In this paper, we present an algebraic description of the derivation classes and multiplicative Hom-structures of $ \mathfrak{so}(3) $. We also study $ \alpha^k $-derivations on multiplicative Hom-structures. Using the operator-matrix correspondence, explicit matrix representations for derivations, $ D $-derivations, and ($ F, D $)-derivations are derived by solving linear systems. We show that all nontrivial ($ F, D $)-derivations comprise scalar and skew-symmetric components. Three different multiplicative Hom-structures are explicitly parameterized, and, on this basis, we discuss $ \alpha^k $-derivations, obtaining the classification of $ \alpha^k $-derivations on the corresponding multiplicative Hom-Lie algebra $ \mathfrak{so}(3) $ in each case. Moreover, we show how each multiplicative Hom-structure gives rise to a Yau-twisted Hom-Lie bracket, and our classification of $ \alpha^k $-derivations corresponds to derivations of these twisted algebras. These results combine the algebraic and computational aspects of $ \mathfrak{so}(3) $, providing useful tools for applications in robotic kinematics and quantum symmetry breaking.
Citation: Yan Jiang, Ying Hou, Keli Zheng. Matrix representations of multiplicative Hom-structures and $ \alpha^k $-derivations on the real Lie algebra $ \mathfrak{so}(3) $[J]. AIMS Mathematics, 2026, 11(1): 2363-2383. doi: 10.3934/math.2026096
In this paper, we present an algebraic description of the derivation classes and multiplicative Hom-structures of $ \mathfrak{so}(3) $. We also study $ \alpha^k $-derivations on multiplicative Hom-structures. Using the operator-matrix correspondence, explicit matrix representations for derivations, $ D $-derivations, and ($ F, D $)-derivations are derived by solving linear systems. We show that all nontrivial ($ F, D $)-derivations comprise scalar and skew-symmetric components. Three different multiplicative Hom-structures are explicitly parameterized, and, on this basis, we discuss $ \alpha^k $-derivations, obtaining the classification of $ \alpha^k $-derivations on the corresponding multiplicative Hom-Lie algebra $ \mathfrak{so}(3) $ in each case. Moreover, we show how each multiplicative Hom-structure gives rise to a Yau-twisted Hom-Lie bracket, and our classification of $ \alpha^k $-derivations corresponds to derivations of these twisted algebras. These results combine the algebraic and computational aspects of $ \mathfrak{so}(3) $, providing useful tools for applications in robotic kinematics and quantum symmetry breaking.
| [1] | R. M. Murray, Z. Li, S. S. Sastry, A mathematical introduction to robotic manipulation, Boca Raton: CRC Press, 1994. |
| [2] |
M. Bresar, On the distance of the composition of two derivations to the generalized derivations, Glasg. Math. J., 33 (1991), 89–93. https://doi.org/10.1017/S0017089500008077 doi: 10.1017/S0017089500008077
|
| [3] |
B. Hvala, Generalized derivations in rings, Commun. Algebra, 26 (1998), 1147–1166. https://doi.org/10.1080/00927879808826190 doi: 10.1080/00927879808826190
|
| [4] | A. Nakajima, Categorical properties of generalized derivations, Sci. Math., 2 (1999), 345–352. |
| [5] |
G. F. Leger, E. M. Luks, Generalized derivations of Lie algebras, J. Algebra, 228 (2000), 165–203. https://doi.org/10.1006/jabr.1999.8250 doi: 10.1006/jabr.1999.8250
|
| [6] |
Y. Zhang, X. Tang, Generalized derivations and centroids of ternary Jordan superalgebras, Adv. Appl. Clifford Algebras, 31 (2021), 49. https://doi.org/10.1007/s00006-021-01155-2 doi: 10.1007/s00006-021-01155-2
|
| [7] | J. Viegas, A note on generalized derivations of semiprime rings, Taiwan. J. Math., 11 (2007), 367–370. |
| [8] |
P. B. Liao, C. K. Liu, On generalized Lie derivations of Lie ideals of prime algebras, Linear Algebra Appl., 430 (2009), 1236–1242. https://doi.org/10.1016/j.laa.2008.10.022 doi: 10.1016/j.laa.2008.10.022
|
| [9] | M. Arshad, M. M. Munir, On Lie derivations, generalized Lie derivations and Lie centralizers of Octonion algebras, Ars Combin., 157 (2023), 23–37. |
| [10] |
N. Aizawa, H. Sato, $q$-deformation of the Virasoro algebra with central extension, Phys. Lett. B, 256 (1991), 185–190. https://doi.org/10.1016/0370-2693(91)90671-C doi: 10.1016/0370-2693(91)90671-C
|
| [11] |
J. T. Hartwig, D. Larsson, S. D. Silvestrov, Deformations of Lie algebras using $\sigma$-derivations, J. Algebra, 295 (2006), 314–361. https://doi.org/10.1016/j.jalgebra.2005.07.036 doi: 10.1016/j.jalgebra.2005.07.036
|
| [12] |
Q. Jin, X. Li, Hom-Lie algebra structures on semisimple Lie algebras, J. Algebra, 319 (2008), 1398–1408. https://doi.org/10.1016/j.jalgebra.2007.12.005 doi: 10.1016/j.jalgebra.2007.12.005
|
| [13] |
W. Xie, Q. Jin, W. Liu, Hom-structures on semi-simple Lie algebras, Open Math., 13 (2015), 617–630. https://doi.org/10.1515/math-2015-0059 doi: 10.1515/math-2015-0059
|
| [14] |
A. Makhlouf, P. Zusmanovich, Hom-Lie structures on Kac-Moody algebras, J. Algebra, 515 (2018), 278–297. https://doi.org/10.1016/j.jalgebra.2018.08.022 doi: 10.1016/j.jalgebra.2018.08.022
|
| [15] |
Y. Sheng, Representations of Hom-Lie algebras, Algebr. Represent. Theory, 15 (2012), 1081–1098. https://doi.org/10.1007/s10468-011-9280-8 doi: 10.1007/s10468-011-9280-8
|
| [16] | J. Zhou, Y. Niu, L. Chen, Generalized derivations of Hom-Lie algebras, Acta Math. Sin., Chin. Ser., 58 (2015), 551–558. |
| [17] |
J. Zhao, L. Yuan, L. Chen, Deformations and generalized derivations of Hom-Lie conformal algebras, Sci. China Math., 61 (2018), 797–812. https://doi.org/10.1007/s11425-016-9063-0 doi: 10.1007/s11425-016-9063-0
|
| [18] |
A. Makhlouf, S. Silvestrov, Notes on 1-parameter formal deformations of Hom-associative and Hom-Lie algebras, Forum Math., 22 (2010), 715–739. https://doi.org/10.1515/forum.2010.040 doi: 10.1515/forum.2010.040
|
| [19] | L. Guo, B. Zhang, S. Zheng, Universal enveloping algebras and Poincaré-Birkhoff-Witt theorem for involutive Hom-Lie algebras, J. Lie Theory, 28 (2018), 739–756. |
| [20] | B. Agrebaoui, K. Benali, A. Makhlouf, Representations of simple Hom-Lie algebras, J. Lie Theory, 29 (2019), 1119–1135. |
| [21] |
J. M. Casas, S. N. Hosseini, On isoclinism of Hom-Lie algebras, J. Algebra, 606 (2022), 894–915. https://doi.org/10.1016/j.jalgebra.2022.05.013 doi: 10.1016/j.jalgebra.2022.05.013
|
| [22] |
F. Ammar, S. Mabrouk, A. Makhlouf, Representations and cohomology of $n$-ary multiplicative Hom-Nambu-Lie algebras, J. Geom. Phys., 61 (2011), 1898–1913. https://doi.org/10.1016/j.geomphys.2011.04.022 doi: 10.1016/j.geomphys.2011.04.022
|
| [23] |
J. M. Casas, X. García-Martínez, Abelian extensions and crossed modules of Hom-Lie algebras, J. Pure Appl. Algebra, 224 (2020), 987–1008. https://doi.org/10.1016/j.jpaa.2019.06.018 doi: 10.1016/j.jpaa.2019.06.018
|
| [24] | J. E. Humphreys, Introduction to Lie algebras and representation theory, New York: Springer-Verlag, 1972. https://doi.org/10.1007/978-1-4612-6398-2 |
| [25] | D. Yau, Hom-algebras and homology, J. Lie Theory, 19 (2009), 409–421. |
| [26] | A. Makhlouf, S. D. Silvestrov, Hom-algebra structures, J. Gen. Lie Theory Appl., 2 (2008), 51–64. |
| [27] |
L. S. Tseng, J. Zhou, Symplectic flatness and twisted primitive cohomology, J. Geom. Anal., 32 (2022), 282. https://doi.org/10.1007/s12220-022-01018-7 doi: 10.1007/s12220-022-01018-7
|