Optical solitons in nonlinear fiber optics represent fundamental wave phenomena that maintain their shape during propagation, yet existing analytical methods often fail to capture the complex dynamics of models incorporating dual nonlocal nonlinearity effects. Recent studies have shown significant research gaps in solving Kudryashov's law with simultaneous refractive index variations and multiple nonlinear terms, particularly when conformable derivatives are involved. In this study, we investigate the analytical solutions of Kudryashov's equation with dual nonlocal nonlinearity and refractive index effects in optical fibers using the improved modified Sardar Sub-equation expansion method (IMSSEM). By applying systematic traveling wave transformations and rigorous mathematical analysis, we derive an extensive collection of novel optical soliton solutions, including rational, hyperbolic, and trigonometric function families. The solutions exhibit diverse wave structures encompassing bright, dark, kink, and W-shaped soliton profiles. Through comprehensive 2D and 3D graphical representations, we demonstrate the wave propagation characteristics under various parameter conditions. Furthermore, we analyze the influence of different conformable derivative orders ($ \tau $) on soliton behavior, revealing significant variations in wave amplitude, width, and propagation velocity. These findings provide crucial insights for understanding nonlinear wave dynamics in optical communication systems, particularly in wavelength-division multiplexing, ultrashort pulse propagation, and nonlinear photonic devices. The derived solutions offer practical applications in designing optical amplifiers, mode-locked lasers, and soliton-based communication protocols. This work contributes significantly to the mathematical physics community by providing a comprehensive analytical framework for solving complex nonlinear optical models and advances the field of integrable systems theory with direct applications to modern fiber optic technology.
Citation: Salim S. Mahmood, Muhammad Amin S. Murad, Taha Radwan, Karim K. Ahmed, Abeer S. Khalifa. Analysis of time-fractional soliton solutions for Kudryashov's law with dual nonlocal nonlinearity and refractive index in optical fibers[J]. AIMS Mathematics, 2026, 11(1): 2384-2405. doi: 10.3934/math.2026097
Optical solitons in nonlinear fiber optics represent fundamental wave phenomena that maintain their shape during propagation, yet existing analytical methods often fail to capture the complex dynamics of models incorporating dual nonlocal nonlinearity effects. Recent studies have shown significant research gaps in solving Kudryashov's law with simultaneous refractive index variations and multiple nonlinear terms, particularly when conformable derivatives are involved. In this study, we investigate the analytical solutions of Kudryashov's equation with dual nonlocal nonlinearity and refractive index effects in optical fibers using the improved modified Sardar Sub-equation expansion method (IMSSEM). By applying systematic traveling wave transformations and rigorous mathematical analysis, we derive an extensive collection of novel optical soliton solutions, including rational, hyperbolic, and trigonometric function families. The solutions exhibit diverse wave structures encompassing bright, dark, kink, and W-shaped soliton profiles. Through comprehensive 2D and 3D graphical representations, we demonstrate the wave propagation characteristics under various parameter conditions. Furthermore, we analyze the influence of different conformable derivative orders ($ \tau $) on soliton behavior, revealing significant variations in wave amplitude, width, and propagation velocity. These findings provide crucial insights for understanding nonlinear wave dynamics in optical communication systems, particularly in wavelength-division multiplexing, ultrashort pulse propagation, and nonlinear photonic devices. The derived solutions offer practical applications in designing optical amplifiers, mode-locked lasers, and soliton-based communication protocols. This work contributes significantly to the mathematical physics community by providing a comprehensive analytical framework for solving complex nonlinear optical models and advances the field of integrable systems theory with direct applications to modern fiber optic technology.
| [1] |
S. S. Mahmood, M. A. S. Murad, Soliton solutions to time-fractional nonlinear Schrödinger equation with cubic-quintic-septimal in weakly nonlocal media, Phys. Lett. A, 532 (2025), 130183. https://doi.org/10.1016/j.physleta.2024.130183 doi: 10.1016/j.physleta.2024.130183
|
| [2] |
S. S. Mahmood, M. A. S. Murad, Soliton solutions of the time-fractional nonlinear Schrödinger equation with refractive index and generalized nonlocal nonlinearity via two integration methods, Mod. Phys. Lett. B, 39 (2025), 2550158. https://doi.org/10.1142/S0217984925501581 doi: 10.1142/S0217984925501581
|
| [3] |
T. Han, Y. Liang, W. Fan, Dynamics and soliton solutions of the perturbed Schrödinger-Hirota equation with cubic-quintic-septic nonlinearity in dispersive media, AIMS Mathematics, 10 (2025), 754–776. https://doi.org/10.3934/math.2025035 doi: 10.3934/math.2025035
|
| [4] | S. S. Mahmood, M. A. S. Murad, Formulation of quiescent optical solutions in the nonlinear Schrödinger equation with nonlinear chromatic dispersion and Kudryashov's generalized quintuple-power law, J. Opt., in press. https://doi.org/10.1007/s12596-025-02801-9 |
| [5] |
S. Malik, S. Boulaaras, A. Talafha, F. Sağlam, Soliton dynamics of the fourth-order nonlinear Boussinesq equation arising in shallow-water via advanced analytical techniques, Sci. Rep., 15 (2025), 45421. https://doi.org/10.1038/s41598-025-30194-z doi: 10.1038/s41598-025-30194-z
|
| [6] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
|
| [7] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|
| [8] |
M. A. Iqbal, A. H. Ganie, M. M. Miah, M. S. Osman, Extracting the ultimate new soliton solutions of some nonlinear time fractional PDEs via the conformable fractional derivative, Fractal Fract., 8 (2024), 210. https://doi.org/10.3390/fractalfract8040210 doi: 10.3390/fractalfract8040210
|
| [9] |
M. I. Afridi, T. Islam, M. A. Akbar, M. S. Osman, The investigation of nonlinear time-fractional models in optical fibers and the impact analysis of fractional-order derivatives on solitary waves, Fractal Fract., 8 (2024), 627. https://doi.org/10.3390/fractalfract8110627 doi: 10.3390/fractalfract8110627
|
| [10] |
W. Krolikowski, O. Bang, J. J. Rasmussen, J. Wyller, Modulational instability in nonlocal nonlinear Kerr media, Phys. Rev. E, 64 (2001), 016612. https://doi.org/10.1103/PhysRevE.64.016612 doi: 10.1103/PhysRevE.64.016612
|
| [11] |
M. Iqbal, W. Faridi, R. Algethamie, A. Aljohani, M. El-Meligy, N. Mohammad, et al., Propagation of optical solitons and dispersive solitary wave structure in complex media to the nonlinear integrable system via computational technique, Sci. Rep., 15 (2025), 38317. https://doi.org/10.1038/s41598-025-22237-2 doi: 10.1038/s41598-025-22237-2
|
| [12] |
K. K. Ahmed, N. M. Badra, H. M. Ahmed, W. B. Rabie, Soliton solutions and other solutions for Kundu-Eckhaus equation with quintic nonlinearity and Raman effect using the improved modified extended tanh-function method, Mathematics, 10 (2022), 4203. https://doi.org/10.3390/math10224203 doi: 10.3390/math10224203
|
| [13] |
D. J. Korteweg, G. De Vries, XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 39 (1895), 422–443. https://doi.org/10.1080/14786449508620739 doi: 10.1080/14786449508620739
|
| [14] |
C. S. Gardner, J. M. Greene, M. D. Kruskal, R. M. Miura, Method for solving the Korteweg-deVries equation, Phys. Rev. Lett., 19 (1967), 1095–1097. https://doi.org/10.1103/PhysRevLett.19.1095 doi: 10.1103/PhysRevLett.19.1095
|
| [15] |
N. J. Zabusky, M. D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15 (1965), 240–243. https://doi.org/10.1103/PhysRevLett.15.240 doi: 10.1103/PhysRevLett.15.240
|
| [16] |
E. Fan, H. Zhang, A note on the homogeneous balance method, Phys. Lett. A, 246 (1998), 403–406. https://doi.org/10.1016/S0375-9601(98)00547-7 doi: 10.1016/S0375-9601(98)00547-7
|
| [17] |
R. Hirota, J. Satsuma, Soliton solutions of a coupled Korteweg-de Vries equation, Phys. Lett. A, 85 (1981), 407–408. https://doi.org/10.1016/0375-9601(81)90423-0 doi: 10.1016/0375-9601(81)90423-0
|
| [18] |
C. Yan, A simple transformation for nonlinear waves, Phys. Lett. A, 224 (1996), 77–84. https://doi.org/10.1016/S0375-9601(96)00770-0 doi: 10.1016/S0375-9601(96)00770-0
|
| [19] |
S. Liu, Z. Fu, S. Liu, Q. Zhao, Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations, Phys. Lett. A, 289 (2001), 69–74. https://doi.org/10.1016/S0375-9601(01)00580-1 doi: 10.1016/S0375-9601(01)00580-1
|
| [20] |
N. A. Kudryashov, One method for finding exact solutions of nonlinear differential equations, Commun. Nonlinear Sci., 17 (2012), 2248–2253. https://doi.org/10.1016/j.cnsns.2011.10.016 doi: 10.1016/j.cnsns.2011.10.016
|
| [21] |
N. A. Kudryashov, Exact solitary waves of the Fisher equation, Phys. Lett. A, 342 (2005), 99–106. https://doi.org/10.1016/j.physleta.2005.05.025 doi: 10.1016/j.physleta.2005.05.025
|
| [22] |
R. Luo, H. Emadifar, M. Rahman, Bifurcations, chaotic dynamics, sensitivity analysis and some novel optical solitons of the perturbed non-linear Schrödinger equation with Kerr law non-linearity, Results Phys., 54 (2023), 107133. https://doi.org/10.1016/j.rinp.2023.107133 doi: 10.1016/j.rinp.2023.107133
|
| [23] |
T. Han, H. Rezazadeh, M. U. Rahman, High-order solitary waves, fission, hybrid waves and interaction solutions in the nonlinear dissipative (2+1)-dimensional Zabolotskaya-Khokhlov model, Phys. Scr., 99 (2024), 115212. 10.1088/1402-4896/ad7f04 doi: 10.1088/1402-4896/ad7f04
|
| [24] |
C. Xu, M. U. Rahman, H. Emadifar, Bifurcations, chaotic behavior, sensitivity analysis and soliton solutions of the extended Kadometsev-Petviashvili equation, Opt. Quant. Electron., 56 (2024), 405. https://doi.org/10.1007/s11082-023-05958-4 doi: 10.1007/s11082-023-05958-4
|
| [25] | C. Sulem, P. L. Sulem, The nonlinear Schrödinger equation: self-focusing and wave collapse, New York: Springer, 1999. https://doi.org/10.1007/b98958 |
| [26] | L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Oxford: Oxford University Press, 2006. https://doi.org/10.1093/acprof: oso/9780198758884.001.0001 |
| [27] | M. J. Ablowitz, H. Segur, Solitons and the inverse scattering transform, Philadelphia: Society for Industrial and Applied Mathematics, 1981. https://doi.org/10.1137/1.9781611970883 |
| [28] | R. Hirota, The direct method in soliton theory, Cambridge: Cambridge University Press, 2009. https://doi.org/10.1017/CBO9780511543043 |
| [29] |
N. A. Kudryashov, Mathematical model of propagation pulse in optical fiber with power nonlinearities, Optik, 212 (2020), 164750. https://doi.org/10.1016/j.ijleo.2020.164750 doi: 10.1016/j.ijleo.2020.164750
|
| [30] |
N. A. Kudryashov, Highly dispersive optical solitons of equation with various polynomial nonlinearity law, Chaos Soliton. Fract., 140 (2020), 110202. https://doi.org/10.1016/j.chaos.2020.110202 doi: 10.1016/j.chaos.2020.110202
|
| [31] |
A. Biswas, Y. Yıldırım, E. Yaşar, Q. Zhou, S. P. Moshokoa, M. Belic, Optical solitons for Lakshmanan-Porsezian-Daniel model by modified simple equation method, Optik, 160 (2018), 24–32. https://doi.org/10.1016/j.ijleo.2018.01.100 doi: 10.1016/j.ijleo.2018.01.100
|
| [32] |
O. Gonzalez-Gaxiola, A. Biswas, M. Ekici, S. Khan, Highly dispersive optical solitons with quadratic-cubic law of refractive index by the variational iteration method, J. Opt., 51 (2022), 29–36. https://doi.org/10.1007/s12596-020-00671-x doi: 10.1007/s12596-020-00671-x
|
| [33] |
A. Biswas, M. Ekici, A. Sonmezoglu, Stationary optical solitons with Kudryashov's quintuple power-law of refractive index having nonlinear chromatic dispersion, Phys. Lett. A, 426 (2022), 127885. https://doi.org/10.1016/j.physleta.2021.127885 doi: 10.1016/j.physleta.2021.127885
|
| [34] |
Y. Yildirim, Optical solitons to Kundu-Eckhaus equation in the context of birefringent fibers by using of trial equation methodology, Optik, 182 (2019), 105–109. https://doi.org/10.1016/j.ijleo.2018.12.188 doi: 10.1016/j.ijleo.2018.12.188
|
| [35] |
E. M. Zayed, M. E. Alngar, A. Biswas, A. H. Kara, M. Asma, M. Ekici, et al., Solitons and conservation laws in magneto-optic waveguides with generalized Kudryashov's equation, Chinese J. Phys., 69 (2021), 186–205. https://doi.org/10.1016/j.cjph.2020.11.026 doi: 10.1016/j.cjph.2020.11.026
|
| [36] |
Sirendaoreji, Unified Riccati equation expansion method and its application to two new classes of Benjamin-Bona-Mahony equations, Nonlinear Dyn., 89 (2017), 333–344. https://doi.org/10.1007/s11071-017-3457-6 doi: 10.1007/s11071-017-3457-6
|
| [37] |
E. Zayed, M. El-Horbaty, M. Alngar, M. El-Shater, Dispersive optical solitons for stochastic fokas-lenells equation with multiplicative white noise, Eng, 3 (2022), 523–540. https://doi.org/10.3390/eng3040037 doi: 10.3390/eng3040037
|
| [38] |
Z. Li, E. Hussain, Qualitative analysis and optical solitons for the (1+1)-dimensional Biswas-Milovic equation with parabolic law and nonlocal nonlinearity, Results Phys., 56 (2024), 107304. https://doi.org/10.1016/j.rinp.2023.107304 doi: 10.1016/j.rinp.2023.107304
|