;), which is the Jacobian matrix J(x) of F(x) at x;. If the Jacobian
matrix J(x) of F(x) is Lipschitz continuous and nonsingular at the solution, the Gauss—Newton method
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has quadratic convergence. However, the Gauss—Newton method may not be well defined if the Jaco-
bian matrix is singular or near singular. Marquardt [8] explored the method proposed by Levenberg [9]
and introduced a positive parameter 4; > 0 to compute a trial step d,

di = —~(JL T+ 4D I Fy. (1.3)

The method was called the Levenberg—Marquardt (LM) method. Obviously, if J; was nonsingular and
A = 0, the LM trial step reduced to the Gauss—Newton trial step.

For the LM method, it is important to choose the parameter ;. Yamashita and Fukushima [10]
used the LM parameter A; = ||F +|* to show that the LM method had quadratic convergence under the
local error bound condition and J(x) was Lipschitz continuous. Fan [11] introduced the parameter
A = e ||Fyl| with gy being updated in each iteration and proved the method had quadratic convergence
under the same conditions. Fan and Yuan [12] considered A, = ||F||° with & € [1,2] and showed the
method had quadratic convergence. Amini and Rostami [13] found that if the sequence {x;} was far
away from the solution set and § > 1, then A; = ||F;/|° might be very large. This made the LM step
smaller and hindered the iteration from approaching the solution set quickly, so they introduced a new
LM parameter A; = p ||F % with 6, as follows:

5 e TIEd= 1, 4
1+ % otherwise.

The above research adopted the trust-region framework. In their research, the trial step d; can be
regarded as the solution to the subproblem

min ||F; + Jid||?
deR”

(1.5)
s.t 1|l < Ay = ldill-
We set the ratio as
Ar edk
Iy = ——-,
¢ Pred,
where Ared, denotes the actual reduction and is given by
Aredi = ||FiP = |F(xe + do)lI”
and Pred, denotes the predicted reduction and is given by
Predi = |Fill* = IFy + Jidill” . (1.6)
The ratio of r is used to decide whether to accept the LM trial step d; and update the LM parameters.
Amini [14] proposed a new LM parameter A; = filllll;illll and developed an algorithm with nonmono-

tone technique. The nonmonotone technique sets

IFuoll =  max {lFill} k=0.1.2,..., (1.7)
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and let
Ared, = |Fipll* = |F (xx + dp)lI, (1.8)

where n(k) = min{N,, k} and Ny was a given positive constant. It did not require the merit function to
be strictly reduced in each iteration, but ||F,|| should have been smaller than the maximum value of
||F|l at the previous n(k) steps, which showed the sequence {||F ||} exhibited a decreasing trend. The
ratio between the actual and predicted reductions was defined as

_ Ared,
Iy = .
Pred,

(1.9)

Amini proved the algorithm had quadratic convergence under the local error bound condition, and J(x)
was Lipschitz continuous.

Some nonlinear equations may fail to satisfy a local error bound condition based on ||F(x)||, and J(x)
may not satisfy Lipschitz continuity. But they may satisfy the weaker conditions, that is, the Holderian
local error bound and J(x) being Holderian continuous. Recently, Wang and Fan [15] considered the
algorithm by using parameters A; = ni||F¢||* and Ay = m||J kT F]|* with @ > 0. The convergence analysis
of the algorithm was discussed under the Holderian local error bound of ||F||, and J(x) was Holderian
continuous. Chen and Ma [16] proposed the parameter A, = 0||F||° + (1 — O)||J] FylI°, where 6 € [0, 1]
and ¢ € [1,2] and analyzed the convergence of this modified method under the Holderian local error
bound of ||F|| and the Holderian continuity of its Jacobian matrix. Zeng [17] considered the parameter
A = % and analyzed the convergence of the algorithm under the two same key conditions. Under
such weaker conditions, the convergence of the LM algorithm is worth studying.

The paper is organized as follows: In Section 2, we introduce a new modified algorithm, and its
global convergence under the Holderian continuity of the Jacobian matrix is presented. In Section
3, we verify the convergence rate of the modified algorithm under the Holderian local error bound
condition and the Holderian continuity of the Jacobian matrix. In Section 4, the numerical experiments
are implemented and show that the proposed algorithm is effective. Finally, we conclude the paper in
Section 5.

2. The new algorithm and its global convergence

In this section, we propose a modified LM algorithm with a nonmonotone technique, and prove its
global convergence under the Holderian continuity condition.
A new LM parameter is introduced as follows:

__mlE { oA L,
) _

=————,01 i -
1+ [|J] Fyl|% 1+ 15sg» Otherwise.

2.1

The selection of the parameter J; is inspired by (1.4). The strategy can adaptively adjust the parameter
Ax. When k = 0, the initial point xy may be far from the solution, and we may have ||Fy|| > 1. We

then take 6y = which is equivalent to the parameter in [13]. In previous iterations, the sequence

IFgl%
T+ 1J7 FelPx

being approximately equal to % and A, being close to 5. If the sequence {x;} is close to the solution

1
[lFoll”
{x:} is far from the solution set of (1.1) and ||F|| and ||JkT F|| may be very large, so it leads to
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set, ||[Fi|| < 1 may be satisfied. We set 6, = 1 + @, and compared with the parameter ¢; = % in [13],
1

the term - decreases more slowly than % So, A; does not decrease quickly. This prevents d; from
growing quickly and prevents the iteration from deviating from the solution set. Meanwhile, ||J,” F;||
becomes sufficiently small. As k increases, o, tends to 1. Then, A; is close to p||Fl|.
The algorithm is described as follows.

Algorithm 1 The nonmonotone modified Levenberg—Marquardt method (NMLM)

Step 0: Input an initial point x, € R”, the parameters Ny > 0, uyp > m > 0, € > 0,

O<po<pi <pr<l. Setk:=0.

Step 1: If ||JkTFk|| < g, stop. Otherwise, compute ||Fy)|| by (1.7);

Step 2: Compute A; by (2.1) and d; by (1.3);

Step 3: Compute Pred, , Ared, and 7 by (1.6), (1.8), and (1.9), respectively;

Step 4: If 7, < po, set yy = 4uy, go to Step 2;

Otherwise, set x;.1 = x; + di, go to Step 5;
Step 5: Choose ;41 as

A, if 7 < p1,
Hie1 = Hs if 7 € [p1, p2l,

max {’%,m} , otherwise.
Step 6: Calculate ||F, || and ||JkT+1Fk+1||. Set k := k+ 1 and go to Step 1.

Remark 2.1. In Algorithm 1, there is an inner loop from Step 2 to Step 4. If 7y < po, the trial step dy is
rejected and recalculated by increasing the parameter . The inner loop avoids repeated evaluations
of |Fill, I1Jkll, and ||JkT Fi| at the same iterate. By updating only the parameter A;. and the trial step d,
the strategy significantly reduces the computational cost. The efficiency and numerical performance
of the algorithm can be improved. The inner loop should be terminated in a finite number of steps. In
fact, if the inner loop runs indefinitely, for sufficiently large k, w, and A, may become very large, which
makes ||dy|| tend to 0. From (1.6) and (1.8), the inequality 7, > po will definitely occur. Then, the inner
loop is terminated. This strategy means that when the trust-region subproblem does not fit well, we
directly adjust the parameter . to generate a new trial step, which reduces the computational cost.

Remark 2.2. In Step 5, based on the idea of trust region, the ratio 7y reflects the degree of ap-
proximation of the trust-region subproblem to the original problem. If 7, < pi, the approximation
is still insufficient, so we adjust A, by increasing .. If 7 € [p1, p2], it indicates a relatively good
approximation, and thus uy is kept unchanged. If 7, > p,, the trust-region subproblem provides a
good approximation of the original problem. At this time, we set .1 = 5. If .y keeps being set to
Hk

7 repeatedly, pi,, may become very small, which makes ||di|| too large. So, we choose a protective

measure (.1 = max {’%, m} where m is a positive constant.

Lemma 2.1. Suppose that the sequence {x;} is generated by Algorithm 1, then the predicted reduction
Pred, satisfies
7 Fell

Predy > ||J{ Fill min{idil,
g IF Jill

} (2.2)
forall k € N.
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The proof is similar to the proof of Theorem 4 in [18].
Lemma 2.2. Ifthe sequence {x} is generated by Algorithm 1, then the sequence {||F||} is convergent.

Proof. From Step 4, we know that 7, > py > O for all k. From Lemma 2.1,

_ , . 17 Fl
Ared, > poPred; > po||Jk Fi|| min{||d]l, W} > 0. 2.3)
7 Tl
By (1.8), we obtain
IF ol > 1Feaill k. (2.4)
For k > Ny, we have
IFigenll = max{Eetll, NE, -« || Frcwor ||} < max{llFall, 1Fiwll} = 1 Fipll.

Thus, the sequence {||Fgll} is monotonically decreasing. By the definition of Fjy, and (2.4), there
exists ky > Ny such that for all £ > k,

1F eIl < 1F ol

That is, the sequence {||Fy|l} is strictly decreasing for all k > k.
Since the sequence {||Fx)ll} 1s bounded below, the sequence {||F)l|} is convergent. O

Before discussing the global convergence of Algorithm 1, we need to establish the following as-
sumptions.

Assumption 2.1. (a) J(x) is Holderian continuous of order v € (0,1], i.e., there exists a positive
constant cy, such that

I7(x) = JWII < enllx = yII", ¥, y € R (2.5)

(b) J(x) is bounded, i.e., there exists a positive constant c; such that

SOl < ¢j, VX € R". (2.6)
By (2.5) and (2.6), it holds that
IF(y) — F(x) = J()( — 0l < lilly—XIlm, (2.7)
+v
IEQ) = Foll < eqlly — I. (2.8)

It is not difficult to find that if v = 1, the Holderian continuous condition becomes the Lipschitz
continuity condition.
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Theorem 2.1. Under the conditions in Assumption 2.1, the sequence {x;} generated by Algorithm 1
satisfies

liin inf ||J] F;ll = 0. (2.9)

Proof. Suppose that (2.9) does not hold. There exists a positive gy such that

|V{ Fe|| > 20, k. (2.10)
From Step 4, we may obtain
P > po, Vk. (2.11)
By (1.9) and Lemma 2.1,
IF1l” = 1Featl® = po | Jf Fe| min {ndku : %}

And according to Assumption 2.1(b) and (2.10),

_ &
IF1wll* = |Fisall* = pogo min [ldill, 21 (2.12)
2
7

By substituting k£ with I(k) — 1, we obtain

I Esag-n)lI* = ||F1(1<)||2 > po€o min {”dl(k)—l , :—JOZ} . (2.13)
According to Lemma 2.2,
]}LIEIO(||F1(1(1()—1)||2 — IFpll?) = 0.
Combined with (2.13),
,}1_{?0 ldig-11l = 0. (2.14)
And by (2.8), we have
gl_)n; 1 F ol = ]}1_{{)10 1 E -1 11 (2.15)

Let i(k) = l(k + Ny + 2). For any given j > 1, replace /(k) with i(k) — j+ 1in (2.13), thus

|‘9—°2} (2.16)
Ccy

IF iyl = || F i<k>—j+1||2 2 pogo min {“di(k)—j

According to Lemma 2.2, ||F(x;4)|| is convergent, and any of its subsequences are also convergent. It
implies that

]}1_{130 ||Fi(k)—j+1|| = ]}1_)1110 ||F1,A<k)_j||-
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By (2.16),
]11_)rr010 i1l = 0. (2.17)
From (2.8), it can be inferred that
Jim [|Fjgy il = Tim [1Fpg .

Since ||Fjy, |l is a subsequence of ||Fyll, we have

lim |y il = lim [|Fgoll = lim 1yl (2.18)
Moreover,

Iky—k—1

Jj=
By (2.17), considering that Itk) - j—1<Ny+1,
]}Lrilo | %ks1 — xi(k)” =0.

And according to (2.8) and (2.18) such that

lim [|Fyall = Him ||y ll = lim [1Fi]| (2.19)
hence, by (2.12),
]}im [ldill = O. (2.20)

Therefore, it follows from (1.3), (2.1), (2.8), and (2.10) that
U — oo, as k— oo, (2.21)

On the other hand, by (2.7), we have

Ch

T Vlldkll”v- (2.22)

1F (xi + di)ll = |1 Fi + Jiedil| <

If ||F(Xk + dk)” > ||Fk + Jkdk” and by (222), we have
IF Cer + d)ll + |1 Fie + Jiedill = |Fi + Jidill + (1F (e + di)ll = |Fx + Jedill) + |F i + Jidill
= 2||Fy + Jidill + [|F (xi + dll = || Fie + Jid]|

Ch 1+v
d . 2.23
1+V|| ll (2.23)

< 2||Fk + Jkdk” +

Similarly, if ||F(xk + dk)” < ||Fk + Jkdk”, we obtain

Ch

I Vlldk||1+y~ (2.24)

IF o + doll + 11Fy + Jedill| < 201F (e + dio)ll +
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According to (2.22), (2.23), and (2.24),

|F O + d)lI* = ||Fy + Jkdk”z' = '”F(xk + doll = |Fx + Jidill|(1F (i + dll + 1| Fie + Jidill)

< { T \ldl1M QIVFx + Jedill + =il 3 1F O+ dll = 1k + Jedill,
T LT RIF i + dOll + 2= lldil™), otherwise,
_ 2Ch d 1+v . F J d F d Chz d 242y
=13 VII Wl minf||Fy + Jidill, [1F O+ doll} + s V)2|| ll
< dil|' N Fy + Jidy|| + || 2.25
1+V|I W NE e + Jidill (1+V)2|| ll (2.25)
Hence, according to Assumption 2.1, (2.25), and (2.5), we have
Ared) — Pred,
I = 1] = |————*
Predk
_ IFP = IF Cee + dlP) = AIF? = 1Fe + Jedid?)
Pred,
_ |+ Jedill* = IF (xic + di)lI?
Predk
Ch v "12 v
- 2| "N Fr + Jedill + < Il P+
< : r
1" Fell min(lldll, (=550
50 (2.26)

By (1.7), (1.8), and (2.19),

Ared;  |IFipll? = I1F(x + dp)IP? S IFlP? = IIF (xi + di)lI” _

= 1. 2.27
Pred, Pred, - Pred, e ( )

This implies that Step 5 in Algorithm 1 always executes p, 1 = max{‘%, my}, so there exists a positive

number u > m such that y; < u for sufficiently large k, which contradicts (2.21), and the proof is
complete. O

Theorem 2.2. Suppose that the sequence {x;} generated by Algorithm 1 satisfies Assumption 2.1, and
for sufficiently large k, 5y = 1 + —1—. Then,

In(k+e)’
lim £ = 0. (2.28)
Proof. By Lemma 2.2, the sequence {||F|l} is convergent. Then, there exists a constant L* such that
lim [|Fyll = L' > 0.

Assume that L* # 0, and let L = L*/2. There exists a constant K, for all k > K, such that

IFiwll = L > 0. (2.29)
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By Theorem 2.1, there exists a subsequence {k,} that satisfies k; > K such that
lim ||JthFk,|| =0.
t—00

According to (2.13), for k, > K, we obtain

IE iyl - ”F’(kr)”2 2 Pogomin {“dl(kt)—l“ ’ cs_,()z}
Then,
tlg‘{lo ldi,)-11l = 0.
By (2.8), we have
tlgg I1F Gl = tlgg IF (xige)-)ll = L
Additionally,
Aredy = ||Fiwll”* = |F (x¢ + dlI* > 0.

And let

S = i Ared,.

k=Ko
Since § is convergent, we obtain
111—{2 Ared, = 0.
So,
tlgg Ared;, = 0.

On the other hand, it follows from (2.27) and (2.34) that
Pred,, — 0.
According to equation (1.5), for k, > Ky, d; € (1,2], we have

g IFP
ki

= ————— = W ||Fy -
AT

For k, > K, we have

L
1Fel = 1F )l = 1Fx, — Fiapll > 5

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

According to the above reasoning, there exists a constant n such that Pred,, > n. This leads to a
contradiction, which means ]}im | Fill = 0. According to (1.7), (2.28) holds. The proof is complete.

O
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3. Local convergence of the new algorithm

In this section, we perform the convergence analysis of the algorithm under the Holderian local
error bound conditions of F(x) and the Holderian continuity of the Jacobian matrix.

We assume that the sequence {x;} generated by Algorithm 1 converges to the solution set X* and lies
in some neighborhood of x* € X*. We denote the distance between x and X* as dist(x, X*) := ||x — x||,
where X € X* and is the point closest to x.

Assumption 3.1. F(x) provides a Holderian local error bound of order y € (0, 1] in some neighbor-
hood of x* € X", i.e., there exist constants ¢ > 0 and 0 < b < 1 such that

cdist(x, X*) < ||[F(x)|)”, VYxe€ N(x",b), 3.1
where N(x*,b) = {x e R" | ||x — x*|| < b}.
Assumption 3.2. (a) J(x) is Holderian continuous of order v € (0, 1), i.e., there exists a positive
constant ¢y, such that

I7(x) = JWII < cullx = yII", Yx € N(x7, b). (3.2)

(D) J(x) is bounded, i.e., there exists a positive constant c; such that

[[J(2)] < ¢y, Yx € N(x*, b). (3.3)
By (3.2) and (3.3), we have
b
IF(y) = F(x) = J(x)(y — Il < lilly —xI"™", Vx € N(x*, 2), (3.4)
+v 2
. b
IFQ) = FOll < elly = xll, Vx € N(x7, 5)- (3.5)

In the following, we describe the relationship between ||dx|| and dist(x;, X*), then we give the bound-
edness of the parameter. Without loss of generality, we assume that x; lies in N(x", f{ .

Lemma 3.1. Under Assumption 3.1 and Assumption 3.2, for all sufficiently large k, we have
: _1
lldill < Ol = xel™™172), (3.6)

Proof. Since x; € N(x*, é), we have

oS

1% = X711 < N1 = Xl + llove = X7 < 2l — x7)| < (3.7
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Then, X, € N(x*, 7). According to (3.1), Step 5 in Algorithm 1, (3.3), and (3.5), we obtain

5
el
de= HEE
L+ | Fe|
3 3
me || X — x|~
5 5
1+ ™

Sk 9k
me || X — xil| >

> T 5
1+c‘;"m||xk — x|

By Theorem 2.2, as k increases, 0, = 1 + m(,{%e) tends to 1, which gives

1 1
me? || X, — Xl

A — (3.8)

L+ eser | = xll
Define

ou(d) = |IFy + Jed|* + Alld). (3.9)
Obviously, d; is the minimizer of ¢;(d). By (3.4) and (3.8), we have

d
P < 2
Ak

< @i (X — xp)
Ay
_ IFy + Ju(X — xOl* + Aell®e — xill?
Ak

2

= 2+2 - 2
S 1% = el I77 A+ 1% — il

<G
/lk(l + V)

2
Ch - 2+42y-1 -
— 1% = x| T+ (1 + epllE — Xl

< 2+2v
m(l +v)* \ oy

- 2
+ [[ Xk — ]

TR
- c2(l+cv+cvey) . _ iy

1
1 - 2
|15 — xll Y+ |1X — x|

1 2
mc7 (1 +v)

= O([%, — x50, (3.10)

The proof is complete. O

Lemma 3.2. Under Assumption 3.1 and Assumption 3.2, if v > max {% -1, Zy(liv)—l -1, sz(l:y))_l - 1},
which for all large k, there exists a constant i > 0 such that

i < fi. 3.11)

Proof. Clearly, d; is also the solution of (1.5). Next, we discuss the following two cases.
Case 1: ||x; — xil| < ||di|l. According to (3.1), (3.4), (3.6), and v > i -1,

WFWll = 1k + Jedill 2 [1Fill = 1Fe + i (R = x|
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1. 1 Cho_ v
> % = xlly = I - el
+v
1 Cp _ 1
> _ " —
> (¢f = 72 )1 - il
[
> cy||di||™ (3.12)
where ¢; > 0.
Case 2: ||x; — x¢l| = ||di]]. We have
Ikl _
IFell = I1Fx + Jedil|> |Fill = ||[Fx + ——— Ji Gk — xx)
1% — x|
[l [Idill _
> ||Fill - H(l - —— | Fi + ———— (F + Ji (X — X))
|5 — xll |15 — xll
Ik l] _
> ————— ([|Fill = [|Fx + Ji Gk — x)I)
1% — xll
1 Ch _ 1_
> (cF = = el e =
+v
> ¢lldy " wi, (3.13)

where ¢, > 0.
According to (3.12) and (3.13),

Pred, = ||Fill> = ||Fy + Jidil?
= (|Fll + 1Fx + Jedill) ALFll = 1Fy + Jedil))
> |[Fell A1Fl = [1Fi + JidilD)

maX[l 2 v(l+y) }
> 3 ||l ldil ™1 2w 2@, (3.14)

where ¢; = min{c;, ¢3}.
By (2.25) and (3.14), we have
Ared, — Pred;
Pred,
(Fll? = 11F Qe + doIP) = WIFP = I1Fx + Jedil )
IFP = I Fy + JidlP
|Fy + Jidill” = IIF(xi + dp)lf?
IElP = 11Fe + JediP
29 (|l F + Jedell + 2 iyl P>

1+v 1+v

I =11 =

H
(1+y)
es 1Fel [l 27 i)

By (1.7) and (1.8),
Ared, _ |IFiplP = IF (o + d)lP? o NEP = I1F G + d)IP

= > = 1. 3.15
Pred, Pred, Pred, ke ( )
According to Algorithm 1, we know that there exists a positive constant & > m such that y; < ji for
all large k. The proof is complete. O
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Next, we deduce the convergence rate of Algorithm 1 using the singular value decomposition (SVD)
and matrix perturbation theory. According to the conclusions given in [19], without loss of generality,
it is assumed that rank(J(x)) = r for all X € N(x*, b) () X*. Suppose the SVD of J(x;) is

_ oo - o ) 1% - o -
J(x) = UL V] = (O, Uk,z)( ol 0 )( ‘—/]‘T’l ) = Uk,lﬁk,1V,Z1,
k2
where ¥, = diag (51,0, ...,0,) withd; > d, > ... > &, > 0 and Uy, V, are two orthogonal matrices.

Correspondingly, we consider the SVD of J; by
Vi

>
Je = UV = (Uss, Uk,z)( “l 5 )( Vi ) = Uk,lzk,lvizl + Uk,zzk,zva,z,
k,2 k2

where Ek’] = dlag (O-k,la Ok2sevvs O-k,r) with 01 > Ok2 > ... 2 Tkr > 0 and zkg =
diag (T i a1y Ohpss -+ s Okn) With 01 > 04 > ... 2 0y = 0.

In the following, if the context is clear, we suppress the subscript k in Uy, Z;;, and Vi ;, and we
write

Jo = U\ V] + U3,V (3.16)

Lemma 3.3. Under the conditions of Assumption 3.1 and Assumption 3.2, for all sufficiently large k,
we have
(@)||U\UTFi|| < O (1% = ) ;
(b)|U2UL Fil| < O (Il = ell'™);
(F i+ Jedill < O(l|xx — x|z 1),
Proof. The proof of (a) and (b) is similar to the proof of Lemma 3.4 in [15], so we omit it here and
only prove (c).
According to the definition of d; and (3.16), we may obtain

di = ~Vi(£3 + Ad) ZTUTF, - VoS3 + 4ud) SIUTF, (3.17)
and
Fi+Jidi = Fi - USi(S} + 4d) ETUTF, - UnSa(53 + Ad) S5UTF,
= MU\ + Ad) UTF o+ 4Us(23 + 4d) S3UTF. (3.18)

. . -— F 2
Without loss of generality, the sequence {x;} converges to X*, and we assume that ¢, ||X; — x| < ‘%
and

(Z%”k’)_l < ||z < 1 _iz, (E§+ﬂkl)_1 <L (3.19)
1

<
- -
Tk —cnllxe = XI)” O« k

For sufficiently large k, there is 6; = 1 + @,6;{ € (1,2]. By (3.5), (3.11), and F(x;) = 0, we may
obtain

o mllF

Ok ~ k= Ok
k= 57 < Ml FRll < e |1 — xel™ (3.20)
L+ {lER
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According (3.18), (3.19), (3.20), and Lemma 3.3, we may obtain

4
|Fy + Jid| < &—k/lk (Ui UTF| + ||U2U3 F|

4pmax{c;, 3} _ _ ,
< O_—JHXk — xlO(1% = xill) + O(1% — xilI')

k
= O(|1% — xi||"™>17). (3.21)

That completes the proof. O

Theorem 3.1. Under Lemma 3.1, Assumption 3.1, and Assumption 3.2, if v > =+ and v >

2y
max{% -1, 2y(1iv)—1 -1, 2‘;(11:;7))_1 — 1} , the sequence x; generated by Algorithm I converges to the

solution of (1.1) with order y(1 + v).

Proof. According to (3.1),
CllFesr = Xrll < NF e + dpll”
From (3.4), (3.21), and (3.6), we have
IF (xi + dll < ||F(Xk +di) = (Fi + Jidll + ||Fi + Jidyll
Y | Fe+ idyl

1
<0 (”xk —x ”mm 1+v(l+v)(1+v—2—)}) +0 (”xk - x ”mm 2, 1+v})

0<||Xk _x ”mm 2, 1+v(1+v)(1+v—2—)})
Thus,
O |Feer = xall? < O([IF — a0, (3.22)
Consider v € (0,1], ¥y € (0, 1], and v > % We have
2-(1+v)=1-v>0

and
| p)- 0
T+vyy-1A+v) A +v——)]=0+v)(—-v) <.
2y 2y

Therefore,

%1 = Xeerll < T = xel 7). (3.23)

This means that when v > % — 1, the sequence x; converges to the solution of (1.1) with the rate of

vy(1+v)> 1.
Since [|xX; — x|l < X1 = Xel] < N Xke1 — X1l + |1dil] and (3.23) holds, there exists a constant C such
that

1% = 2l < Cllddill

AIMS Mathematics Volume 11, Issue 1, 2527-2546.



2541

for all sufficiently large k. It is clear that
lldiill < Ol lPH*). (3.24)

Therefore, when v > i — 1, Algorithm 1 is convergent with order y(1 + v) > 1. The proof is complete.
O

Remark 3.1. The parameter v € (0,1] is denoted as the order of the Holderian local error
bound of F(x), and the parameter v € (0,1] is denoted as the order of the Holderian continu-

ity of the Jacobian matrix J(x). Under the condition of Theorem 3.1, when v > % and v >
max {% -1, 27(142—v)—1 -1, ZV‘E(::;;)_ = 1}, the algorithm converges with order y(1 + v). In particular, the

convergence rates can be described as follows:

O(lldll™). ify =1,
ldeall < JO(IldlP?),  ifv =1,
O(IIdeIZ), ifv=1landy=1.

It is easy to see that if y = 1, the sequence {x;} converges superlinearly with order 1 +v. Ify € [%, 1)
and v = 1, the convergence rate is 2y. If v =1 and y = 1, the convergence rate is quadratic.

4. Numerical experiments

In this section, we test the nonmonotone modified Levenberg—Marquardt method (NMLM) with
some numerical experiments. All tests are performed on a computer with an Intel Core 15-8250U CPU
with 12.0 GB RAM and MATLAB R2023b (64-bit). We compare the NMLM algorithm with the mod-
ified Levenberg—Marquardt algorithm for nonlinear equations (MLM, Algorithm 2.2) in [11], the new
Levenberg—Marquardt method (NLM, Algorithm 2.1) in [14], and the modified efficient Levenberg—
Marquardt method (MELM, Algorithm 1) in [17].

We choose some standard singular test equations that were created by Frank et al. in [20],

F(x) = F(x) — J(xXHAATA) AT (x — x9),

where the function F(x) is the standard nonsingular function in [21]. Here, x* is the solution of
IF(x)|| = 0, A € R™* and has full column rank with 1 < k < n. It is not difficult to see that the
Jacobian matrix of F(x) at x* is

J(x*) = J(x)(UI - A(ATA)'AT),

and its rank is n — k. It is obvious that A = [1,1,---, 1]7 € R such that rank(J(x*)) = n — 1. For the
convenience of numerical comparison, we adopt the same test problems as in [11, 14,17].

The values for py, p1, p2, and y are taken as the same empirical values as the compared algorithms.
We set the parameters p, = 107, p; = 0.25, p, = 0.75, up = 1, and m = 1078 for the test. The
termination condition is ||J kT F k” < 107% and k > 1000, where 1000 is set as the maximum tolerance for
iteration, and k > 1000 indicates the algorithm failed.

The results of the numerical experiments are listed in Tables 1 and 2. In the two tables, the first
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column shows the names of the test functions. The second column lists the five initial points —10x,
—Xo, X0, 10x9, and 100xy, where x, is the standard initial point recommended in the literature [20]
and [21]. For brevity, the five initial points are written as -10, -1, 1, 10, and 100. The third column
lists the dimension of the function. The other columns list the numerical results of the NMLM, MLM,
NLM, and MELM algorithms. Specially, the meanings of NF, NJ, NT, Iter, and CPU are as follows:
NF: the number of function evaluations

NIJ: the number of Jacobian evaluations

NT: NT = NF + NJ*'n

Iter: the number of iterations

CPU: CPU time

-: Indicates that the number of iterations is more than 1000 and the algorithm fails.

Table 1. Numerical experiments for singular problems with standard values n.

NMLM MLM NLM MELM
Function xp, n NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU
Rosenbrock -10 2 18 18 54 17 0.031 167 167 501 166 0.063 16 16 48 15 0 16 16 48 15 0.016
-2 16 16 48 15 0 154 154 462 153 0.016 17 17 51 16 0 76 76 228 75 0.063
1 2 17 17 51 16 0 176 176 528 175 0.031 18 18 54 17 0 79 79 237 18 0
10 2 19 19 57 18 0 107 107 321 106 0 19 19 57 18 0 19 19 57 18 0
100 2 22 22 66 21 0 38 38 114 37 0 22 22 66 21 0016 22 22 66 21 0
Powell singular -10 4 21 21 105 20 0 21 21 105 20 0 21 21 105 20 0 21 21 105 20 0
-1 4 17 17 8 16 0 17 17 8 16 0 17 17 8 16 0 17 17 8 16 0
1 4 17 17 8 16 0 17 17 8 16 0 17 17 8 16 0 17 17 8 16 0
10 4 21 21 105 20 0.063 21 21 105 20 0 21 21 105 20 0 21 21 105 20 0
100 4 24 24 120 23 0 24 24 120 23 0 24 24 120 23 0 24 24 120 23 0
Wood function -10 4 20 20 100 19 0 21 21 105 20 0 20 20 100 19 0 20 20 100 19 0
-1 4 17 17 8 16 0 17 17 8 16 0 17 17 8 16 0 17 17 8 16 0
1 4 18 18 90 17 0 18 18 90 17 0 18 18 90 17 0 18 18 90 17 0
10 4 20 20 100 19 0 20 20 100 19 0 20 20 100 19 0 20 20 100 19 0
100 4 24 24 120 23 0 22 22 110 21 0 24 24 120 23 0.016 24 24 120 23 0
Variable dimensioned  -10 10 18 18 198 17 0 18 18 198 17 0 18 18 198 17 0 18 18 198 17 0.016
-1 10 16 16 176 15 0 16 16 176 15 0 16 16 176 15 0 16 16 176 15 0
I 10 15 15 165 14 0 15 15 165 14 0016 15 15 165 14 0.047 15 15 165 14 0
10 10 17 17 187 16 0 17 17 187 16 0 17 17 187 16 0.031 17 17 187 16 0
100 10 21 21 231 20 0 21 21 231 20 0 21 21 231 20 0 21 21 231 20 0
Brown almost_linear ~ -10 10 23 23 253 22 0 23 23 253 22 0 23 23 253 22 0 23 23 253 22 0
-110 9 9 99 8 0 1 11 121 10 0016 10 10 110 9 0 10 10 110 9 0
110 9 9 9 8 0 10 10 110 9 0 9 9 9 8 0 9 9 9 8 0
10 10 24 24 264 23 0 24 24 264 23 0 24 24 264 23 0 24 24 264 23 0.031
100 10 76 45 526 44 0.125 - - - - - - - - - - - - - - -
Discrete boundary value -10 10 13 13 143 12 0.141 14 14 154 13 0 16 16 176 15 0 13 13 143 12 0
-1 10 39 25 289 24 0.047 12 12 132 11 0 14 14 154 13 0 13 13 143 12 0
1 10 47 28 327 27 0 12 12 132 11 0 16 16 176 15 0 14 14 154 13 0
10 10 10 10 110 9 0 12 12 132 11 0 0
0

11 11 121 10 0 12 12 132 11

100 10 12 12 132 11 0 1313 143 12 13 13 143 12 0016 - -

We compare the numerical results for the low-dimensional problems in Table 1. For example, the
third line lists the numerical results of the Rosenbrock problem with the initial point —x, and two
dimensions. The indexes NF, NJ, NT, Iter, and CPU of NMLM are 16, 16, 48, 15, and 0, respectively.
That of MLLM are 154, 154, 462, 153, and 0.016. That of NLM are 17, 17, 51, 16, and 0. That
of MELM are 76, 76, 228, 75, and 0.063. For the Rosenbrock problem, the Brown almost linear
problem and the discrete boundary value problem, the NMLM algorithm wins in terms of NF, NJ,
NT, and Iter, compared with the MLM, NLM, and MELM algorithms. For the Brown function with
100x(, the NMLM algorithm runs successfully, and its indexes NF, NJ, NT, Iter, and CPU of NMLM
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are 76, 45, 526, 44, and 0.125. The other algorithms terminate at k = 1000 and fail. For the other
problems, the NMLM algorithm performs a similar number of iterations to the other algorithms.

We also compare the numerical experiments on 30 problems with » = 500 in Table 2. The
MLM algorithm fails to run in the Broyden banded problem. For the discrete boundary problem, the
extended Rosenbrock problem, and the Broyden banded problem, the NMLM algorithm wins in terms
of NF, NJ, NT, and Iter. For the other problems, the numerical results of the NMLM algorithm are
similar to those of the other algorithms. Moreover, NMLM can successfully solve some problems in
which the other algorithms fail. These results demonstrate the effectiveness of the proposed algorithm.

Table 2. Numerical experiments for singular problems of n = 500.

NMLM MLM NLM MELM

Function Xo n NF NJ NT Iter  CPU NF NJ NT Iter CPU NF NJ NT Iter CPU NF NJ NT Iter CPU
Variable dimensioned -10 500 32 32 16032 31 2172 32 32 16032 31 3.094 37 37 18537 36 4203 32 32 16032 31 2.797
-1 30 30 15030 29 1922 30 30 15030 29 1.891 30 30 15030 29 2750 30 30 15030 29 2.422
1 29 29 14529 28 1859 29 29 14529 28 2125 29 29 14529 28 2984 29 29 14529 28 2.406
10 31 31 15531 30 1938 31 31 15531 30 2422 31 31 15531 30 4203 31 31 15531 30 2.516
100 43 35 17543 34 3266 35 35 17535 34 2406 42 42 21042 41 5469 35 35 17535 34 2.859
Discrete boundary -10 500 9 9 4509 8 0375 10 10 5010 9 0672 10 10 5010 9 0828 10 10 5010 9 0.781
-1 5 5 2505 4 018 7 7 3507 6 0422 7 7 3507 6 0453 7 7 3507 6 0.313
1 5 5 2505 4 018 7 7 3507 6 0375 7 7 3507 6 0516 7 7 3507 6 0.469
10 15 15 7515 14 2828 12 12 6012 11 2094 11 11 5511 10 2828 11 11 5511 10 2.031
100 17 17 8517 16 2813 24 24 12024 23 4141 18 18 9018 17 4406 26 26 13026 25 4.891
Extended Rosenbrock ~ -10 500 20 20 10020 19 0906 24 24 12024 23 1734 18 18 9018 17 3.094 18 18 9018 17 1.125
-1 19 19 9519 18 0953 208 208 104208 207 20.656 20 20 10020 19 1.516 141 141 70641 140  8.984
1 20 20 10020 19 0938 220 220 110220 219 20.906 20 20 10020 19 1.719 55 55 27555 54 3.234
10 21 21 10521 20 1.063 57 57 28557 56 3375 21 21 10521 20 3328 21 21 10521 20 1.359
100 24 24 12024 23 1.188 33 33 16533 32 2109 24 24 12024 23 3734 24 24 12024 23 1.594
Extended Powell singular -10 500 15 15 7515 14 0625 16 16 8016 15 1.031 15 15 7515 14 2531 15 15 7515 14 0.875
-1 12 12 6012 11 0516 13 13 6513 12 1563 12 12 6012 11 0844 12 12 6012 11 0.750
1 12 12 6012 11 0563 13 13 6513 12 1484 12 12 6012 11 0984 12 12 6012 11 0.750
10 15 15 7515 14 0672 16 16 8016 15 0875 15 15 7515 14 2359 15 15 7515 14 0.906
100 19 19 9519 18 1.031 19 19 9519 18 1203 19 19 9519 18 3719 19 19 9519 18 1.109
Trigonometric -10 500 11 11 5511 10 0906 11 11 5511 10 1203 11 11 5511 10 3.656 11 11 5511 10 1.219

-1 9 9 189 8 0 9 9 189 8 0 9 9 189 8 0 9 9 189 8 0
1 8 8 4008 7 0563 8 8 4008 7 1.594 8 8 4008 7 1234 8 8 4008 7 0.844
10 336 197 98836 196 22203 19 19 9519 18 2.094 149 149 74649 148 57.516 22 22 11022 21 2.953
100 194 110 55194 109 27.203 35 35 17535 34 4234 48 48 24048 47 16359 40 40 20040 39 7.453

Broyden banded function -10 500 18 18 9018 17 0.750 18 18 9018 17 21484 18 18 9018 17 45094 18 18 9018 17 15.750

-1 18 15 7518 14 0.734 - - - - - 34 34 17034 33 81781 970 970 485970 969 1214.750
1 9 9 4509 8 0.281 9 9 4509 8 12,047 9 9 4509 8 20734 9 9 4509 8 7.422
10 14 14 7014 13 0500 13 13 6513 12 12031 14 14 7014 13 36453 14 14 7014 13 17.000

100 20 20 10020 19 1.500 20 20 10020 19 25.547 20 20 10020 19 54922 20 20 10020 19  25.578

Based on Table 1 and Table 2, Figure 1 shows the performance curves in terms of NF, NJ, Iter, and
CPU. Its vertical axis represents the proportion of problems solved , which is denoted as P(7), and
the horizontal axis represents the performance ratio 7. When 7 = 1, a larger value of P(7) indicates
that the algorithm wins a higher proportion of the test problems. Based on Figure 1(a), we observe
that the NMLM algorithm wins on 83.33% of the problems at 7 = 1, achieving the minimal NF. From
Figure 1(b), (c), and (d), we note that the NMLM algorithm requires the fewest NJ in 85% of the test
problems, 70% using the fewest Iter, and 73.33% using the least CPU. The numerical results show that
the NMLM algorithm achieves better performance, requiring less time and fewer computations.
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Performance profiles for the number of function evaluations.
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Figure 1. Performance profiles of the numerical results.

5. Conclusions

In this paper, a modified LM method with new LM parameters A, =

Ml Fel Pk

TeTEP 1S proposed, and

a nonmonotone technique is applied. Under the Holderian continuity and the Holderian local error
bounds conditions, we prove the global convergence of the algorithm and show that it converges with
order of y(1 + v) > 1. We perform numerical experiments on 60 problems and compare the NMLM
algorithm with the NLM, MELM, and MLM algorithms. The numerical results demonstrate that our
algorithm is competitive.
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